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Abstract

Background: Lung cancer is the leading cause of cancer deaths worldwide. Many studies have investigated the
carcinogenic process and identified the biomarkers for signature classification. However, based on the research
dedicated to this field, there is no highly sensitive network-based method for carcinogenesis characterization and
diagnosis from the systems perspective.

Methods: In this study, a systems biology approach integrating microarray gene expression profiles and protein-

protein interaction information was proposed to develop a network-based biomarker for molecular investigation
into the network mechanism of lung carcinogenesis and diagnosis of lung cancer. The network-based biomarker

potential therapeutic targets to combat cancer.

consists of two protein association networks constructed for cancer samples and non-cancer samples.

Results: Based on the network-based biomarker, a total of 40 significant proteins in lung carcinogenesis were
identified with carcinogenesis relevance values (CRVs). In addition, the network-based biomarker, acting as the
screening test, proved to be effective in diagnosing smokers with signs of lung cancer.

Conclusions: A network-based biomarker using constructed protein association networks is a useful tool to
highlight the pathways and mechanisms of the lung carcinogenic process and, more importantly, provides

Background

Cancer, the complex disease of uncontrolled cell growth,
is one of the leading causes of human death worldwide
and the deaths from cancer are projected to continue
rising [1,2]. Among all types of cancer, the most com-
monly diagnosed, as well as the most common cause of
cancer deaths, is lung cancer, with a mortality rate as
high as 80-85% within 5 years [1,3]. Lung cancer is cate-
gorized into two main types: small cell lung carcinoma
(SCLC) and non-small cell lung carcinoma (NSCLC).
NSCLCs are subcategorized into three main subtypes:
squamous cell carcinoma, adenocarcinoma, and large
cell carcinoma [4]. Previous research has shown that
these major histological types of lung cancer are asso-
ciated with cigarette smoking [5]. In light of this, much
research has been devoted to investigating the molecular
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alterations which ensued from cigarette smoking and
the mechanism that links cigarette smoking to lung can-
cer. Spira et al. used DNA microarray to compare the
gene expressions of large-airway epithelial cells from
nonsmokers and smokers, and to determine how cigar-
ette smoking alters the transcriptome [6]. Hecht indi-
cated that many tobacco smoke carcinogens, such as
polycyclic aromatic hydrocarbons and nicotine-derived
nitrosamine ketone are predominant inducers of lung
cancer [7]. Recently, Takahashi et al. showed that induc-
tion of IKKB- and JNK1-dependent inflammation is
likely to be an important contributor to the tumor-
promoting activity of tobacco smoke [8].

In addition to the investigation on carcinogenesis,
many studies identified cancer biomarkers through ana-
lysis of genome-wide expression profiles [9,10]. The
biomarkers are used either as a diagnostic evaluation to
determine the health of a patient with or without the
cancer, or as a prognostic indicator to determine the
patient’s prognosis. Spira et al. used gene expression
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profiles of samples from lung cancer patients to identify
an 80-gene biomarker that distinguished apparent differ-
ences between smokers with and without lung cancer
[3]. Because there is no effective screening tool for diag-
nosing lung cancer at an early stage, the 80-gene bio-
marker could make a beneficial contribution to
minimizing high mortality rates by providing a better
prognosis [3,11]. However, the biomarker identification
method, which strictly uses gene expression profiles,
cannot show how the different genes within the biomar-
ker gene set are related to each other, i.e., the biomar-
kers are not identified from the systems perspective.
Further, the gene lists obtained for similarly diagnosed
patients by different research groups differ widely and
share few common genes [12].

Due to these kinds of limitations and the widely
accepted opinion that cancer is a disease of pathways
[13,14], both protein-protein interaction (PPI) and path-
way information are integrated for biomarker identifica-
tion. Chuang et al. developed a protein-network-based
approach that identifies biomarkers not as individual
genes but as sub-networks extracted from protein inter-
action databases. They showed that the sub-network
classification is highly accurate in signature discrimina-
tion and provide an accurate account of the network
structure [15]. Many other network-based approaches
for prioritizing disease genes and protein interaction
subnetworks that are discriminative of disease signature
have been developed [16-19]. The dynamic structure of
the human protein interaction network has recently
been examined to aid in predicting breast cancer prog-
nosis, suggesting that network modularity might be a
defining feature of tumor phenotype [20].

Network analysis has shown that under different cel-
lular states or in response to diverse stimuli, transcrip-
tion factors alter their interactions to regulate different
genes, thereby rewiring the network [21]. The same
situation occurs with protein interaction networks
[20,22]. Motivated by the dynamic structure of the
human protein interaction network and the observation
that interacting proteins tend to result in similar dis-
ease phenotypes when dysregulated [23], we developed
a computational framework to construct the network-
based biomarker for molecular investigation and diag-
nosis of lung cancer. The network-based biomarker
consisted of two protein association networks for can-
cer and non-cancer smokers. Based on the concept of
network comparison [24], 40 significant proteins that
play potentially important roles in lung carcinogenesis
were identified. The network-based biomarker is a use-
ful tool for further distinguishing the presence of can-
cer in smokers by similarity measurement of molecular
patterns. Hopefully, the proposed method can aid
in further understanding lung carcinogenesis and
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providing potential drug targets for humans to combat
lung cancer.

Methods

Overview of the network-based biomarker approach for
lung cancer investigation

The overall flowchart of the proposed network-based
biomarker approach is shown in Figure 1. Our goal is to
investigate lung cancer by the construction of network-
based biomarkers composed of protein association net-
works for smokers with and without cancer. Microarray
gene expression profiles of patient samples and protein-
protein interaction information were integrated for pro-
tein selection and network construction. Two protein
association networks with quantitative protein associa-
tion abilities for cancer and non-cancer smokers were
constructed. By comparing two protein association net-
works within the network-based biomarker, a carcino-
genesis relevance value (CRV) was computed to
correlate proteins with the level of lung carcinogenesis.
A higher score suggests the particular protein plays a
more critical role in lung carcinogenesis. A set of signifi-
cant proteins was selected based on the CRV for each
protein and the statistical assessment. Further, using
microarray data for smokers suspected of having cancer,
it is possible to compute mapping errors for further
diagnostic evaluation of smokers with or without cancer.

Data selection and preprocessing

In this study, two kinds of data, microarray gene expres-
sion profile and protein-protein interaction information,
were integrated. The microarray data were downloaded
from the GEO database http://www.ncbi.nlm.nih.gov/
geo/ (accession number GSE4115). Spira et al. per-
formed gene expression profiling in histologically nor-
mal large-airway epithelial cells obtained by
bronchoscopy of current and former smokers. The
health of each individual was recorded following the
bronchoscopy until a final diagnosis of either presence
or absence of lung cancer [3]. Data were collected from
a total pool of 187 subjects and divided into primary
and prospective data sets: 79 and 73 smokers with and
without lung cancer respectively in the primary data set;
18 and 17 smokers with and without lung cancer
respectively in the prospective data set. The primary
data set was used for network-based biomarker con-
struction and the prospective data set was used for diag-
nostic evaluation. Protein-protein interaction (PPI) data
were extracted from the Biological General Repository
for Interaction Datasets (BioGRID) http://thebiogrid.org/
and the Human Protein Reference Database (HPRD)
http://www.hprd.org/. The BioGRID database was devel-
oped to house and distribute collections of protein and
genetic interactions from major model organism species.
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Figure 1 The flowchart of constructing the network-based biomarker for lung cancer investigation and diagnosis. The figure indicates
the flowchart of the proposed method. Red represents the data needed. Blue denotes the processing steps of the approach. Green represents
the processed results of each step and orange denotes the overall results from the entire method. In summary, two kinds of data, microarray
data and PPI information, are needed for the proposed method. These data are used for protein pool selection, and then the selected proteins
and the input data are used for protein association network construction, resulting in cancer protein association network (CPAN) and non-cancer
protein association network (NPAN). The two constructed protein association networks form the overall network-based biomarker, which can be
used for either determination of significant proteins or diagnostic evaluation. With the help of the network-based biomarker, carcinogenesis
relevance value (CRV) is computed for each protein, and significant proteins in lung carcinogenesis are determined based on the CRVs. These
significant proteins provide targets for further characterization. On the other hand, given the microarray data for smokers suspect of cancer,
mapping errors for CPAN and NPAN can be computed, respectively, which help diagnose the smokers with cancer or without cancer.
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BioGRID currently contains over 340,000 interactions
derived from both high-throughput studies and conven-
tional focused studies [25]. The HPRD is a database that
integrates a wealth of information relevant to the
human proteome, including protein-protein interactions,
post-translational modifications, disease associations,
and tissue expression [26]. Prior to further processing,
the gene expression value g; is normalized to z-trans-
formed scores z;; so that for each gene i the normalized
expression value has mean y; = 0 and standard deviation
o; = 1 over sample ;.

Selection of protein pool and construction of network-
based biomarker

To integrate the gene expression and PPI information
data and construct the network-based biomarker con-
sisting of protein association networks, the expression
value of each gene was first overlaid on its correspond-
ing protein. The gene expression for each protein was
then used to select differentially expressed proteins
using one-way analysis of variance (ANOVA), where the
null hypothesis is that the average expression levels for
the protein are the same for smokers with and without
cancer. The proteins with Bonferroni adjusted p-values
less than 0.05 were selected for the protein pool.
Because we used the network-based biomarker as an
investigative tool, the differentially expressed proteins
without PPI information were excluded from the protein
pool, while proteins based on PPI information that were
highly connected with pool proteins were also included.
In other words, the protein pool consisted of both dif-
ferentially expressed proteins and the proteins that are
highly connected with them. Based on the protein pool
and PPI information, a rough PPI network can be easily
constructed by linking proteins that share interactions.
It is worth noting that since the data for cancer and
non-cancer samples are limited, the number of proteins
selected for rough PPI network construction is also
restricted. That is, to avoid overfitting in network con-
struction, the maximum degree of the proteins in the
rough PPI network should be less than the cancer/non-
cancer sample number, thereby restricting the size of
the rough PPI network.

Using a simple regression model, the rough PPI net-
work was further refined with the microarray data to
highlight the independent protein association for sam-
ples with and without lung cancer relative to their
respective data sets. For a target protein i in the rough
PPI network, the protein was described using the follow-
ing protein association model:

N,

i

vilnl =Y ayyalnl +ln] M

k=1
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where, y;[n] represents the gene expression level of the
target protein i for the sample #; o denotes the asso-
ciation ability between the target protein i and its k'™
interactive protein, which quantifies the expression rela-
tion between the interactive proteins and can be identi-
fied using our data; y;[n] indicates the gene expression
level of the k'™ protein that interacts with the target
protein i for sample #n; N; represents the number of pro-
teins interacting with the target protein i and can be
obtained from the rough PPI network; and ¢;[#] denotes
stochastic noise associated with other factors or model
uncertainty. Equation (1) states that, biologically, the
expression level of the target protein i is associated with
the expression levels of interacting proteins. A protein
association model was constructed for each protein in
the protein pool.

After the protein association model of the rough PPI
network was constructed, the association parameters in
equation (1) were identified using maximum likelihood
estimation method [27,28] using microarray data (see
Additional file 1 for details). Since there are two data
sets of microarray data (smokers with and without can-
cer), the association parameters were identified sepa-
rately for the cancer data set and non-cancer data set,
resulting in o c and o N, respectively. In this case,
for each protein in each phenotype, i.e., with cancer or
without cancer, a mathematical description was con-
structed to characterize the respective expression asso-
ciation. Once the association parameters for all
proteins in the rough PPI network were identified, the
significant protein associations were determined based
on the estimated association abilities (er;’s). Akaike
Information Criterion (AIC) [27,29] and Student’s t-
test [30] were employed for model order selection and
for determining significance of protein associations (see
Additional file 1 for details). In doing so, the rough PPI
network was refined and the protein association net-
works for smokers with or without cancer were
constructed.

Based on the identified protein association abilities,
two matrices were established to represent the cancer
protein association network (CPAN) and the non-cancer
protein association network (NPAN).

A11c %2cC aik,c
Ar1c Anc Aok,
C= . ; .
Agi,c Akac Okk,C @
QN Q1N A1k N
a a a
21N 22,N 2K N
N = . . .
AN QKo N O KK,N
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where, o;;c and oy indicate the quantitative protein
association ability between protein i and protein j for
CPAN and NPAN, respectively; and K is the number of
proteins in the protein association network. For a given
protein i and protein j in the protein association net-
work, the association ability ¢;; quantifies the expression
relation between the interactive proteins. If ¢;; = 0,
there is no association between protein i and protein j.
Further, we said that protein i is associated with protein
j means that the expression level changes of protein
i account for the expression level changes of protein j
and vice versa. As a consequence, when the estimated
protein association ability «;; = ¢;, the one which has
larger absolute value would be selected as the associa-
tion ability between protein i/ and protein j, i.e., &t = ;.
The resulting CPAN and NPAN constituted the net-
work-based biomarker used for identifying the signifi-
cant proteins in lung carcinogenesis and diagnostic
evaluation.

Determination of significant proteins in lung
carcinogenesis via the network-based biomarker
According to equations (1) and (2), the protein associa-
tion models for CPAN and NPAN can be represented
as the following equations.

YC = CYC + EC (3)
T
where Yo = [Yl,c["] Ya.clnl YK,C[”]] ’

T
Yy = [yLN[n] Yol YK,N[”]] denotes the vec-

tors of expression levels; and Ec and Ey indicate the
noise vectors in cancer and non-cancer cases, respec-
tively. A matrix indicating the difference between two
protein association networks is defined as C-N.

d11 d12 dlK
dyy dyy - dyg

dKl dKZ dKK
. (4)

Ai,c —On N Qiac T Q12N Aik,c ~ 0K N

Ark,c ~ ok ,N

Ar,c 0N O22c ~ AN

| “k1c ~AkiN  %k2c T AK2N Agk,c ~ XKk N

where d;; denotes the difference in protein association
ability between CPAN and NPAN among protein i and
protein j. Using the matrix D to show the difference in
network structure between CPAN and NPAN, a carci-
nogenesis relevance value (CRV) was presented to quan-
tify the correlation of each protein with significance of
lung carcinogenesis. To identify the significant proteins

Page 5 of 15

in lung carcinogenesis, two important issues were taken
into consideration. First, the magnitude of the associa-
tion abilities ;s denotes the significance of one protein
to the other one. A higher absolute value of ¢; implies
that the two proteins are more tightly associated. Sec-
ond, if a protein plays a more crucial role in lung carci-
nogenesis, the difference in association numbers linked
to the protein for CPAN and NPAN would be larger.
For example, if one protein shares a strong association
with many proteins in CPAN, but a weaker association
(no protein) in NPAN, the protein in question is more
likely involved in lung carcinogenesis. As a result, the
CRV was determined based on the difference in protein
association abilities via the following equation.

K
CRV, = )| d; | (5)
j=1

For the i'™ protein in the network-based biomarker,
the implication of equation (5) is that the CRV quanti-
fies the extent of protein associations that differentiate
CPAN from NPAN.

In addition to the CRV assigned, an empirical p-value
was also obtained for each protein to determine the sta-
tistical significance of the CRV. To determine the p-
value for an observed CRYV, a null distribution of CRVs
(Figure 2) was generated by repeatedly permuting the
network structure of the rough PPI network and com-
puting the CRV for each random network structure.
The permutation of the network structure was per-
formed by maintaining network size, ie., interacted pro-
teins were permuted without altering the total number
of protein interactions. The process was repeated
100,000 times and the p-value of the corresponding
CRV was estimated as the fraction of random network
structures whose CRYV is at least as large as the CRV of
the real network structure. The CRVs with p-value <
0.05 were determined as significant CRVs and the corre-
sponding proteins were identified as significant proteins
in lung carcinogenesis.

Diagnostic evaluation by the network-based biomarker

An important feature of the proposed network-based
biomarker approach is its ability to identify significant
proteins in lung cancer, and perform accurate diagnosis
of smokers suspect of lung cancer. Using the new
microarray expression data for smokers, we can classify
a sample into smoker with cancer or smoker without
cancer based on CPAN and NPAN within the network-
based biomarker. The idea comes from the similarity
comparison of new sample data between CPAN and
NPAN. Specifically, sample data that are more similar to
the network structure of CPAN than to NPAN signifies
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Figure 2 Distribution of carcinogenesis relevance values (CRVs)
of random networks. The null distribution of CRVs is generated by
100,000 randomly permuted network structures.

the presence of lung cancer in the smoker, and vice
versa. Because the network construction uses more than
one sample, the new sample data were mapped to the
CPAN and NPAN identified above, with the mapping
error employed as the criteria for classification. Assum-
ing we had new sample data Z = [Zl z, zK]T
from a smoker, based on equations (1) and (3), the map-
ping errors for CPAN and NPAN, respectively, are
defined as

ME ¢ =||Z—C-Z||2

(6)
MEx =] Z-N-Z],
K 1/2
where ||p||2 =[2P12 ] when
i=1
P=[p, p, pK]T. The mapping errors can be

considered as the similarity measurement of the new
sample Z to the CPAN and NPAN systems. The smaller
the mapping error, the stronger the correlation between
the sample data and the protein association network.
Consequently, if MEc < MEy, the new sample Z is
more similar to the cancer system and is categorized
into smokers with cancer, and vice versa. The criteria of
mapping errors have simultaneously taken into account
the protein association network structures with quanti-
tative association abilities and the expression levels of
the proteins. Further, since the modeling error operates
as the criterion of classification, the classification is
more dependent on network structure than data alone
and thus could also be suitable for classification using
independent data. We believe that this kind of classifica-
tion approach can provide new perspective for diagnos-
tic evaluation.
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Results

Construction of network-based biomarker and
identification of significant proteins in lung
carcinogenesis

We applied the proposed network-based biomarker
approach for molecular investigation and diagnosis of
lung cancer. The primary data set (79 smokers with
lung cancer and 73 smokers without lung cancer) of
GSE4115 downloaded from the GEO database http://
www.ncbi.nlm.nih.gov/geo/ was used for construction of
the network-based biomarker. Based on ANOVA, 199
proteins with PPI information were identified as the
differentially expressed proteins and were selected in the
protein pool. In addition, the proteins that linked to
three differentially expressed proteins in the protein
pool according to PPI information were also included in
the pool. As a result, the protein pool consisted of 339
proteins. Following this, proteins with PPI information
among them were linked together, resulting in the
rough PPI network. The expression profiles for smokers
with or without cancer and the protein association
model (1) were further employed to refine the rough
PPI network. The CPAN and NPAN, which consisted of
399 and 393 protein associations respectively, would
constitute the network-based biomarker of lung cancer
(Figure 3). The difference between CPAN and NPAN is
expressed further in Figure 4. According to the CPAN
and NPAN with quantitative association abilities, the
CRVs for each protein were computed and the signifi-
cance of these CRVs was determined. Consequently, 40
identified proteins played significant roles in lung carci-
nogenesis (Table 1 and Additional file 2).

Investigation into the significant proteins in lung
carcinogenesis

The 40 identified proteins contributing to lung carcino-
genesis can be divided into three categories according to
the functional annotations (Table 1); the three func-
tional subnetworks are shown in Figure 5. The mechan-
isms in carcinogenesis using the significant proteins
were further investigated through various cell life cycle
stages.

(1) Cell growth

Cancer is a complex disease of uncontrolled cell
growth. Therefore, the proteins responsible for cell
growth are likely to play critical roles in lung carcino-
genesis. Among the 40 significant proteins identified
based on the network-based biomarker, 30 proteins are
annotated with cell growth (Table 1). The mitogen-
activated protein kinase (MAPK) cascade is a highly
conserved module that is identifiable in many cancers.
Three MAPK-related proteins annotated with cell
growth, MAPK1 (ERK2), MAPK3 (ERK1) and MAPK14
(p38a), were identified as significant proteins in
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Figure 3 The constructed network-based biomarker (A) Cancer protein association network (CPAN) (B) Non-cancer protein association
network (NPAN). The node size is proportional to the CRV for each protein and the edge width represents the magnitude of the association
ability between the two proteins. The figures are created using Cytoscape [77].
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Figure 4 The difference between CPAN and NPAN. The node size is proportional to the CRV for each protein and the edge width represents
the magnitude of the association ability between the two proteins. Red and blue edges indicate the positive and negative values of dj's in

lung carcinogenesis. Elevated expression of activated
MAPK1/3 have been observed in NSCLC [31] and may
play a role in lung metastasis [32]. MAPK14 (p38a.) is
well known for its important role in response to
inflammation and environmental stress [33]; its protein
expression is more than three times lower in human
lung tumors compared with normal human lung tissue,
suggesting that MAPK14 may function as a negative
regulator of lung carcinogenesis [34]. Four proteins
from the SMAD protein family (SMAD1, SMAD2,
SMAD3 and SMAD4) were also identified as significant
proteins in lung carcinogenesis. The SMAD proteins,
which consist of three functional classes, are signal
transducers and transcriptional modulators [35]. Muta-
tions and altered expression for these four proteins
were observed in human cancer [36,37], highlighting
the significant, albeit varied, roles of the SMAD protein
family in carcinogenesis.

EGEFR, FGFR1, and INSR are receptor tyrosine kinases
(RTKs) bound by an epidermal growth factor, a fibro-
blast growth factor, and insulin, respectively. Receptor
tyrosine kinases have been shown to not only perform a
key regulatory role in normal cellular processes, but also
become critically involved in the development and pro-
gression of human cancers [38]. EGFR is one of the
most extensively studied proteins in carcinogenesis. It is
overexpressed in NSCLC as well as in other common
tumors, and its increased expression is associated with
aggressive tumor growth and therapy resistance [39].
EGER has also been found to be significantly mutated in
lung adenocarcinoma [40,41]. Because of its significance,
EGFR becomes a popular therapeutic target for carcino-
genesis. Gefitinib (Iressa) and erlotinib (Tarceva) are
two targeted therapies that specifically inhibit EGFR tyr-
osine kinase [39,41]. FGFR1 and INSR are both known
to be involved in carcinogenesis and thus become novel,
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Table 1 The identified significant proteins in lung carcinogenesis
Protein symbol® CRV p-value Functional annotation* Literature evidence®
Cell growth Cell survival Cell migration
MAPK1 8.3418 < le5 + + [31,32]
SMAD2 7.7901 < le-5 + + + [36]
CREBBP 5.7870 0.00002 + [44]
EGFR 43635 0.00086 + [39-41]
AR 4.0966 0.00159 + + + [49]
UBC 4.0331 0.00180
SRC 3.9446 0.00218 + + + [51,63]
FGFR1 3.9227 0.00237 + + [42]
BRCA1 3.9049 0.00243 + [58]
ESR1 3.8409 0.00295 + + + [50]
INSR 3.7946 0.00329 + + [43]
PTK2 36758 0.00432 + + [63,64]
HSPOOAAT 36732 0.00436 + + [54]
CALM1 36363 0.00482
POLR2A 3.5701 0.00547
CSNK2A1 34128 0.00761 + + [61]
PRKACA 33688 0.00856 +
CTNNBT 32935 0.00994 + + + [45]
SP1 3.2397 001133 + + [59]
SMAD4 3.1947 0.01266 + + + [36]
E2F1 3.1382 0.01407 + + [46]
YWHAZ 3.1212 0.01467 + [52]
MEPCE 3.0968 0.01545
AKT1 3.0193 0.01857 + + [62]
PLCG1 29654 0.02069 + [66]
MYC 2.8987 0.02385 + + [47]
MAPK3 2.8545 0.02654 + + [31,32]
NCOA6 2.8132 0.02892 + +
FYN 27833 0.03089 + (48]
MAPKSIP3 2.7746 0.03141 +
YWHAQ 2.7582 0.03242 + [53]
TRAF6 2.7150 0.03535 + [57]
SMAD!1 2.6940 0.03697 + + + [37]
SMAD3 26815 0.03815 + + + (36]
MAPK14 26727 0.03894 + + + [34]
TP53 26522 0.04056 + + + [40,41,55]
XRCC6 26270 0.04263 +
EZR 26213 0.04314 [67]
TSC2 26116 0.04401 + + + [65]
HGS 2.5730 0.04744 +

 The full names of these proteins according to UniProt database http://www.uniprot.org/ are listed in Additional file 2.
* The functional annotations are from the Gene Ontology database http://www.geneontology.org/ and literatures.
S The literature evidences indicate that overexpression/dysregulation of the specific protein or mutation of the corresponding gene would result in

carcinogenesis.

attractive targets for cancer therapeutic strategies
[42,43].

Many proteins acting as transcriptional regulators were
also identified. CREBBP is a transcriptional co-activator
downstream of the TGFp pathway and the mutations and
deletions of the CREBBP gene are associated with lung

cancer [44]. CTNNBI1 (B-catenin) is one of the core com-
ponents in the Wnt pathway. Mutation of B-catenin,
which results in aberrant activation of the Wnt pathway, is
a frequent cause of human cancer growth [45]. E2F1 is
one of the significant proteins involved in the cell cycle. Its
overexpression has been demonstrated in both NSCLC
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are extracted from Figure 4.

Figure 5 The functional subnetworks of significant proteins identified according to the network-based biomarker (A) Cell growth
functional subnetwork (B) Cell survival functional subnetwork (C) Cell migration functional subnetwork. All the functional subnetworks

| SRC

and SCLC and is induced by its upstream RB protein [46].
MYC is a nuclear phosphoprotein and functions as a tran-
scription factor. It controls cell cycle progression by simu-
lating G1/S transition and may result in loss of cell cycle
arrest and uncontrolled tumor growth when dysfunctional
[47]. Other identified significant proteins such as AR,
ESR1, SRC, FYN, YWHAQ, YWHAZ, and HSP90AA1
were also shown to contribute to the process of carcino-
genesis [48-54].

(2) Cell survival

The ability of tumor cell populations to expand in num-
ber is determined not only by the rate of cell prolifera-
tion but also by the rate of cell death [13]. In addition,
the acquired resistance of programmed cell death, apop-
tosis, is a hallmark of cancer. Consequently, proteins

annotated with cell survival might be important in carci-
nogenesis. Twenty-seven significant proteins identified
by the network-based biomarker were annotated with
cell survival. TP53 (p53) is a well-studied tumor sup-
pressor protein and plays important roles in anti-cancer
mechanisms. Its activation is induced by a number of
stress signals such as DNA damage, oxidative stress and
activated oncogenes. Activated p53 induces cell cycle
arrest, apoptosis and inhibition of angiogenesis and
metastasis. Once damaged, tumor suppression is
severely reduced, resulting in uncontrolled proliferation
of the cell. Due to the importance in carcinogenesis, it
is no surprise that p53 was found to be significantly
mutated in lung adenocarcinoma as well as in squamous
cell carcinoma and SCLC [40,41,55].
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TRAF6 functions as a signal transducer in the NFxB
pathway that activates IKK, in response to proinflammatory
cytokines. The identification of TRAF6 by the proposed
network-based biomarker approach reinforces the linkage
between inflammation and cancer [56,57]. BRCAL is a
nuclear phosphoprotein that contributes to genomic stabi-
lity. The mutant phenotype of BRCA1 predisposes to
breast and ovarian cancer [58]. SP1 is a transcription factor
downstream of the TGFB pathway and its overexpression
contributes to malignant transformation [59]. Other pro-
tein kinases, AKT and CSNK2A1 (CK2), were also shown
to participate in the carcinogenic process [60-62].

(3) Cell migration

With the progression of cancer, the malignant tumor
cells acquire the ability to migrate and metastasize to
distant sites. As a result, the proteins that are relevant
to the cell migration capability are crucial for the carci-
nogenic process. Twenty-three out of 40 significant pro-
teins were annotated with cell migration. PTK2 (FAK), a
protein tyrosine kinase in the RTK pathway, is an
important mediator within the cell migration process, as
well as in cell proliferation and cell survival. Substantial
evidence has shown that activated PTK2 leads to tumor
growth and metastasis [63], and the level of expression
is substantially linked to the invasive potential of tumors
[64]. High levels of TSC2 were correlated with increased
metastasis and reduced survival in breast cancer
patients, revealing a protumorigenic role for TSC2 [65].
The other two significant proteins, PLCG1 and EZR
(ezrin), were demonstrated to play critical roles in the
metastatic potential of cancer cells but not in primary
tumor growth [66,67].

For nine out of the 40 significant proteins identified,
little is known about their roles in lung cancer (see
Table 1). UBC is identified as a polyubiquitin precursor.
Protein ubiquitination is a fundamental, regulatory post-
translational modification controlling intracellular sig-
naling events. It has been associated with protein degra-
dation, DNA repair, cell cycle regulation, endocytosis,
and kinase modification [68]. Dysregulation of ubiqui-
tin-mediated signaling is increasingly implicated in some
human diseases. Therefore, UBC may be an important
target for further characterization of lung carcinogenesis.
CALM1 is calmodulin, which mediates the control of a
large number of enzymes and other proteins by Ca**. It
is an essential regulator of cell cycle progression and
cell survival. Further research is needed to examine its
relation with carcinogenesis. PRKACA is a cAMP-
dependent protein kinase. The identification of
PRKACA as a significant protein implies that cAMP sig-
naling might also be involved in lung carcinogenesis.
MAPKSIP3 functions as a scaffold protein in the RTK
pathway; NCOA6, HGS, and XRCC6 are annotated with
cell growth and/or cell survival. However, until now, no
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empirical evidence has linked their relevance to carcino-
genesis, which makes them potential targets for further
investigation into lung carcinogenesis.

Diagnostic evaluation of smokers suspect of lung cancer
using the network-based biomarker

The network-based biomarker was constructed based on
the primary data set of GSE4115. An independent data
set (the prospective data set of GSE4115, 18 smokers
with lung cancer and 17 smokers without lung cancer)
was then used to evaluate the diagnostic performance of
the proposed network-based biomarker. Among the 35
samples, 26 were accurately classified, resulting in an
accuracy of 74.29%. The sensitivity and specificity of the
proposed approach were also evaluated. The network-
based molecular diagnosis can identify smokers with or
without cancer, using a high level of sensitivity of
83.33%, and a moderate specificity of 64.71%: this
enables the proposed network-based biomarker to effec-
tively diagnose the smokers with lung cancer. Further,
this approach enables the network-based biomarker to
act as a screening test, which, with the aid of other clini-
cal diagnostic tools, both accelerates the process and
improves the sensitivity of diagnosis.

The cause of the moderate specificity was further
investigated. The difference between the specificity value
and the sensitivity value can be attributed to a misclassi-
fication of a number of smokers without cancer in the
cancer category. The misclassification may be due to
similarities in molecular pattern, i.e., the gene expression
profiles of smokers with cancer are similar to those of
smokers without cancer. In order to validate the hypoth-
esis, Pearson correlation coefficients [30] of gene expres-
sion profiles for both smokers with and without cancer
were calculated. The mean correlation coefficient of
smokers with cancer was 0.9616, whereas the mean cor-
relation coefficient of smokers without cancer was
0.9441. In addition, the mean correlation coefficient of
smokers both with and without cancer (pooled) was as
high as 0.9437, suggesting that the molecular patterns
shared among smokers with and without cancer are
indeed highly similar. Because of the highly similar
molecular patterns and the fact that cigarette smoking is
the main instigator of lung cancer, it is likely smokers
without cancer could one day develop lung cancer.

In order to validate the predictive performance of the
proposed network-based biomarker, several comparisons
were made. First, we tested the predictive performance
without the information of protein-protein interactions.
The 199 differentially expressed proteins selected by
ANOVA using the primary data set were used for classi-
fication of the prospective data set. A simple hierarchical
clustering was performed (see Additional file 3), illus-
trating that the use of gene expression alone cannot
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accurately classify the prospective data set (65.71% accu-
racy). The comparison shows that the integration of
gene expression profiles and protein interaction infor-
mation can improve lung cancer diagnosis. Second, we
compared the predictive performance of the proposed
method with randomly selected networks. The average
accuracy for 100,000 randomly selected networks of 339
proteins was 48.44%, highlighting the significance of the
proposed network-based biomarker. Third, in addition
to evaluating the predictive performance using an inde-
pendent data set, a 5-fold cross-validation was applied
to the primary data set plus the prospective data set.
The accuracy of the cross-validation is similar to
the initial accuracy of 74.29% computed using the
independent data set, illustrating the robustness and
reproducibility of the proposed network-based biomarker
approach.

Discussion

Cancer is a complex disease and carcinogenesis in
humans is a multistep process that transforms normal
cells into malignant derivatives. Many researchers are
investigating the underlying mechanisms that prompt
the uncontrolled cell proliferation and metastasis. They
have successfully identified some key components of the
various steps in the carcinogenesis and some therapeutic
interventions have been developed to at least slow down
the carcinogenic process. However, because of the com-
plexity, the therapy that targets some specific molecules
is only partially effective and tumor-specific. Therefore,
investigation of the carcinogenesis from the systems per-
spective is inevitable. On the other hand, biomarker
identification for cancer diagnosis has been a primary
research focus in the biomedical field since the use of
biomarkers could provide early detection of cancer. As a
result, in this study, a network-based biomarker
approach has been proposed to simultaneously account
for molecular investigation and diagnosis. The proposed
approach was applied on the sample data obtained from
smokers with and without lung cancer and 40 significant
proteins were identified in lung carcinogenesis. The net-
work-based biomarker considers not only differentially
expressed proteins but also the protein association net-
work structure. This allows an accurate identification of
proteins with low discriminative potentials if such pro-
teins were associated with many other significant pro-
teins [15]. This property is important for the
identification of significant proteins in lung carcinogen-
esis and provides a mechanistic insight into the process.
From the mechanism investigation of the 40 significant
proteins identified using the network-based biomarker,
we found that the significant proteins identified are
involved in the pathways that are responsible for cellular
processes, including proliferation, differentiation,
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apoptosis, and metastasis. More importantly, from the
results presented, we found that dysregulated signals
exist in multiple pathways. There are two possible expla-
nations for the result: the genetic mutations are accu-
mulated respectively to components of different
pathways, or the aberrant signals affect different path-
ways through cross-talk mechanisms. Further investiga-
tion is needed to address these two hypotheses. In
addition to the investigation of significant proteins, the
network-based biomarker can be used as a type of
screening test with high sensitivity. Using the same data
(the prospective data set of GSE4115), conventional
bronchoscopy was shown to be 44% sensitive to cancer
detection [3], which is only half of the proposed net-
work-based biomarker. This further reinforces the clini-
cal utility of the network-based biomarker.

Although our proposed method is shown to be useful,
some limitations exist and the need for further improve-
ments remains. In the proposed network-based biomar-
ker approach, gene expression profiles were overlaid to
the corresponding proteins for further analysis. How-
ever, levels of mRNA do not always correlate with
protein levels and do not provide information on post-
translational modification such as phosphorylation that
may be critical in regulating protein activity [41]. Conse-
quently, emerging high-throughput proteomic techni-
ques such as protein microarrays would benefit our
method by significantly improving the detection perfor-
mance over mRNA microarray data. In addition, if the
genome-wide gene expression levels and protein expres-
sion levels can be obtained simultaneously, we are then
able to construct the integrated cellular networks of
transcription regulations and protein interactions which
provide a more integrated network-based biomarker
[69]. The protein-protein interaction data from public
databases also plays important roles in the proposed
method. Nevertheless, there is a large variation in the
coverage of protein interaction data across the interac-
tion databases [70]. Therefore, HPRD and BioGRID
databases were integrated for the PPI information in
this study. We believe that the increased quality and
coverage of protein interaction data would enhance the
proposed network-based biomarker approach for char-
acterization of lung carcinogenesis. Another limitation
of the proposed method was the restriction in the size
of the protein association network from the sample size
available due to the avoidance of overfitting in the net-
work construction. This results in the exclusion of some
well-studied proteins that are relevant to the lung carci-
nogenic process in the network-based biomarker,
including KRAS, MET, PI3KCA. To overcome the pro-
blem, more samples are needed. We believe that
improvements to diagnostic evaluation using the net-
work-based biomarker lie in the expansion of the
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constructed protein association networks. Many other
groups identified the discriminative subnetworks using
different methods, especially graph theory-based meth-
ods [71,72]. For example, Tian et al. proposed a hyper-
graph-based iterative learning algorithm for subnetwork
identification, which minimizes a cost function under a
unified regularization framework [72]. These graph-
based methods can also be incorporated to improve the
significant protein selection in the proposed method.
Further, in this study, the samples for gene expression
profiling are simply divided into two groups: smokers
with cancer and without cancer. With more sample
data, particularly cancer stage-specific samples, we can
determine how the network evolves and changes during
cancer progression using the proposed method.

Our network-based biomarker provides both a sys-
tematic insight into the lung carcinogenic process and
a good method for identifying significant proteins,
categorized as lung cancer-related proteins and many
others that have not been previously reported. These
proteins not only provide new targets for further
research into understanding the mechanisms of lung
carcinogenesis, but are also potential targets for thera-
peutic interventions. The main challenge of cancer
research is to find an effective therapeutic approach
that specifically kills malignant cells. Conventional
chemotherapy acts by killing all rapidly dividing cells,
resulting in toxic effects and damage to normal tissues
[73]. With the advances in understanding the mechan-
isms of the carcinogenic process, the so-called targeted
therapy, which is more effective and less harmful to
normal cells, is developed to inhibit the specific mole-
cules that play crucial roles in tumor growth. The sig-
nificant proteins identified by the proposed network-
based biomarker provide suitable molecules to be tar-
geted. For example, gefitinib (Iressa) and erlotinib
(Tarceva) are two tyrosine kinase inhibitors that speci-
fically target EGFR. Despite their effectiveness, there
are still patients that do not respond well to these
drugs [74]. One explanation is that single-target agents
are likely to result in network compensation and drug
resistance [75]. As a result, multi-target therapeutic
interventions that affect multiple targets simultaneously
may be required for effective control against cancer.
Because biological systems are unable to perform
optimally under the influence of two or more simulta-
neously administered drugs, multi-target therapeutics
can prove effective as they may be less vulnerable to
adaptive resistance from the human body [76]. With
the help of significant proteins identified by the pro-
posed network-based biomarker approach and the
pathway information, it is possible the multi-target
therapeutic interventions that act on different critical
pathways in lung carcinogenesis can be developed.
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Conclusions

Lung cancer is the leading cause of cancer deaths world-
wide. Understanding the causes and the underlying
mechanisms can help fight the disease. In this study, a
network-based biomarker approach, which integrated
gene expression profiles and protein interaction informa-
tion, was developed for molecular investigation and diag-
nosis for lung cancer. From a systems perspective, the
constructed network-based biomarker further evaluated
the lung carcinogenic process by use of significant pro-
tein identification and diagnostic evaluation. The diagnos-
tic results indicate that the network-based biomarker is
sensitive to the diagnosis of smokers with lung cancer
and can be used as one kind of screening test. More
importantly, the significant proteins identified by the
network-based biomarker give mechanistic insights into
the carcinogenic process and provide potential therapeu-
tic targets to combat cancer.
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Additional file 2: The full names of the significant proteins
identified.

Additional file 3: The hierarchical clustering for 199 differentially
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