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Abstract

phenotype.

with respect to particular phenotypes.

Background: Identifying stable gene lists for diagnosis, prognosis prediction, and treatment guidance of tumors
remains a major challenge in cancer research. Microarrays measuring differential gene expression are widely used
and should be versatile predictors of disease and other phenotypic data. However, gene expression profile studies
and predictive biomarkers are often of low power, requiring numerous samples for a sound statistic, or vary
between studies. Given the inconsistency of results across similar studies, methods that identify robust biomarkers
from microarray data are needed to relay true biological information. Here we present a method to demonstrate
that gene list stability and predictive power depends not only on the size of studies, but also on the clinical

Results: Our method projects genomic tumor expression data to a lower dimensional space representing the main
variation in the data. Some information regarding the phenotype resides in this low dimensional space, while
some information resides in the residuum. We then introduce an information ratio (IR) as a metric defined by the
partition between projected and residual space. Upon grouping phenotypes such as tumor tissue, histological
grades, relapse, or aging, we show that higher IR values correlated with phenotypes that yield less robust
biomarkers whereas lower IR values showed higher transferability across studies. Our results indicate that the IR is
correlated with predictive accuracy. When tested across different published datasets, the IR can identify
information-rich data characterizing clinical phenotypes and stable biomarkers.

Conclusions: The IR presents a quantitative metric to estimate the information content of gene expression data

Background

Motivation

The challenge to identify stable tumor prognosis and
predictive outcome markers remains critical in clinical
cancer research. Many studies rely on microarrays to
determine which genes are predominantly indicative of
clinical cancer phenotypes or prognosis. However, biolo-
gical and technical variations across samples and studies
make it challenging to identify true, predictive clinical
biomarkers [1,2]. Identification of stable gene expression
signatures can facilitate the classification of clinical phe-
notypes and their associated physiological states. Histo-
logic tumor grade, ER (estrogen receptor) status and
predicted risk of relapse are among the currently used
labels to distinguish prognosis and treatment regimes.
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Our motivation in this study was to determine when
stable predictive biomarkers can be identified from mul-
tiple microarray studies or meta-analyses.

Dimension Reduction

Results from microarray experiments can be arranged as
an #n by p matrix with # being the number of samples
and p the number of measured features or probesets. #
tends to be much smaller than p. Dimension reduction
techniques are widely used to reduce the dimensionality
of the data from p to a smaller value d [3,4]. The result-
ing projection represents information which classifies
cells and tissues relative to physiological states and phe-
notypes [5].

Various methods can be used to identify large scale
patterns that comprise genomic subspaces. These sub-
spaces can then be utilized to extract biologically signifi-
cant information from the genome. For example, linear
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projection algorithms such as SVD, PCA, ICA, or factor
analysis and less commonly applied nonlinear methods
such as non-negative matrix factorization (NMF) can be
utilized in mapping and assessing differential behavior
across large-scale genomic data [6-11]. The result is a
clearer picture of the role differential gene regulation
has on cellular phenotypes and the potential to identify
predictive genes for disease diagnosis or prognosis. Such
analyses are then critical to understanding cellular phy-
siology, clinical phenotypes and for predicting the effi-
cacy of drugs on diseased cells.

Data sets and Analysis

In our analysis, published data from eight breast cancer
studies, one lung cancer and one prostate cancer study
were analyzed (Table 1) [12-21]. All redundant samples
were removed and all expression values were mapped to
corresponding gene symbols. Our analysis was restricted
to genes that were present across all studies. The degree
of recorded clinical information varies between studies
with at most 5 phenotypic variables recorded (Table 1)
per study. This allowed for a total of 87 pair-wise com-
parisons between studies regarding a specific phenotype.
Details on data preparation and available clinical para-
meters are described below in the Methods section.

Results

The following section presents the results of the analysis
of several publicly available microarray datasets. For
each dataset the normalized expression values were pro-
jected to a lower dimensional (d = 4) space. Differential
expression and corresponding p-values of differential
expression were calculated in projected and residual
space for a series of phenotypic variables. Hence, for
each gene and combination of phenotype and study
there are two p-values.

Comparison of different clinical phenotypes
Comparing the p-values of the projected expression
value and the residual expression value can bring light
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to where information lies in the measured expression
data. The information may reside mainly in the residual
space, mainly in the projected space, or somewhere in
between. A comparison of log;o p-value of differential
expression (referred to as Ip below) data from lung and
breast tissue showing different clinical phenotypes was
performed as shown in Figure 1. Data structures shown
in Figures 1a, b, and 1c are categorized as data projec-
tion Types 1, 2, and 3 (correlated to the information
ratio (IR) which is described in detail in the Methods
section) respectively so that they may be easily referred
to later in the text to describe the specific type of
observed information distribution.

Type 1: The projection of lower dimensionality data,
Ip, (blue crosses) onto S, shows high significance (low
Ip-values) compared to the residuals Ip, (red crosses),
almost all significance from the original data (x-axis) is
expressed in lp,, as shown by the distribution of p-
values. The ratio between the Ip, and Ip, (information
ratio) is low (Figure la, shows p-values of differential
expression between tumor and control tissue).

Type 2: The projection lp, (blue crosses) onto S,
shows similar p-values compared to the residuals Ip,
(red crosses). The information ratio is almost 0.5 (thus
half of the information is stored in the residual space)
(Figure 1b, showing differential expression smoker-non-
smoker).

Type 3: The projection lp, (blue crosses) onto S,
shows very low absolute values compared to the resi-
duals Ip, (red crosses). The information ratio is almost 1
(thus most of the information is stored in the residual
space). (Figure 1c, shows differential expression between
mammacarcinoma leading to post-surgical metastasis
and no metastasis). Observe that the p-values are high
compared to the other cases. Therefore, the overall
information content of the expression data is low with
respect to the phenotype.

The principal components are sorted in decreasing
order of variance explained. The projections of differen-
tial expression onto the first principal components

Table 1 Data sets used for this study with ArrayExpress identifiers, literature references and available meta data

Array Express ID  Reference  Tissue Sample size used  Clinical marker recorded Affymetrix Platform

E-GEOD-10072 [16] Lung 107 Tumor/control, Smoking HG-U133A

E-GEOD- 6919 [13] Prostate 171 Tumor/control HG-U95Av2, B, C

E-GEOD- 6532 [18] Breast 138 Grade, Size, Age, ER, relapse  HG-U133A, HG-U133B, HG-U133_Plus_2
E-GEOD- 7390 [15] Breast 198 Grade, Size, ER, relapse HG-U133A

E-GEOD-11121 [19] Breast 200 Grade, Size, relapse HG-U133A

E-TABM- 158 [14] Breast 130 Grade, Size, Age, ER, relapse HG-U133A

E-GEOD- 4922 (17] Breast 249 Grade, Size, Age, ER HG-U133A, HG-U133B

E-GEOD- 2990 [20] Breast 189 Grade, Size, Age, ER, relapse HG-U133A

E-GEOD- 5847 [12] Breast 95 ER HG-U133A

E-GEOD- 2034 21 Breast 286 ER, relapse HG-U133A (preprocessed data downloaded)
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Figure 1 Information partition between residual and projected
space. The data comparisons demonstrate the partitioning of
information between projected data S,, and residual data S, in
comparison to the original data. The x-axis shows p-values of
differential gene expression in the original data, while the y-axis
shows p-values for projected (blue) and residual (red) data.
Qualitative different types of information partitioning are
demonstrated: (a) Type 1: control tissues are compared with lung

cancer samples, (b) Type 2: non-smoker (no stress response) lung
tissue is compared with smoker (stress response) samples, (c) Type
3: metastatic breast cancer tissue compared with non-metastatic
samples.

quantify whether the changes in the phenotype can be
associated with a combination of the main data varia-
tions in the entire sample. Therefore, if in a well-con-
trolled experiment, the sample is homogeneous (e.g. a
monoclonal cell culture study using the same protocols)
and only one well-defined experimental variation is per-
formed, then all differential expressions should represent
only the biological variation in the sample and should be
associated with the first principal component of the
PCA. This correlates with a Type 1 genome-wide differ-
ential expression pattern where the resulting distribution
is dependent on the study design. In contrast, clinical
studies have a high biological heterogeneity, which is
not well characterized a priori. The type of differential
expression pattern then depends on whether phenotypic
changes are a result of a mixture of expression varia-
tions in the sample. Therefore, study design weighs
heavily on the type of distribution observed. In our ana-
lysis, 6 breast cancer studies (E-GEOD-6532, E-GEOD-
7390, E-GEOD-11121, E-TABM-158, E-GEOD-2990, E-
GEOD-2034) (Table 1) showed either Type 3 (2 out of
6) or Type 2 (4 out of 6) behavior for relapse. Thus, in
contrast to well-controlled laboratory experiments, data
from clinical studies do not represent the expected bio-
logical/clinical variations a priori as they are hidden
behind signals from biological heterogeneity. Therefore,
a method to quantitatively translate results from lab
experiments into clinical settings can be useful.

The Information Ratio (IR)

In order to quantify the patterns we introduce the infor-
mation ratio (IR). The IR describes the ratio of differen-
tial expression, which is stored in the residual space,
compared to the information in both the residual and
projected space. However, rather than using fold change
values, p-values of differential expression are used. In
order to suppress false results from genes with low over-
all differential expression, the IR is calculated as
weighted sum of p-value ratios:

_ 2 wilog(pri)/(1og(pri) +10g(pp,i))
- dowi

where p, ; is the p-value of the residual for gene i, and
Dp, i is the p-value of principle component projections
for differential expression of gene i. The weights, w;, for
each gene i guarantee that the genes with high sensitiv-
ity contribute more to IR than genes with low

IR
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Table 2 Phenotypes identified by IR values where low IR values correspond with Type 1 and high IR values

correspond with Types 2 and 3 data structures.

Differential Phenotypes

Low IR

High IR

« Tumor control in lung/prostate
+ Grade 1&2 versus grade 3 tumors in mammacarcinoma
- ER positive versus ER negative mammacarcinoma

« Smoker/non smoker in healthy lung tissues
+ Age < 55a versus age >55a in mamma carcinoma
- Relapse of breast tumors after surgery
- Grade 1 vs. grade 2

sensitivity. Here we use an intrinsic weight distribution
so that all gene groups with similar sensitivity contribute
equally to the IR.

Calculating the Information Ratio (IR) for Different
Phenotypes

The IR is calculated for different phenotypes and reveals
a property specific to the clinical phenotype (Table 2).
As seen in Figure 2, data can be categorized into high
or low IR, where low IR coincides with Type 1 data pro-
jections (Figure 1a) and high IR coincides with Type 2
and Type 3 data projections (Figure 1b and 1c).

Analysis of gene ranking stability in relation to the IR

For classification of clinical samples based on microarray
data, prediction is usually performed with a gene list, a
subset of all available genes. It is important to under-
stand and gauge the stability of gene lists across differ-
ent studies. To this end we used a dataset consisting of
8 breast cancer studies described in Table 1. Two of

mean IR
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Figure 2 Mean information ratios for differential phenotypes
across the studies. Low IR values are obtained for e.g. tumor vs.
control lung tissue or mamma carcinoma grade 1 or 2 vs. grade 3.
Higher IR values are seen in e.g. relapse vs. relapse-free.

them (E-GEOD-7390 and E-GEOD-2990) are compared
in detail in Figure 3. Both studies shown in Figure 3 dis-
play genome-wide distributions of differential expres-
sion, quantified by the log;, p-values for each gene
across the pairs of tumor characteristics. As displayed
for grade 1 versus grade 2 on Figure 3a, and relapse vs.
non-relapse on Figure 3b, the log p-values are not
related between the two studies: Genes displaying low
p-values in one study are non-significant in the other
study and vice versa. Thus, as shown in Figure 3a and
3b, the genome-wide distribution of information with
respect to heterogeneous phenotypes is qualitatively
dependent on the study. Consequently, the ranking of
gene lists depends strongly on the individual study and
is not easily transferable between studies.

Results shown in Figure 3c are qualitatively different
from Figure 3a, b: The information carrying genes are
the same in both studies. Data presented in Figures 3a
and 3b, demonstrate that differentially expressed genes
are not identical between studies, such that the identifi-
cation of predictive biomarkers becomes almost impos-
sible. Surprisingly we found, however, that the
distributions of p-values with respect to other tumor
characteristics can show a qualitatively different struc-
ture (Figure 3c). It is remarkable that Figures 3a, b and
Figure 3c are based on gene expression data from the
same patient cohort. The only difference is the set of
physiological phenotypes (in this case, tumor grades),
that are compared against their respective differential
expression distributions. The differential expression pat-
tern between grade 1 or grade 2 tumors compared to
grade 3 tumors display significant similarity across both
studies. This is in contrast to the distribution between
grade 1 versus grade 2 tumors. Based on results shown
in Figures 3 and 4, it is clear that, depending on how
the phenotypic data is combined, we identify either
more or less significance in the p-value comparisons
across the studies. Therefore, the magnitude of agree-
ment between gene expression studies depends less on
the study design, but appears to be related to biological
phenotype.

A detailed analysis of gene list stability and IR for
seven factors and all 8 breast cancer studies is displayed
in Figure 4. Gene list stability is quantified by the
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Figure 3 P-values of differential gene expression compared
between two studies. Depending on the particular factor, p-values
of differential gene expression may be dissimilar between studies
[(@) grade 1 or 2 and (b) relapse], or similar [(c), grade 1&2 versus
grade 3]. Genes that show similar differential expression in both
studies are close to the diagonal.
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Figure 4 Relationship between gene list overlap and IR. For
multiple breast cancer studies IR values of grade, size, age, ER
status, and relapse are compared to the gene list overlap. Each data
point represents a pair of studies with the mean IR (x-axis) and the
percenatage of overlapping genes (POG) of the top 5% of p-values
(y-axis).

intersection between the two top-5% gene lists of a
study pair. Factors associated with high or medium IR
values display low degrees of gene list stability between
studies and are unlikely to yield stable biomarkers. How-
ever, phenotypes associated with lower IR values show
more stability and transferability between heterogeneous
studies. Thus, biomarkers may be identified to discrimi-
nate between phenotypes among the low IR values.

The Effect of Sample Size on Gene Ranking Stability
Ein-Dor et al. estimated the stability of ranked gene lists
in studies with respect to outcome of tumor therapies in
terms of the size of the clinical study [2]. The overarch-
ing result was that at least 1000 patients must be
included in a study in order to achieve a reliable stabi-
lity. However, our study reveals phenotype-specific cases
where this result may not hold true. Based on data
shown in Figure 5, we demonstrate that the sample size
plays an important role for Type 1 classifications,
whereas for Type 2 and Type 3 classifications the sam-
ple size plays a minor role.

Our analysis, which considers gene list ranking with
respect to various physiological phenotypes, shows that
the impact of the sample size depends on the type of
classification (Figure 5). The significance group was
extracted from the top 5% of significant p-values of dif-
ferential expression. Again, gene list stability was
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Figure 5 Gene list stability. Sample size can determine the
stability of rank gene lists in most cases. The y axis is the
percentage of overlapping genes (POG) in the top 5% list between
two compared studies and the x axis displays the logarithmic
sample size. (a) The black stars indicating IR values < 0.25 and
correlating with Type 1 phenotypic classifications, show linear and
thus stable behavior whereas the red stars indicating IR values >
0.25 and correlating with Types 2 and 3 phenotypic classifications,
show less uniform distribution and are thus unstable (overall r* =
0.15). (b) Gene list stability and the logarithm of the IR show a linear
relation (with r* = 0.76).

quantified by the proportion of overlapping genes in the
top-5% gene list. As shown in Figure 5a for Type 1 clas-
sifications (IR < 0.25, black stars) the stability increases
almost linearly with the logarithm of the square root of
the sample size. In contrast, this is not true for Type 2
and 3 classifications (IR > 0.25, red stars). This result
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seems to depend only on the type of classification and
not on the phenotype. In contrast, Figure 5b shows that
the stability of ranked gene lists depends linearly on the
logyo (IR) (Pearson’s r* = 0.76).

The IR and predictor accuracy

The IR is a suitable indicator for gene list stability, with
a high IR being indicative of a stable gene list. Non-
stable gene lists are problematic for classifiers [22]. Here
we evaluated the relationship between IR and the accu-
racy of a classifier with univariate variable selection. For
ER positive vs. negative, grade 1&2 vs. grade 3, grade 1
vs. 2, tumor size large vs. small, and relapse vs. non-
relapse Support Vector Machine (SVM) based classifiers
were trained and accuracy on out-of-bag samples were
established. The Pearson coefficient of correlation
between accuracy and IR was r> = 0.25. The mean accu-
racy for classification tasks with IR < 0.25 was 81%,
while for tasks with IR > 0.25 the mean accuracy was
70%. The difference in prediction accuracy is significant
with p < 0.005 (Welch two sample t-test). See Figure 6
for a detailed graphic showing the relationship between
prediction accuracy and IR value.

If one study is used to derive a gene list, and this gene
list is used to build a classifier for another study, a
decrease in accuracy can be observed. Figure 7 shows
that the mean decrease for each study and factor in rela-
tion to the IR (Pearson’s r*> = 0.43). The mean loss of
prediction accuracy is 18% for cases with IR < 0.25, and
28% for cases with IR > 0.25 (p < le-12).
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Figure 6 Information ratio versus intra study prediction
accuracy. The x-axis shows the information ratio of different studies/
factors. The y-axis indicates the out-of-bag prediction accuracy. The
vertical dashed line delineates low and high IRs, the solid trend line

indicates the decrease of accuracy with increasing IR.
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Figure 7 Information ratio versus inter study prediction
accuracy. The use of biomarkers across studies decreases the
prediction accuracy. The extent of accuracy loss (y-axis) depends on
the IR (x-axis), as indicated by a steep descent of the solid trend
line. A dashed vertical line delineates high and low IRs. Each dot
represents the mean loss of accuracy for all studies when compared

to the biomarker source study accuracy.

Simulation data

A body of synthetic expression data was generated with
dimensionality between 1 and 100. For this data, IR and
prediction accuracy was calculated. Results demonstrate
that IR and prediction accuracy depend on dimensional-
ity which is analogous to observations in real gene
expression data. However, the dependency of the IR on
the specific phenotype was not apparent in the simu-
lated data. For details on methods and results see addi-
tional file 1: Appendix 1.pdf.

Discussion

Gene expression data sets were projected into a four-
dimensional subspace and in a residual gene expression
space. Depending on the phenotype the information is
distributed differently between the subspace and the
residual space. We introduced a p-value based informa-
tion ratio, IR, to quantify this observation. When com-
paring cancer cells to control tissues, most information
resides in the subspace (Figure 1a), however, when com-
paring samples from smoker to non-smokers, the infor-
mation is evenly distributed between subspace and
residual space (Figure 1b) and when comparing meta-
static breast cancer to non-relapsing breast cancer, most
information resides in the residual space (Figure 1c).
The IR to quantify this observation varies between 0
and 1 with sample properties such as cancer vs. normal
tissue or grade 1 and 2 vs. grade 3 result in lower IR
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values, whereas relapse within 5 years or patient age
result in higher IR values. When using gene expression
data to predict sample properties, variables related to
biomarkers are selected. It has been observed that bio-
markers selected from different studies may not match
when sample numbers are too small. We demonstrate
that the IR is indicative of biomarker stability: A low IR
results in stable gene lists while a high IR results in
highly unstable gene lists (Figure 4). The logarithm of
the IR decreases linearly with the gene list stability (Fig-
ure 5b). Moreover, the IR is indicative of the possible
prediction accuracy within a study (Figure 6). Finally,
biomarker gene lists derived from low IR samples are
suitable for predictions across other studies, while bio-
markers from high IR samples are less reliable for pre-
dictions across studies (Figure 7).

An interpretation could be that in Type 1 classifica-
tions, where IR values are low, the genome-wide differ-
ential expression associated with the shift in the
phenotype, can be expressed by a combination of a few
independent leading variations in the differential gene
expression pattern. These variations may be represented
by biological heterogeneity and the disease-related pat-
tern in the sample. Hence, the true dimensionality of
the genome-wide differential expression pattern
becomes very low, such that variation in sample size
within the range of standard clinical studies will have a
significant impact on the stability. In contrast, the gen-
ome-wide differential expression shift of Type 2 and 3
classifications (high IR values) cannot be reduced to the
leading biological heterogeneities and hence retain high
dimensionality. As the impact of sample size variation
may depend on the dimensionality of the differential
expression pattern, Type 2 and 3 classifications will ben-
efit significantly less from increased sample sizes, which
can be seen in typical clinical studies. Moreover, the
qualitative heterogeneity of the genome-wide informa-
tion distribution across different studies for high IR phe-
notypes indicate that biomarkers which are identified
using ranked gene lists, will most likely not be predictive
through statistical approaches alone. The information
ratio can serve as a method to better understand the
stable phenotypic variations within a study, especially
since studies performed by various groups are often
unable to identify stable gene lists despite the similar
disease types or tissues under investigation [2,23-25].
Experiments with synthetic expression data confirm that
low dimensional data yields low IR values and good pre-
diction accuracy while high dimensional data yields high
IR and poor prediction accuracy.

Conclusion
In summary, the IR provides a metric for the capability
of gene expression data to support clinical decisions. It
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has been observed elsewhere [22] that the predictivity of
expression data depends more on the phenotype to be
predicted than on the particular algorithm used. To our
knowledge, the IR is the first approach to quantify this
property of clinical phenotypes and it allows researchers
and clinicians to clearly delineate phenotypes for which
identification from gene expression data needs more
sophisticated analytical methods than those which are
currently widely used. Based on our study, in order to
identify stable biomarkers for clinical tumor characteri-
zation, the IR should be carefully assessed. Stable pre-
dictive models across studies can only be expected if the
phenotype to be predicted shows a low IR (Type 1 clas-
sification), whereas for other phenotypes the biomarker
stability may be insufficient. Unfortunately, highly desir-
able predictive gene lists, such as those which can eluci-
date the prognosis of individual relapses, belong to the
classification with high IR values. Thus, future progress
in biomarker identification will require new approaches
in both analytical methods and in clinical study design
that yield more stable predictive gene lists for the high-
IR classifications.

Methods

Analysis and Data sets

Eight breast cancer, one lung cancer, and one prostate
gene expression data sets along with clinical information
were downloaded from the EBI ArrayExpress website
[26]. See Table 1 for details. All CEL files were uni-
formly processed using the MAS5 algorithm [27] as
implemented in the R package simpleaffy [28]. The
expression data was transformed to log, values.

The sets of samples from different sources did partly
overlap. In order to remove redundant measurements,
the correlation of all samples with all other samples was
calculated and from pairs of samples with R* > 0.99 one
sample was omitted from this analysis. This occurred
between the breast cancer studies E-GEOD-4922, E-
GEOD-2990, and E-GEOD-3494. Then, to avoid a bias
due to erroneous chips, samples with extreme mean
expression rates (> 56) (one sample from E-GEOD-
4922) have been omitted.

All probe set identifiers were mapped to Entrez gene
symbols. In case several probe sets share the same gene
symbol, the probe set with the largest mean expression
over all samples was used as representative for that sym-
bol. Across all studies, 6384 symbols were shared and
only those were used for further analysis. It should be
noted that probe sets representing the ER gene (ESR1
and ESR2) were included. The associated clinical infor-
mation was transformed to a binary value: Grade (grade
1 or 2 vs. grade 3, resp. grade 1 vs. grade 2), tumor size
(>25 mm vs. <20 mm), ER status (positive versus nega-
tive as reported), and outcome (relapse or distant

Page 8 of 11

metastasis free survival over five years vs. metastasis)
(Table 1).

Spectral decomposition of matrix, PCA

For each data set, the correlation matrix {Cj} with C;
being the pairwise correlation between the logarithmic
expression of gene i and gene j, i, j = 1...N, was calcu-
lated. Next, a Principal Component Analysis (PCA), as
implemented in MATLAB, was used to decompose {Cij}
into its eigenvectors and eigenvalues, where the first
eigenvectors represent the dominant, coherent variations
in the data set. We denote the space, spanned by the
first n eigenvectors, as S(n). Each eigenvector k repre-
sents a metagene whose expression Xy, ; in each tissue /
is given by the weighted sum of the contribution of all
genes j to the eigenvector:

Xl = Z G 1
j=LN

This representation, using only the Gj-values, does
not explicitly contain the data from the respective data
source. However, since PCA represents the dominant
variations within the respective data sets, normally the
vectors Gj, quantifying the contribution of all genes to
eigenvector 1, depend on the composition of the data
sample.

Although the individual vectors Gy,...,G, depend on
the composition of the samples, the subspace S,
spanned by the set of all the first n vectors, depends sig-
nificantly less on the sample composition. An appropri-
ate value of » may depend on the variability studies, in
the studies analyzed here n = 4 was used leading to suf-
ficient results. Higher # did not lead to more significant
differential expressions of the projections p, ; with
respect to Type 1 classifications. This indicates that the
subspace S, is related to biological features. Changes in
sample composition merely result in a rotation of the
“coordinate system” spanning S, which can be repre-
sented not only by the vectors {G;,...,_ Gy}, but also by all
orthogonal vector systems which can be generated by
the rotation of {Gj,..., Gy}.

Split of gene expression value into original and residual
values

The expression values of each gene i in each tissue k
can be split into two components: a component X,
which is part of S;, and a residual component, x,, which
is part of S,, the subspace is then orthogonal to S,:

Xik = Xp,ik + Xr,ik

The decomposition is performed by the projection of
X;, x onto S, using the solution r; of the following linear
equation system for each gene i:
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[X, ...,X][. =x—<x >
1 1
Then it holds:
X = [X ’ -~rX ]7’1‘
p,i 1 n
X =X —X
i i pi

The decomposition splits each expression value for
each gene in each sample into 2 components. This
apparent doubling of complexity yields additional
insights into the information contained in the genomic
data. Then we calculate the information content of the
original expression values for each gene x; and for both
split components x,, ; and x,, ; with respect to different
physiological or clinical phenotypes. For example, (i) we
set mamma carcinoma of grade 1 and grade 2 to be
class 1 and tumors of grade 3 in class 2. Next, (ii) we
use the p-values of a two-sided t-test (or parameter-free
Wilcoxon test) to quantify the differential expression of
each gene between tissues of class 1 and class 2. Finally,
(iii) we get the genomic set Ip = log;o p, which are the
logarithms of these p-values. The significance values for
the projections x;, and x, are then denoted as Ip, and
lp,, respectively.

Weight distribution, w

To calculate the intrinsic weight distribution, w, we
observed that the distribution of the genomic log;o p-
values with respect to almost all physiological factors
satisfy an exponential distribution (Figures 8a, b). Figure
8 shows the histogram of the log;o p-values of differen-
tial gene expression for all genes, exemplified by two
different endpoints. Figure 8 indicates an exponential
distribution of significance over all genes. All p-values
were collected and distributed over 50 equidistant bins.
For each bin j, we calculate the ratio rj as the number of
genes in the bin to the total number of genes through-
out all bins:

events]-

i =
euentstoml
Based on the observation of an exponential distribu-
tion, we use a log-linear regression model to quantify

the weights:

w; = ex1og(P))

where A is chosen such that w approximates the den-
sity of the respective genome-wide log(p) distribution as
depicted in Figure 8.

Page 9 of 11

A  E-GEOD-2990, grade 1,2/3

m

T
g < 1
S _|

GJ —

2 2 .

5 ] r

c ]

o

2 3

— I —

o o)

o 0

(@]

—_ —]

o

S <

= 27 11

- _

° g - | | | |
(40 o (o] (42 o
<~ — | |
| |

log10(p)

B E-GEOD-2990, grade 1/2

1e-01

log10(proportion of genes)
2e-04 5e-03
| [

ALl

“.’T?‘To

log10(p)

Figure 8 Exponential distribution of p-values of differential
expression. The y-axis is the logarithm of the ratio of genes in the
same bin of p-values with respect to all genes.

Information Ratio, IR

The information ratio was calculated based on Ip, and
Ip,. Since this depends on the choice of n, n was evalu-
ated in a range of 1 to 10. The IR decreases with
increasing n and stabilizes at n = 4. This value was
selected after visual inspection (see additional file 2:
Appendix 2.pdf). The IR is calculated as

> wilog(pri)/(log(pri) +1og(pp,i))

IR =
D ow
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Gene list stability

Several metrics for comparing the order of gene lists
between studies are available [29], here we use the per-
centage of overlapping genes (POG) [30] in the top 5%
of a ordered gene list. Differentially expressed genes are
ordered by the p-value of a Welch’s t-test statistic [31].

Predictor accuracy

The correlation between the IR and the potential accuracy
of a predictor was evaluated. For this we used SVM as
implemented in the libSVM library [32] and utilities from
the R packages caret [33] and e1071 [34]. We used the
SVM as a classification machine with a radial basis kernel.
For a given study and factor, a SVM was trained with
nested 10 times 10 cross validation. The inner cross vali-
dation was used to estimate optimal gamma and cost para-
meters, the outer cross validation was used to select the
variables. From all genes, the top 5% differentially
expressed genes were used as variables. The accuracy was
estimated on test-sets which were used for neither variable
selection nor parameter optimization. For a given study
and factor combination, the mean accuracy over the outer
cross validation was established and compared to the IR
(see Figure 6). A correlation between IR and mean accu-
racy was calculated using Pearson’s correlation.

Inter study gene list predictor accuracy

A loss in prediction accuracy can be expected when a
gene list derived from one study is used for classification
in another study. From the first study and factor, the
top 5% differentially expressed genes were extracted.
This gene list was then used to train an SVM for each
study with default parameters. The out of bag prediction
accuracy was established. In turn, each study was used
to derive a gene list, and this list was evaluated with all
the other studies. The derived accuracy for the first
study was better than the mean accuracies for other stu-
dies. Figure 7 presents the decrease in mean accuracy by
applying the gene lists to separate studies.

Overview Methods

See additional file 3: Appendix 3.pdf for a graphical
depiction of the analysis workflow.

Additional material

Additional file 1: Simulated data. Simulated expression data and
estimation of IR and predictor accuracy for different dimensionalities of
the data.

Additional file 2: Figure S1. Plot of subspace dimensionality against IR.

Additional file 3: Workflow. Three slides with illustrations of the used
workflow to calculate the IR and predictor accuracies.
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