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Gene expression signatures in childhood acute
leukemias are largely unique and distinct from
those of normal tissues and other malignancies
Anna Andersson1*, Patrik Edén2, Tor Olofsson3, Thoas Fioretos1*

Abstract

Background: Childhood leukemia is characterized by the presence of balanced chromosomal translocations or by
other structural or numerical chromosomal changes. It is well know that leukemias with specific molecular
abnormalities display profoundly different global gene expression profiles. However, it is largely unknown whether
such subtype-specific leukemic signatures are unique or if they are active also in non-hematopoietic normal tissues
or in other human cancer types.

Methods: Using gene set enrichment analysis, we systematically explored whether the transcriptional programs in
childhood acute lymphoblastic leukemia (ALL) and myeloid leukemia (AML) were significantly similar to those in
different flow-sorted subpopulations of normal hematopoietic cells (n = 8), normal non-hematopoietic tissues
(n = 22) or human cancer tissues (n = 13).

Results: This study revealed that e.g., the t(12;21) [ETV6-RUNX1] subtype of ALL and the t(15;17) [PML-RARA]
subtype of AML had transcriptional programs similar to those in normal Pro-B cells and promyelocytes, respectively.
Moreover, the 11q23/MLL subtype of ALL showed similarities with non-hematopoietic tissues. Strikingly however,
most of the transcriptional programs in the other leukemic subtypes lacked significant similarity to ~100 gene sets
derived from normal and malignant tissues.

Conclusions: This study demonstrates, for the first time, that the expression profiles of childhood leukemia are
largely unique, with limited similarities to transcriptional programs active in normal hematopoietic cells, non-
hematopoietic normal tissues or the most common forms of human cancer. In addition to providing important
pathogenetic insights, these findings should facilitate the identification of candidate genes or transcriptional
programs that can be used as unique targets in leukemia.

Background
Genome wide analyses of human cancer have shown
that genetic and epigenetic changes lead to deregulated
cellular gene expression patterns. The aberrant tran-
scriptional states of cancer cells are likely to consist of
several transcriptional programs/modules that are
important in the initiation and/or progression of malig-
nancies. Recent work has successfully used deregulated
gene expression profiles to classify different types of
cancer and, in some cases, has led to the identification
of new tumor subtypes [1-5]. However, forming

biologically meaningful conclusions from the vast
amount of genomic data has proven more challenging
than first anticipated [6].
Childhood leukemia is the most common pediatric

malignancy. It is typically characterized by balanced
chromosomal translocations that form oncogenic fusion
genes or by other structural or numerical chromosomal
changes. For example, acute lymphoblastic leukemia
(ALL) is characterized by the following specific altera-
tions: t(12;21)(p13;q22) [ETV6/RUNX1], high hyperdi-
ploidy (HeH, >50 chromosomes), t(1;19)(q23;p13)
[TCF3/PBX1], and t(9;22)(q34;q22) [BCR/ABL1],
whereas acute myeloid leukemia (AML) is characterized
by t(8;21)(q22;q22) [RUNX1/RUNX1T1], t(15;17)(q22;
q21) [PML/RARA], and inv(16)(p13q22) [CBFB/
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MYH11]. Furthermore, 11q23/MLL rearrangements are
present in both childhood ALL and AML. The presence
of these genetic abnormalities provides important diag-
nostic and prognostic information in a clinical setting
[7,8]. The oncogenic properties of several fusion genes
have been studied in different mouse models and their
transforming capacities have been firmly established [9].
However, it is not understood how specific fusion genes
alter the normal transcriptional programs that tightly
regulate self-renewal and differentiation from stem cells
to mature blood cells. Although global genomic studies
have shown that various human leukemia subtypes dis-
play profoundly different gene expression profiles
[2,4,5,10-12], we still lack important information about
the biological and pathogenetic impact of these deregu-
lated transcriptional programs.
We have previously shown that the interpretation of

aberrant transcriptional signatures in childhood acute
lymphoblastic leukemia (ALL) can be improved by
including normal hematopoietic subpopulations [10].
For example, we have demonstrated that relatively few
of the top differentially expressed genes in the different
genetic subtypes of childhood leukemia were correlated
with hematopoietic lineages, i.e., myeloid-, lymphoid, or
T-cell lineages. Instead, we found that most of the genes
were either highly expressed in immature normal hema-
topoietic cells or displayed a seemingly ‘ectopic expres-
sion’ restricted to the leukemic cells only. In the current
study, we have extended our earlier observations by sys-
tematically exploring whether the transcriptional pro-
grams in various genetic subtypes of childhood ALL and
acute myeloid leukemia (AML) show any significant
similarities to those present in an enlarged set of flow-
sorted normal hematopoietic cells, a large number of
normal non-hematopoietic tissues, or different types of
human cancer. We report that, with few exceptions, the
transcriptional programs of most childhood acute leuke-
mia subtypes display limited similarities to ~100 gene
sets representing transcriptional programs/modules
active in normal and malignant tissues.

Results and Discussion
Gene expression profiling has been extensively used in
the past to identify differentially expressed genes in
childhood leukemia [2,4,5,10]. However, it remains chal-
lenging to make biological meaningful conclusions from
such gene lists. Typically, investigators analyze these
gene lists by different gene ontology or pathway analysis
tools that may identify certain gene ontology categories
or pathways that are perturbed, thus facilitating biologi-
cal interpretation. In the past, we have used similar
tools and identified several deregulated gene ontology
terms being deregulated in leukemia. For example, leu-
kemias characterized by the t(1;19) TCF3/PBX1 fusion

gene showed a significant enrichment of cell prolifera-
tion and cell cycle genes, possibly reflecting the aggres-
sive phenotype of this leukemia, which, before intensive
treatment protocols were introduced often presented
with adverse clinical symptoms such as central nervous
system disease and with a high risk of relapse [10,13]. In
addition, we have previously shown that the inclusion of
normal hematopoietic cells can improve the interpreta-
tion of gene expression patterns in leukemia [10], by
highlighting genes that display a shared or unique
expression pattern in the various normal hematopoietic
cells and the different genetic subtypes of leukemia.
In the present study, we undertook another approach

in trying to understand the biological meaning of the
vast number of genes that are differentially expressed in
childhood leukemia. Using gene set enrichment analysis
(GSEA) [14], which provides a powerful tool to ascertain
whether a given gene set is significantly enriched in a
list of genes ranked by their correlation with a pheno-
type of interest [14,15], we systematically explored
whether differentially expressed genes in the various
subtypes of childhood leukemia display enrichment of
genes found differentially expressed in different normal
and malignant tissues. The rationale behind this
approach is that gene sets that occur in more than one
condition may provide pathogenetic clues for under-
standing the nature of the aberrant transcriptional pro-
grams present in different genetic subtypes of childhood
leukemia. Moreover, by identifying genes or transcrip-
tional programs displaying a confined expression only to
the leukemic cells and with absent expression in normal
hematopoietic cells, new candidates for targeted treat-
ment may be identified. Finally, the results may give rise
to new ideas for treating leukemia by identifying other
tumor types showing similar types of aberrant transcrip-
tional programs.
To generate the different gene sets, we used flow-sort-

ing to isolate eight subpopulations of hematopoietic
cells of different lineage and maturation from normal
donors and established their gene expression patterns.
In addition, we downloaded raw gene expression data
from normal non-hematopoietic tissues [16] and various
types of common human malignancies https://expo.int-
gen.org/geo/dataDownload.do. Gene sets were generated
within each data set from the flow sorted normal hema-
topoietic cells, the normal tissue data sets as well as
from the different malignancies. This database of gene
sets was then used to search for similarities towards the
gene expression patterns that characterize the various
molecular subtypes of childhood leukemia. In total,
close to 100 transcriptional signatures or ‘gene sets’
derived from eight different flow-sorted normal hemato-
poietic cell subpopulations, 22 normal non-hematopoie-
tic tissues, and 13 of the most common human cancer
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types (Figure 1) were investigated for enrichment in the
gene expression profiles obtained from different genetic
subtypes of childhood ALL and AML.
First, we investigated whether our newly generated

gene sets derived from eight flow-sorted subpopulations
of normal hematopoietic cells were enriched within the
gene expression profiles of the various genetic subtypes
of childhood ALL/AML. This analysis would indicate
whether transcriptional programs are shared between
normal hematopoietic cells and leukemic blasts. The
enrichment of a particular gene set could also indirectly
provide clues as to the ‘cellular origin’ of a leukemia by
displaying enrichment of a gene set from a particular
subpopulation of normal hematopoietic cells in the gene
expression profile of a specific leukemic subtype.
Among the childhood ALL subtypes, ETV6/RUNX1 was
the only subtype where gene sets obtained from normal
hematopoietic cells was enriched: namely with genes
that were highly expressed in normal Pro-B cells (Figure
2 and 3; additional file 1). This is consistent with a
recent study that demonstrated that the leukemia propa-
gating cells in ETV6/RUNX1-positive ALL, likely are
restricted to CD34+CD38-/low/CD19+ cells, which display
a mixture of gene expression profiles characteristic of
normal Pro-B cells and hematopoietic stem cells [17].
Surprisingly, no other ALL subtype displayed upregu-
lated genes that significantly overlapped with gene sets

derived from the normal hematopoietic cell subpopula-
tions. This suggests that the gene expression profiles of
these ALL subtypes are derived from a more immature
hematopoietic subpopulation or contain genes that are
ectopically expressed specifically in leukemia, as we have
previously described [10]. If the latter case is true, it
would suggest that the primary genetic change in leuke-
mia, typically a fusion oncogene, elicits a transcriptional
program that is unique to each genetic subtype of leuke-
mia and hence, is not used by normal hematopoietic
cells. Alternatively, and perhaps more likely, the gene
expression profiles reflect a combination of several tran-
scriptional programs: 1) those active in the cell targeted
by the primary genetic change, and 2) those that
become deregulated as a consequence of the specific
genetic changes that occur during leukemogenesis.
ALL subtypes with 11q23/MLL rearrangements showed
an inverse correlation to the gene expression profiles of
normal Pro-B cells, where genes highly expressed in the
leukemia were downregulated in normal Pro-B cells,
and vice versa (Figure 2 and additional file 2). The bio-
logical significance of these correlations is presently
unclear, but could indicate that the transcriptional pro-
grams governing B-cell regulation is perturbed in this
leukemia subtype. As expected, a high correlation was
obtained for gene sets derived from our previous cDNA
microarray analysis of ETV6/RUNX1, TCF3/PBX1, and

Figure 1 Heat map of the top 100 upregulated genes from each gene set used in the GSEA analyses. Genes are located vertically and
samples horizontally in the order given to the left in figures A-C. Each sample is represented by the mean of the gene expression value of the
samples within that subgroup. The figures shows the 100 most highly expressed genes from each of the different gene sets used in the GSEA
analyses from A) the flow sorted hematopoietic cells, B) the normal tissues, and C) the different human cancers. Red indicates relative
upregulation and green relative downregulation.
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Figure 2 Summary of the enrichments found in childhood ALL and AML when analyzed against gene sets derived from a large set of
normal hematopoietic cells, normal tissues and different types of human cancers using GSEA. Only enrichments found among the
upregulated genes in the various leukemia subtypes and the different gene sets are shown. A-C depict enrichments found in ALL and D-F in
AML. A red colored square indicate a significant enrichment among genes being upregulated in a genetic subtype with genes contained within
a gene set being upregulated in a specific tissue. A green colored square indicates a significant enrichment among genes being upregulated in
a genetic subtype with genes contained within a gene set that is downregulated in a specific tissue. The number in the squares shows the
normalized enrichment score, which can be used to compare the results across gene sets. Only scores for significant enrichments as determined
by FDR are shown in the figure. A and D) genes contained in genes sets from normal flow sorted hematopoietic cells. Also included, as positive
controls, are gene sets from previously generated gene expression data of pediatric ALL, B and E) genes contained in genes sets from a large set
of different normal human tissues, and C and F) genes contained in genes sets from different human cancers.

Figure 3 GSEA reveals similarities between genes upregulated in ETV6/RUNX1 positive ALL and those upregulated in normal Pro-B
cells. A) Heat map generated within GSEA of the top ranked 50 up- and downregulated genes in ETV6/RUNX1-positive leukemia as compared to
the remaining ALLs. B) Enrichment plot showing the enrichment of genes upregulated in Pro-B cells among the top ranked upregulated genes
in ALLs with ETV6/RUNX1. The lower portion of the figure shows the rank ordered genes for ETV6/RUNX1-positive ALL when compared to other
ALL, with genes being highly expressed to the far left and downregulated genes to the right. Each black line represents a hit from the gene set
being investigated in the rank ordered gene list. The more hits among the top up- or downregulated genes, the more likely you are to get a
significant gene set enrichment score. The upper part of the figure shows the enrichment score, which is calculated by walking down the
ranked ordered gene list and increasing the score when a gene from the rank ordered gene list is in the gene set and decreasing it when it is
not. C) Heat map of the core enrichment genes in the ETV6/RUNX1 positive ALL and the remaining ALLs. D) Heat map of the same core
enrichment genes in the normal flow sorted hematopoietic cells. The order of the core enrichment genes is the same as in C. From figure C
and D, the similarity of the ETV6/RUNX1 and the Pro-B cell gene expression profiles can be easily appreciated and clearly shows that there are
transcriptional programs that are shared between this specific leukemia and its normal counterpart.

Andersson et al. BMC Medical Genomics 2010, 3:6
http://www.biomedcentral.com/1755-8794/3/6

Page 4 of 8



11q23/MLL-positive ALL subtypes (Figure 2, additional
file 2) [10]. Among the downregulated genes, the TCF3/
PBX1 positive subtype of ALL was the only subtype
showing enrichment among the normal hematopoietic
cells, namely with genes downregulated in normal pro-B
cells and genes downregulated in MEP cells (additional
file 2).
Among the childhood AML subtypes, we found that

the PML/RARA subtype, which contains a fusion gene
that is tightly associated with promyelocytic leukemia,
not unexpectedly displayed upregulated genes that
were highly correlated to the upregulated genes in nor-
mal promyelocytes (Figure 2, additional file 3). This
fusion gene, when introduced into human hematopoie-
tic stem cells (HSC) rapidly induces differentiation of
the HSC into promyelocytes and then blocks differen-
tiation [18]. In addition, among the downregulated
genes, enrichment was observed among genes being
downregulated in normal pro-B cells (additional file 2).
We also found that the AML subtype, M7, which is
associated with a dismal prognosis[19], displayed gen-
ome-wide similarities to normal MEP cells (Figure 2,
additional file 4, and additional file 5). This may reflect
the cellular level of transformation and/or maturation
arrest of this subtype of leukemia [20]. These analyses
clearly demonstrated the power of GSEA to capture
important similarities between the transcriptional pro-
grams of leukemic cells and those of normal hemato-
poietic cell subpopulations.
Next, we investigated whether gene sets derived from

a large number of normal non-hematopoietic tissues
were enriched within the gene expression profiles of
childhood ALL and AML. For this purpose, we down-
loaded gene expression data from a large number of
normal human tissues [16] and generated 52 gene sets

corresponding to 26 tissues. This analysis revealed that,
among the upregulated genes, only the 11q23/MLL-
positive subtype of ALL showed significant similarities
with other normal tissues, where gene sets from pros-
tate, adipocytes, and bronchoepithelial cells were
enriched among the upregulated genes in such ALLs
(Figure 2, and 4, additional file 6, additional file 7, and
additional file 8). Notably, this was not evident in child-
hood AML with the 11q23/MLL abnormality. When
investigating the overlap between the downregulated
genes, again, the gene set derived from bronchoepithelial
cells were enriched among the 11q23/MLL positive ALL
(additional file 2). Also, the TCF3/PBX1 positive subtype
of ALL shared similarities with several normal tissues
with regard to their downregulated genes (additional file
2). The remaining enrichments observed were among
genes upregulated in the various genetic subtypes of
childhood ALL and AML and those downregulated in
several other non-hematopoietic tissues (Figure 2).
Finally, we investigated whether gene sets derived from
several different human malignancies were enriched
within the gene expression profiles of childhood leuke-
mia subtypes. In this analysis, 13 different human can-
cers, totaling 75 individual tumor samples were
imported from the expO database https://expo.intgen.
org/geo/dataDownload.do. The 26 different gene set
generated from this data set included the most common
human cancers; breast, colon, prostate, and lung cancer.
Interestingly, with respect to the upregulated genes,
none of the gene sets derived from the different human
cancer types were enriched within the gene expression
profiles of the various leukemic subtypes (Figure 2).
This finding indicates that the perturbed transcriptional
profiles of childhood leukemia are different from those
of other human cancer types.

Figure 4 GSEA reveals similarities between the genes being upregulated in ALL with 11q23/MLL and those upregulated in normal
prostate tissues. A) Heat map of the top ranked 50 up- and downregulated genes in 11q23/MLL-positive ALL. B) Enrichment plot showing the
enrichment of genes upregulated in normal prostate tissue among the upregulated genes in ALLs with 11q23/MLL. For an explanation about
the enrichment plot, see the legend to Figure 3B. C) Heat map of the core enrichment genes in the ALL data set. D) Heat map of the same core
enrichment genes in the normal tissue data, the order of the core enrichment genes are the same as in C. When comparing figures C and D,
the similarity of the 11q23/MLL and the prostate tissue gene expression profiles can be easily appreciated, indicating a shared transcriptional
program.

Andersson et al. BMC Medical Genomics 2010, 3:6
http://www.biomedcentral.com/1755-8794/3/6

Page 5 of 8

https://expo.intgen.org/geo/dataDownload.do
https://expo.intgen.org/geo/dataDownload.do


A striking observation in the present study was that
the majority of the enrichments detected in the GSEA
analyses were negative correlations (Figure 2). That is,
several genes that were highly expressed in the various
genetic subtypes of leukemia were downregulated in
normal and malignant tissues. This further supports our
hypothesis that the gene expression programs that are
transcriptionally active in the various subtypes of child-
hood leukemia are unique to the leukemia and show
limited similarity to other tissues and human cancers.
Interestingly, childhood ALL and AML differed substan-
tially in the number of enrichments found by GSEA; we
identified 100 enrichments in ALL and only 26 in AML.
This may indicate that childhood AML activate tran-
scriptional modules that are more disease-specific than
those activated in ALL.
We are aware of only one previous study in which a

genome-wide comparison was performed between genes
being differentially expressed in leukemia and in normal
tissues [21]. Using ‘gene per gene’ comparison, Lotem et
al, 2005 [21] reported that several ALL subtypes overex-
pressed genes that were active in normal testis or neural
tissues. In contrast, we used GSEA that ascertains
whether several genes contained within a gene set are
significantly enriched within the gene expression profiles
of the various genetic subtypes of childhood leukemia.
Although the two approaches are different, our results
are partly consistent with those of Lotem et al., 2005
[21]. For example, in a ‘gene per gene’ comparison we
also find that the ETV6/RUNX1 ALL subtype overex-
press 45 genes that are highly expressed in normal tes-
tis, but with GSEA, this did not reach statistical
significance.

Conclusions
Our findings suggest that childhood leukemia display
altered expression profiles that are largely unique to the
leukemic cells, with only limited similarities to those in
other tissues or in the most common forms of human
cancer. Further dissection of these perturbed transcrip-
tional programs should provide additional important
pathogenetic insights and may help promoting the
development of agents that target key mediators of the
aberrant transcriptional programs uniquely expressed in
the various genetic subtypes of childhood leukemia.

Methods
Expression profiling
Eight flow-sorted subpopulations, obtained after
informed consent from healthy adult donors through the
Department of Hematology, Lund University Hospital,
Sweden, were analyzed. The study was reviewed and
approved by the Research Ethic Committee of Lund Uni-
versity, Sweden. These eight subpopulations included: 1)

common myeloid progenitor (CMP) cells, 2) granulocyte/
macrophage progenitor (GMP) cells, 3) megakaryocyte/
erythrocyte progenitor (MEP) cells, 4) myeloid cells
enriched for promyelocytes, 5) myeloid cells enriched for
myelocytes, 6) pro-B cells, 7) pre-B cells, and 8) imma-
ture-B cells. The immunophenotype, and gating strategy
are shown in additional file 9. To obtain sufficient
amount of RNA from each subpopulation, cells from one
to six separate sorting experiments were pooled. Two
independently pooled samples were subsequently hybri-
dized onto Human Genome U133 Plus 2.0 microarrays
(Affymetrix Inc, Santa Clara, CA). Data have been depos-
ited in Gene Expression Omnibus (GSE19599). For
detailed methods information, see additional file 10
(available on the BMC Medical Genomics website).

External data sets
Raw expression data from Ross et al., 2003 and 2004 [4,5]
on childhood ALL and AML were downloaded from
http://www.stjuderesearch.org. Data composition can be
viewed in Supplemental Methods (additional file 10).
Normal tissue and human cancer expression data were
retrieved from two external data sets. The first [16] con-
sisted of 79 human tissues hybridized in duplicate. Sam-
ples from the same types of tissue were combined, and a
mean gene expression value was calculated and used for
subsequent analyses (additional file 11). The second set,
consisting of human tumors, was obtained from the
expO database https://expo.intgen.org/geo/dataDown-
load.do. Cel-files from solid tumors of different types and
origin were grouped based on the site of the primary
tumor. In total, 75 cases from 13 different tumor sites (2-
9 cases per site; mean 5.7 cases per site), including breast,
colon, prostate, and lung, were included (additional file
12). After normalization, samples of the same type were
combined and the mean expression value was used for
subsequent analysis (see below).

Data normalization and gene set enrichment analysis
Normalization of all data sets was performed using the
gcRMA [22] algorithm in the R statistical language as
part of the Bioconductor bioinformatics software [23].
For the data sets that were used to produce gene sets
(see below), log2 values corresponding to a gene expres-
sion value below 10 were set to a value of 10. All data
were mean-centered and subjected to a variation filter,
discarding all probe sets with a standard deviation
below 0.5. In the data sets from normal flow-sorted
hematopoietic cells, non-hematopoietic tissues, and
human cancer tissues, differentially expressed genes
were identified by ranking genes with t-statistics and a
false discovery rate (FDR). The mean value and the
within group variance for each tissue type was used for
calculating the t-statistics. For each data set, the ranked
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gene lists were generated by comparing the group of
interest to the remaining samples in that data set.
To search for enrichment of specific ‘transcriptional

programs’ (herein defined as ‘gene sets’) within the dif-
ferent subtypes of childhood leukemia, we used GSEA
[14,15]. GSEA is a computational method that ascertains
whether a given gene set (in our case derived from the
different normal and malignant tissues) is significantly
enriched in a list of genes ranked by their correlation
with a phenotype of interest (herein the various genetic
subtypes of childhood leukemia).
To generate the different gene sets, a list of genes that

corresponded to each tissue of interest was truncated at
a FDR of 1% or alternatively, for very low FDR values,
the list comprised approximately 300 unique genes.
From each gene list, two gene sets were generated, one
for the upregulated and one for the downregulated
genes. In total, 99 gene sets were produced from the
normal hematopoietic cells, the normal tissues, and the
different human cancer samples. The top 100 genes in
each of the gene sets derived from the upregulated
genes in the three data sets, are depicted in Figure 1. As
a control, we included six gene sets from our previously
generated lists of genes that were differentially expressed
in childhood ALL with ETV6/RUNX1, TCF3/PBX1, or
11q23/MLL-rearrangements [10]. Within GSEA [14],
enrichment analysis was performed using the option of
collapsing probe sets in the gene expression data matrix
to gene symbols. The ALL and AML data sets were not
subjected to a variation filter and probes with multiple
hits in the genome were removed. To produce the
ranked gene lists for each genetic subtype of ALL and
AML within GSEA, we used t-statistics and 2000 pheno-
type permutations to generate the normalized enrich-
ment score. Only gene sets that contained more than 15
and below 500 genes were considered, resulting in the
exclusion of three gene sets that included genes up- or
downregulated in GMP cells (14 and 0 genes, respec-
tively) and genes downregulated in CMP cells (3 genes).
Correlations in GSEA are measured by a Normalized
Expression Score, which is the Kolmogorov-Smirnov
running sum [24,25], divided by the mean of the corre-
sponding result for permuted datasets. The permutation
results are also used to assign a FDR for the enrichment.
A FDR of 25% (indicating that the enrichment is valid 3
out of 4 times) or below was considered significant.

Additional file 1: Core enrichment genes in pediatric ALL with
ETV6/RUNX1 when compared to genes being upregulated in normal
Pro-B cells. Table of the core enrichment genes, their rank and statistics
from the gene set enrichment analysis.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1755-8794-3-6-
S1.DOC ]

Additional file 2: A Summary of the enrichments found among the
downregulated genes in childhood ALL and AML using GSEA. Figure
showing the enrichment scores among the dowregulated genes in the
various genetic subtypes of ALL and AML.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1755-8794-3-6-
S2.DOC ]

Additional file 3: GSEA reveals similarities between genes
upregulated in pediatric APL with PML/RARA and those upregulated
in normal promyelocytes. Heat maps and enrichment plots of the
comparison of normal promyelocytes and APL.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1755-8794-3-6-
S3.DOC ]

Additional file 4: GSEA reveals similarities between genes being
upregulated in pediatric AML with AML M7 and those upregulated
in normal MEP cells. Heat maps and enrichment plots of the
comparison of normal MEP cells and AML M7.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1755-8794-3-6-
S4.DOC ]

Additional file 5: Core enrichment genes in pediatric AML M7 when
compared to genes being upregulated in normal flow sorted MEP
cells. Table of the core enrichment genes, their rank and statistics from
the gene set enrichment analysis.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1755-8794-3-6-
S5.DOC ]

Additional file 6: Core enrichment genes in pediatric ALL with
11q23/MLL when compared to genes being upregulated in normal
bronchoepitelial cells. Table of the core enrichment genes, their rank
and statistics from the gene set enrichment analysis.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1755-8794-3-6-
S6.DOC ]

Additional file 7: Core enrichment genes in pediatric ALL with
11q23/MLL when compared to genes being upregulated in normal
adipocytes. Table of the core enrichment genes, their rank and statistics
from the gene set enrichment analysis.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1755-8794-3-6-
S7.DOC ]

Additional file 8: Core enrichment genes in pediatric ALL with MLL
when compared to genes being upregulated in normal tissue
derived from prostate. Table of the core enrichment genes, their rank
and statistics from the gene set enrichment analysis.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1755-8794-3-6-
S8.DOC ]

Additional file 9: Isolation strategy of the different subpopulations
analyzed for gene expression. Example of the isolation strategy of the
hematopoietic subpopulations.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1755-8794-3-6-
S9.DOC ]

Additional file 10: Supporting Methods. Contains additional methods
information.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1755-8794-3-6-
S10.DOC ]

Additional file 11: The normal tissue data set by Su el al., 2005 and
the annotations used for producing the gene sets. Cel files and
annotations for the data set by Su et al., 2005.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1755-8794-3-6-
S11.DOC ]
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Additional file 12: The solid tumor data set from the expO
database. Description of the analyzed tumors.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1755-8794-3-6-
S12.DOC ]
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