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Abstract

Background: Prostate cancer is a world wide leading cancer and it is characterized by its
aggressive metastasis. According to the clinical heterogeneity, prostate cancer displays different
stages and grades related to the aggressive metastasis disease. Although numerous studies used
microarray analysis and traditional clustering method to identify the individual genes during the
disease processes, the important gene regulations remain unclear. We present a computational
method for inferring genetic regulatory networks from micorarray data automatically with
transcription factor analysis and conditional independence testing to explore the potential
significant gene regulatory networks that are correlated with cancer, tumor grade and stage in the
prostate cancer.

Results: To deal with missing values in microarray data, we used a K-nearest-neighbors (KNN)
algorithm to determine the precise expression values. We applied web services technology to wrap
the bioinformatics toolkits and databases to automatically extract the promoter regions of DNA
sequences and predicted the transcription factors that regulate the gene expressions. We adopt
the microarray datasets consists of 62 primary tumors, 41 normal prostate tissues from Stanford
Microarray Database (SMD) as a target dataset to evaluate our method. The predicted results
showed that the possible biomarker genes related to cancer and denoted the androgen functions
and processes may be in the development of the prostate cancer and promote the cell death in cell
cycle. Our predicted results showed that sub-networks of genes SREBFI, STAT6 and PBXI are
strongly related to a high extent while ETS transcription factors ELKI, JUN and EGR2 are related
to a low extent. Gene SLC22A3 may explain clinically the differentiation associated with the high
grade cancer compared with low grade cancer. Enhancer of Zeste Homolg 2 (EZH2) regulated by
RUNXI and STAT3 is correlated to the pathological stage.

Conclusions: We provide a computational framework to reconstruct the genetic regulatory
network from the microarray data using biological knowledge and constraint-based inferences. Our
method is helpful in verifying possible interaction relations in gene regulatory networks and filtering
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out incorrect relations inferred by imperfect methods. We predicted not only individual gene
related to cancer but also discovered significant gene regulation networks. Our method is also
validated in several enriched published papers and databases and the significant gene regulatory
networks perform critical biological functions and processes including cell adhesion molecules,
androgen and estrogen metabolism, smooth muscle contraction, and GO-annotated processes.
Those significant gene regulations and the critical concept of tumor progression are useful to

understand cancer biology and disease treatment.

Background

Prostate cancer is a leading cancer and aggressive metasta-
sis disease worldwide and it is the second common can-
cer-death among men [1]. According to the clinical
heterogeneity, prostate cancer displays different behaviors
related to aggressive metastasis disease. Some experiments
discovered that high Gleason grade and advanced patho-
logical stage tumours associated with cancer recurrence
tend to have higher aggressive cancer [2]. Currently, prog-
nostication and treatment are based on the clinical stage
and Gleason stage but the gene regulation and biological
processes correlated to the progression of the prostate can-
cer are still unclear.

The recent microarray technology provides a large-scale
measurement of expressions of thousands of genes and
uses to manifest the expressions of genes in a particular
cell type of an organism at a particular time under partic-
ular conditions. This high-throughput experimental tech-
nology is a powerful tool for comparing mutant or
diseased cells with normal cells and searching for differ-
ences in gene expressions that can be the potential key fac-
tors leading to diseases. Several studies use the wet-lab
experiments and microarray data analysis to detect strong
significant genes as markers from gene expression level.
Although microarray studies of prostate cancer have
already identified the different gene expressions between
normal and cancer, they still use the traditional unsuper-
vised clustering methods to realize the potential molecu-
lar variation with individual genes. However, microarray
data reveals information related to not only gene expres-
sions but also to genetic networks of biological experi-
ments or in vivo screen examinations. The general
purpose of inferring genetic regulatory network is to
extract the expression features, activations and inhibitions
from the changes of gene expressions among those genes
in microarray data. Recently, researches study the reverse
engineering methods and try to understand the complex
interactions that are directly affected by the genetic net-
works. Several mathematical methods for modelling the
genetic networks have been proposed such as Boolean
networks [3], differential equations [4], Bayesian net-
works [5], and Petri Net [6]. Although they could success-
fully model the networks to some extent for each gene, it
is in general difficult to determine the correct interactions
among genes without involving the detailed biological

knowledge about their DNA sequences and transcription
factors. There are two approaches can be used for learning
the popular-used Bayesian networks from data [7] and
both two approaches have their advantages and disadvan-
tages. The first one is searching and scoring method,
which computes the conditional probability of each net-
work given the data, ranks the networks and searches the
best network that can fit the data. The advantage of this
approach is the result of network graph with fine-grained
probabilistic information but the drawback of this
approach is the number of possible networks becomes
super-exponential when the number of nodes is very
large. Because this approach is NP-hard, the search heuris-
tics method must be adopted. The second approach is
constraint-based learning method which uses a different
viewpoint to learn the network from data. The basic idea
to construct a network is based on the conditional
dependencies among nodes given the data. The approach
tries to discover all the conditional independencies from
data and uses these conditional independencies (CI) to
infer the networks. Since the constraint-based learning
method needs to get all the conditional independencies
which are developed to measure the relationship of
dependencies, it is also a hard work to generate the while
possible assembling patterns among genes in the microar-
ray data.

However, gene networks inferred solely based on the micro-
array data are often not sufficient for rigorous analysis. A
common problem in such kind of data-driven learning
approaches is that only a small number of genes can be mod-
elled. Without sufficient background knowledge supported,
it is hard to reconstruct gene regulatory networks merely
based on Bayesian learning from scarce data. To overcome
the problem, integrate the biological knowledge into the
modelling process becomes necessary [8-11]. In molecular
biology, biologists believe the expressions of the genes are
always controlled by the transcription factors that leads to
gene expression change observed in microarray data. There-
fore networks between the transcription factors and their tar-
get genes are important in understanding the complex
regulatory mechanisms in a cell.

Our original idea is to develop an initial gene network
combining independency test and transcription factor
analysis from the microarray data. We revise and infer the
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gene networks using d-separation criteria and conditional
independency for the direct or indirect interactions in the
network. Many biological databases and information
services are also available on web browsers via internet
and they allow us to gather information about the biolog-
ical sequences and predict their functionalities and pro-
moter regions to some extent. We apply web services
technology to integrate all tools and databases developed
by ourselves and others to automatically carry out the
workflow of all tasks needed in the computational analy-
sis.

Methods

Our system consists of three main modules: (i) Microarray
data pre-processing, (ii) Transcription factor analysis, and
(iii) Revising gene network based on conditional inde-
pendency. Figure 1 shows a workflow of the three major
modules in our systems and the steps in each module.
Module I deals with the problem of missing values in the
microarray using the K-nearest-neighbour (KNN)
approach. Module II uses transcription factor analysis to
construct an initial regulatory genetic network. And mod-
ule III revises the genetic regulatory network constructed
from component II using d-separation criteria to test con-
ditional independency among genes.

Cope with missing values in Microarray data

The microarray dataset consists of N genes and M experi-
ments can be represented as an M*N matrix. It presents
different gene expression levels X;; (i € M, j € N) in this
matrix. Gene expressions (either over-expressed or under-
expressed) can be revealed in terms of two colors in the
microarray data with the symbol "R" representing the red
dye; whereas the symbol "G" representing the green dye.
The ratios between the two colors reflect the relative

http://www.biomedcentral.com/1755-8794/2/70

degrees of expressions of genes. We extract the data Log,
[R/G Normalized Ratio (Medium)] of each gene because
the mean value of the normalized ratio is much easier to
be affected by noise than the medium value.

Although microarray can be used to detect thousands of
genes under a variety of conditions, there are still many
missing values in microarray [12]. The reasons for missing
values include insufficient resolution, image corruption,
and dust or scratches on the slide. If a gene contains many
missing values in experiments, it is not easy to determine
a precise expression value for each gene that causes a dif-
ficulty in the subsequent analysis of the regulation net-
works. However, we can not simply remove all gene data
that contains missing values because the number of
remaining genes will become too small to predict the net-
work correctly. In order to get a better result, the genes that
contain less than 20% entries missing in all experiment
are picked. In order to get as complete data as possible, we
use the K-Nearest-Neighbors (KNN) algorithm [12] to
estimate the missing values. Suppose there is one missing
value of gene A in N samples. The steps of KNN algorithm
are listed as follows:

1) We consider gene A with the missing value in experi-
ment t and calculate the Euclidean distance between Gene
A and other genes without missing values in other t-1
experiment. Suppose (py, P Pe1s Pra1/ - Pn) and (d;, gy
de.1s Qee1s-- Qn) are the expression values of the gene A and
other genes in other N-1 experiments. The Euclidean dis-
tance between the two gene expressions is as follows:

Jp=a ) 4t (pa—dis )+t (Pu—dn )

(Component 1: Data preprocessing
A. Collect microarray data

B. Filter the microarray data

C. Data impute with KNN

\_ D. Combine the same gene and label gene

- _—

(c

\_ each Dgs.

omponent 2: Biological knowledge processing q)
A. Get transcription regulator gene, Tg from GO
B. Find each dependency gene (Dg) for Tg
C. Use promoter information to check the link between Tg and

= =

independence

(
Component 3: Revising and inferring process
A. Revise the genetic regulatory network with conditional

B. Infer activation/inhibition by gene-gene expression

Figure |
Overview of the system architecture.
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If genes with missing values in the experiment, we ignore
this experiment for calculating the Euclidean distance for-
mula. Because we keep the genes with less than 20% of
missing values, there are not many missing data in the
microarray data.

2) Select k most similar genes with Euclidean distance to
impute missing expression values.

3) Consider the Euclidean distance as weights to average
the expression values of k genes.

Supposed D,; means the Euclidean distance between
Gene A and Gene B and k genes are selected to estimate
the missing expression value for Gene A. The weight of
gene is:

b
Weight(Gene X) = 7 i Dax 7
+ +...
ﬁDAB ﬁDAC %)AK

Given an example in Table 1, Gene has a missing value in
sample 1 and we compute D, = 4.06, Dy = 3.24, and
Dp = 6.94. Suppose k = 2, we will select 2 genes that are
similar to Gene. Since both D, and Dg are smaller than
Dp, we selected Gene, and Geneg to impute the missing

value of Genein Table 1. The missing value for Genes is
calculated as follow:

Geneg =

(—1.0)Weight(Gene , ) + (—1.0)Weight(Geney)

=-1.0
In particular, we transformed the continuous expression
levels into discrete expression to determine the under-
expression and over-expression of genes. The expression
values of genes can be separated into two binary values:
positive (+) and negative (-). We set reference expression
value as the average expression value from all expressions
of genes in cancer and normal microarray data [5]. If the
gene expression value X;; greater than the reference expres-

Table I: Gene expressions of the microarray experiment

Gene El E2 E3 E4 E5
Gene, -1.0 -2.0 1.0 -2.0 1.5
Geneg -1.0 -1.0 2.0 1.5 -1.0
Genec ? -2.0 1.5 2.0 2.0
Genep, -2.0 3.0 4.0 -2.0 3.0

E; = the number i of sample in the experiments

http://www.biomedcentral.com/1755-8794/2/70

sion value, we regarded as positive (+); else, we regarded
as negative (-), respectively. In our experiment, we set -
0.06 as reference value.

Constructing initial gene networks by transcription factor
analysis

Every cell in an organism contains the entire genome
which is subdivided into a set of chromosomes and the
chromosome is a linear molecule called DNA that is func-
tionally divided into information units called genes. Each
gene carries information for the production of a set of pro-
teins which perform a specialized function in the cell. The
gene expression is a biological process which converts
gene's DNA sequence into its corresponding functional
proteins in the cell. A gene is said to be expressed in a cell
if its corresponding proteins are present and it can be
divided into two regions: a coding region and a regulatory
region. The coding region of the gene can be translated
into a protein and the regulatory region is the binding site
also called promoter region on which a transcription fac-
tor can bind. A transcription factor is a protein that can
bind on the upward stream of transcription start site (TSS)
of the gene in the DNA sequence. Different transcription
factors bind on the promoter region will trigger the down-
stream translation processes. Hence the transcription fac-
tors can either enhance or repress the gene expression. For
example, in Figure 2, the product of gene A is a transcrip-
tion factor, which can bind on the promoter region of
gene B in the DNA sequence and gene A can affect the
expression of its target gene, gene B. A gene that can regu-
late other genes by its corresponding transcription factor
is considered as a transcription regulator gene. In order to
construct the initial genetic networks from the transcrip-
tion factor, we take each gene with the term "transcription
regulator activity" specified in Gene Ontology (GO) [13]
which contains over 19,000 terms applicable to a wide
variety of biological organisms. And then, we use the sta-
tistical hypothesis testing to check if there is a link
dependency between the transcription regulator gene and
other genes in terms of the microarray data. If a transcrip-
tion regulator gene and another gene are dependent, it
means there is a relationship between them.

Assume a null hypothesis that one gene and another gene
in the microarray data are independent and check if there
is enough evidence to prove this hypothesis with statisti-
cal p-value testing. P-value is the probability of obtaining
aresult and shows the truth of the null hypothesis that the
result was chance alone. If the significant level is 0.05, the
results are only 5% likely to be as extraordinary as the
observation, given that the null hypothesis is true. The sta-
tistical formula used to test for independency is as follows
[14]:
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Transcription regulatory gene and its dependent
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Where

S{ = the number of times the expression level of gene = a

S% = the number of times both the expression levels of

gene = a and gene = b respectively.
M = total data.

G2 has the chi-square distribution with appropriate
degrees of freedom f = (r;-1)(r,-1) where 1y, 1, are the
number of expression levels of the data spaces.

For example, suppose gene, and gene, each has the space
{+.-} in Table 2 and the statistical test formula for inde-
pendency is calculated as:

= Ey
+31n 38 +2In 2+8
54 5*4

The degrees of freedom = (2-1)(2-1) = 1 and thus the data
has a chi-square distribution with 1 degree of freedom.

http://www.biomedcentral.com/1755-8794/2/70

There are just two variables to do one hypothesis inde-
pendent testing with chi-square method and the signifi-
cant p-value is still 0.05. The p-value is calculated as P(U

> .54) = .47. Because this p-value is larger than 0.05, we
cannot reject the hypothesis that gene, and gene, are inde-

pendent. If p-value is less than 0.05, there is enough evi-
dence to conclude gene, and gene, are not independent.

We use a pair of genes as an individual independent test-
ing and we do not perform Bonferroni correction to
reconstruct the networks. Because the large amount of
genes and lots of permutations, the appropriate p-value
calculated by Bonferroni correction is too small and con-
servative. Therefore by using statistical hypothesis testing
for a transcription regulator gene against all other genes in
the microarray, we could obtain a set of candidate
dependent genes with the transcription regulator gene.

According to the independent test, we got the statistical
relationships between transcription regulator genes and
its dependent genes. Based on biological knowledge, we
need to check the link between transcription regulator
gene and its dependent gene if the transcription regulator
gene's product can bind on the promoter of its dependent
gene or not. The internet provides several bioinformatics
toolkits that can help us to do the interaction checking but
those interfaces are designed to be accessed by humans,
not by machines and biologists usually have to spend a lot
of time to find, understand and execute the desired com-
putational analysis tools. So, we wrapped the necessary
bioinformatics tools as web services and compose the web
services into our workflow of interaction checking. Table
3 shows the bioinformatics tools and their web sites we
have wrapped. The ExPASy [15] (Expert Protein Analysis
System) proteomics server of the Swiss Institute of Bioin-
formatics (SIB) provides the information of genes.
Ensembl [16] is a joint project between EMBL-EBI and the
Sanger Institute that develops a software system conduct-
ing automatic annotation on selected eukaryotic
genomes. TFSEARCH [17] is used to search the transcrip-
tion factor binding sites and it contains factors of eukary-
otic cells from yeasts, plants, arthropods and vertebrates,
and position-specific score matrices (PSSM) of the factors
to their cis-elements generated from in vitro studies or
compiled sites of genes. Matrices from TFSEARCH enable

Table 2: Sample data for independency test

Gene El E2 E3 E4 E5 Eé E7 E8

Gene, + + - - - - + -

GeneB - + + - + + - -

Ei = the number i of sample in the experiment
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Table 3: Bioinformatics tools been wrapped

Tool Website
TFSEARCH http://www.cbrc.jp/research/db/TFSEARCH.html
Ensembl http://www.ensembl.org/index.html
ExPASy http://au.expasy.org

computational prediction of the joining of transfactors
and cis-elements in the upstream region of selected genes.
In order to automatically selecting and executing the bio-
informatics toolkits, we annotated web service in OWL-S
functional profiles in Table 4 which is a Semantic Web
Service to describe inputs, outputs, preconditions and
effects of each web services to compose into a workflow.
The functional description of service "inputs" and "out-
puts" specifies the inputs required by a service and the
outputs generated. It also provides the "precondition" to
describe the external conditions to be satisfied and the
"effects" to describe the expected effects that might result
from the execution of a service.

Genetic mutation or genomic segments on DNA sequence
is one of the reasons in cancer development and the
change of genotype in each human may be different, it is
hard to extract those sequences to do the analysis. The
abnormal relationship (activation or inhibition) or differ-
ent groups of transcription factors bind on the promoter
region also affect the genetic regulation mechanism to
present the different phenotype [18]. According to the rea-
son, we use the normal DNA sequence extracted from the
public website to predict the possible groups of transcrip-
tion factors affects dependent gene's transcription from
microarray data. First, we pick the 1000 base pair
upstream sequence of DNA sequence as promoter region
of the dependent gene from Ensembl website and predict
all possible transcription factors of the promoter of the
gene using TFSEARCH tool. Second, we use ExPASy anno-
tation website to search the transcription factors by the
transcription regulator gene. We remove the link between
the transcription regulator gene and its dependent gene if
there is no transcription factor of the transcription regula-
tor gene can bind on the promoter of its dependent gene.
The whole workflow of transcription factor analysis is in

Table 4: The functional profiles of each tool

http://www.biomedcentral.com/1755-8794/2/70

Figure 3. Up to this point, we can construct an initial gene
regulatory network.

Revising and inferring the gene networks using conditional
independency

The direction of the transcription factor and its dependent
gene represents the causal relationship of two nodes in the
network structure. We consider the two nodes that are sep-
arated by the other nodes and determine whether the rela-
tionship between two nodes is direct or indirect.
However, if a link connected by a pair of genes not a sim-
ple path but also connected by other paths, it is possible
that dependency of the pair of genes could not be due to
this directed link. Conditional independency test can be
used to verify the direct or indirect relationships between
the pair of genes when the d-separation set is to be deter-
mined [19,20].

First, we define three simple types of connections for three
nodes on a path as illustrated in Figure 4 to explain the
concept of d-separation. In type I, node C serves as a node
of converging connection called collider node and nodes
A and B have a common effect on node C with no causal
connection between them. In the viewpoint of informa-
tion flow, it shows the information between nodes A and
B cannot pass through node C and we also call that the
path is inactive as well as a closed path in type I. In type II,
a directed path can be found from node B to node A
through node C and node B is an indirect cause of node A.
In type III, two direct paths are from node C to nodes A
and B and node C is a common cause of both two nodes.
In the last two types II and III, node C serves as a node of
serial and diverging connection called non-collider. If we
know the information of node C, the information of node
A can be known without node B as well as the information
flow between nodes A and B can pass through C and we
call those two paths are active. From a causal point of
view, nodes A and B are marginally independent if node
C is not conditioned but if it is conditioned on C, node A
and B are conditionally dependent. Take an example, if it
is conditioned on C, the paths in type II and III become
blocked and nodes A and B are conditionally independent
in which we call those two nodes are d-separated by node
C. In addition, the type I path is opened given condition
on C.

Tool TFSEARCH Ensembl ExPASy
10
Input promoter DNA sequence Gene name Gene name
Output Transcription factor promoter DNA sequence Transcription factor
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A workflow of transcription factor analysis.
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Since d-separation entails conditional independency, an
efficient algorithm for determining whether two nodes are
d-separated by a set of nodes is needed. Cheng]. [19] pro-
posed a procedure to solve this problem and found the
minimum d-separation set but the execution time of the
algorithm grows exponentially with large number of
nodes in the network. We use the biological constraints to
modify the algorithm and decrease the search space.
Given two nodes in the networks as start node and end
node, we used depth-first search (DFS) method to traverse
all the paths between start and end nodes. While search-
ing the possible paths, we use the following branch-and-
bound constraints to prune the searching space:

(1) Only transcription regulator gene can link to its
dependent genes and transcription regulator gene can be
an active node.

(2) If the dependent gene is a collider node in the sub-net-
works such like type I in Figure 4, the path must be a close
path and will be deleted.

After finding all non-collider structures between start and
end nodes, we rank the candidate d-separation genes by

4 | Il 1] h

®—0C—®

Converging, Serial, Diverging,
Collider, Non-Collider, Non-Collider,
inactive active active

A /
Figure 4

Example of d-separation concept.
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the number of paths they involved in and choose the top
one as the d-separate gene that can block a maximum
number of paths. Then, we delete all the candidate d-sep-
arate genes which are also involved in the same paths with
d-separate gene and continue to choose the d-separate
gene from the addition candidate d-separation gene sets
again until there is no more candidate d-separation genes
that can be selected. The detailed procedure is shown in
Figure 5.

Take a simple example to explain the d-separation set
finding procedure. Assume there are 7 genes in a gene reg-
ulatory network that is shown in Figure 6. To check the
dependency between genes X and Y, CI test measures the
probability of dependency between genes X and Y given
by their d-separation set to determine whether there is a
directed link between X and Y or not. First, three paths
from X and Y are found. They are all open paths and are
put into the open-path-set. Then, count the genes in the
open-path-set that can block a maximum number of
paths. Gene T which blocks two paths (X-T-V-Y and X-T-
W-Y) becomes a candidate gene for the d-separation set.
After putting T into d-separation set, two paths (X-T-V-Y
and X-TW-Y) are removed. There is still one path in the
open-path-set, so repeatedly find a gene that can block a
maximum number of paths. At this time, genes Z and U
both block one path (X-Z-U-Y). Gene U becomes another
candidate gene for the dseparation set by a random selec-
tion. After path X-Z-U-Y is removed, there are no open
paths in the open-path-set and the procedure returns the
final d-separation set as {T, U}. Given genes T and U, if X
and Y are conditional independent as a result of CI test,
the directed links between X and Y are removed.

After finding the minimum d-separate genes between start
and end genes, we extend the statistical formula [14] to
verify the conditional independency among genes. If we
wish to check genes A and B are d-separated by gene C, the
following formula is extended to test the conditional
independency among genes.

gabc ¢
G2 = 228(11;5 In 123°3
123 ac .bc
ab $13°23
Where
S means the number of times if the expression level of

X = a and the expression level of Y = b and the expression
level of Z = c

S15 means the number of times if the expression level of

X = a and the expression level of Z = c.
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Begin

Do

separation set;
End while
If there are open paths do

End if
until there are no open path
end procedure.

Procedure find_d-separation_set (Graph G, gene1, gene2)
Graph G(V.E) where V represents the gene set and E represents the gene regulatory interactions.
We use the adjacent matrices to store the interaction of graph G

Use Depth-first searching (DFS) method to discover all paths between gene1 and gene2;
When traversing to the collider structures , then pruning its sub-networks
And store the open paths in open_path_set and the closed paths in closed_path_set;

While there are open paths which have only one node do
1) Store the nodes of each such path in the d-separation set;
2) Remove all the blocked paths by these nodes from the open_path_set and closed_path_set;
3) From the closed_path_set, find paths opened by the nodes in d-separation set and move
them to the open_path_set, shorten such paths by removing the nodes that are also in the d-

1) Find a node can block maximum number of the rest paths and put it in the d-separation set;
2) Remove all blocked paths by the node from the open_path_set and the closed_path_set;

3) From the closed_path_set, find paths opened by this hode and move them to the
open_path_set, shorten such paths by removing the nodes that are also in the d-separation set;

Figure 5
The algorithm of finding d-separation_set Procedure.

S5 means the number of times if the expression level of Z

=C

The number of degrees of freedom used in the test is

df =(n =1)(r, _I)H Ti

VAN

where r; is the number of expression levels of each Xi's
space.

For the traditional constraint-based method, it is no way
to avoid an exponential number on CI tests for every pair

Open path | Block number | D-sep Open path | Block number D-sep
X-Z-U-Y T2 T X-Z-U-Y Z:A T
X-T-V-Y ZA u:1 u
X-T-W-Y u:1

Vi1
W:1
Figure 6

Example of find_ d-separation_set procedure. D-sep
denotes the d-separate gene.

of nodes to make sure that the edges should be kept or
removed [14]. After we find the minimum d-separating
sets, we determine whether an indirect edge between two
nodes should be needed and there are repeated tests of
conditional independencies given minimum d-separating
sets. With the small size of the minimum d-separating
sets, we can do the permutation comparisons by applying
Bonferroni correction for multiple testing to renew the
significant threshold for each of the n individual tests to
maintain an experiment-wise error rate. Comparing with
the whole nodes in the network, it is a small set of nodes
should be tested in conditional independent testing with
Bonferroni correction. Take an example in Figure 6, we
want to verify the direct link between node X and Y should
be deleted or not in the sub-network. We use the proce-
dure in Figure 5 to extract the minimum dseparate genes,
node T and U, to help us determine whether an edge
between two nodes should be removed. According to the
small size of the d-separating genes, we do the tests in
each of the two predicted conditional independence rela-
tions as CI(X, Y|T) and CI(X, Y|U) and reject the null
hypothesis that both tests are independent with the p-
value less than 0.05/2 = 0.025. For different d-separated
genes, we can get different significant p-value and so on.

The general purpose of the gene regulatory network anal-
ysis is to extract pronounced gene regulatory features (ex.
activation and inhibition) by examining gene expression
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patterns from microarray data. After the network structure
has been constructed, the following heuristic rules are
used to determine the activation and inhibition relations
of the links between two genes, X and Y.

(i) X activates Y: If the expression level of X is over-
expressed (+), then Y is also over-expressed; If the expres-
sion level of X is under-expressed (-), then Y is also under-
expressed.

(ii) X inhibits Y: If the expression level of X is over-
expressed (+), then Y is also under-expressed; If the
expression level of X is under-expressed (-), then Y is also
over-expressed.

However, genes may have inconsistent values across sim-
ilar samples because the change of environment and some
experimental error. The relations of two genes are not
always the same in different experiments under the same
conditions. In order to determine the relations between
two genes with the large number of microarray data sup-
ported, we choose the higher number of gene relations in
the experiments between pair of genes as the relations
based on the heuristic rules. For example, Table 2 shows
the binary expression level of gene A and B from 8 micro-
array experiments. The number of the activation event is 3
and the number of inhibition relation is 5. Because the
number of the inhibition relation is higher than the ratio
of activation relation, the system identifies the link
between gene A and B as inhibition. However, it may hard
to determine the relations if the number of action and
inhibition is equal. We assume a pair of gene expects to
have the same relations under the same condition in
microarray data. In our microarray data, there are 66% of
the genes with above 80% consistent expression and
99.4% of the genes with above 50% consistent expression
across similar samples and more genes with consistent
gene expressions will help us to identify the relations
between pair of genes correctly.

Network measure

Some researches [21,22] discover that the gene regulatory
networks contain some properties that the links con-
nected with genes non-randomly and we should verify the
topology of gene regulatory networks which are recon-
structed by our methods. We used the network statistical
measure [21] and network motifs [22] to identify the gene
network we constructed and extracted the potential genes
to compare the sub-networks between the cancer and nor-
mal samples. Networks are classified by their degree dis-
tributions. The degree of a node is the number of links it
connects to other nodes. In the undirected graphs, the
average degree <k> is formally defined as following:

<k>:2%\]
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Where 1 = the total number of links in the network
N = the total number of vertices in the network

The degree distribution, P(k), is the primary properties of
the global architecture of the gene networks. It implies the
probability that a selected vertex is connected exactly to k
directed neighbours in the network.

N(k
(="
Where N(k) = the number of nodes which have k links

N = the total number of vertices in the network

In directed graphs, the in-degree, k;,, is the number of
incoming edges of the vertex and the out-degree, k,,,, is
the number of outgoing edges of the vertex.

The clustering coefficient measures the tendency of nodes
that can form a cluster. C(k) is the average clustering coef-
ficient of all vertices with k links.

CUk) = V(1)
Where n = number of triangles that go through the vertex
with k links.

K = the number of nearest neighbours of the vertex

The average clustering coefficient measures the overall
tendency of nodes that can form clusters. The formula is
defined as:

N
1 2n;
<C>=— E !
N & Ki(Ki-1)
i

Where the clustering coefficients of all N nodes are aver-
aged over index i.

Network motifs

Gene regulatory networks may be modelled as all possible
interactions among genes. To understand the complex
networks, we should look into the networks via simple
sub-networks. "Network motifs" describes the frequency
patterns of interactions that how genes connect with their
neighbours. We discuss three types of network motifs:
feed forward loop (FFL), dense overlapping regulons
(DOR), and feedback loop (FBL) to compare the cancer
and normal gene networks [22]. Feed forward loop (FFL)
in Figure 7(a) contains 2 transcription factors and their
dependent genes. The first transcription factor regulates
the second transcription factor named co-transcription
factor, and both transcription factors jointly regulate a
dependent gene. The casual relations between each gene
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can be 'activate' (+) or 'inhibit' (-) in the FFL structure.
Therefore, there are eight different structures that can be
divided into two types of FFLs: 'coherent FFL' and 'inco-
herent FFL'. The 'coherent' means the sign of the direct
regulation path from the transcription factor to the
dependent gene is the same as the overall sign of the indi-
rect regulation path from the transcription factor through
the co-transcription factor to the dependent gene in Figure
7(b). For example, the transcription factor and co-tran-
scription factor both activate the dependent genes and the
transcription factor also activates co-transcription factor,
we call this kind of FFL as coherent. On the other hand, if
the transcription factor inhibited the dependent gene, we
call it as incoherent FFL as shown in Figure 7(c). The dense
overlapping regulons (DOR) represents the overlapping
interactions between the groups of transcription factors
and their dependent genes in Figure 7(d). We use the clus-
tering method to discover the DOR structure. The depend-
ent genes in the DOR structure which are regulated by a
combination of a set of transcription factors that share a
common biological function. The Gene Ontology pro-
duces thesauri that contain many biological terms organ-
ized according to molecular functions, biological
processes and cellular components respectively. We use
the GO to identify the function of a gene that has a tran-
scription factor regulates in the network. The Feedback
loop (FBL) structure contains 3 transcription factors and
have loops which are connected the originating and end-
ing point at the same gene. There are two different kinds
of FBLs: one is the originating and ending at the same
transcription factor as in Figure 7(e) and the other is end-
ing at the co-transcription factor as in Figure 7(f).

Results
We applied our methods to analyze two microarray data-
sets: "Gene expression profiling identifies clinically rele-

bEG B¢

() FBL

(a) FFL  (b) Coherent FFL (c) Incoherent FFL (f FBL

Figure 7
Network motifs structure.
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vant subtypes of prostate cancer" [2]. It consists of 62
primary tumors and 41 normal prostate tissues. The
detailed pathological and clinical data are provided in
[23]. We extracted the ratio value Log, [R/G Normalized
Ratio (Medium)] of each gene by using the normalization
function provided by Stanford Microarray Database
(SMD).

Microarray data pre-processing

We evaluated the KNN method for imputing missing val-
ues in the microarray data. First, we deleted 1,750 original
values at random one by one to create test data sets and
estimated the missing value to compare with the original
value. The accuracy of estimation values are calculated by
Root Mean Squared error (RMSE) which sum of the differ-
ent values between imputed and original values and
divided by the number of missing values we computed.
The lower RMSE denotes the higher accuracy for estimat-
ing the missing values. In Figure 8, it shows that the esti-
mated values with RMSE rates are all under 0.185. While
setting the 11-15 nearest neighbors in KNN method, we
could get the lower error rate [12]. The number of nearest
neighbors in KNN method is higher than 16 or lower than
3 can have greater error rate to estimate the missing val-
ues. We extract 15 neighbor genes caused the lower RMSE
rate with 20% missing values in the microarray dataset. In
microarray data pre-processing, there is detailed statistical
information in Table 5. In first column (A), it indicates the
number of genes from microarray data and column (B)
indicates the number of filter data when we remove the
genes that have more than 20% missing values in the
microarray dataset. The third column (C) indicates the
number of data imputed with KNN (K = 15). From the
observation, we filters almost 75% genes from each
microarray dataset that means microarray technology can
measure thousands of genes simultaneously, but it also
contains much noise that causes a lot of missing values.
The microarray technology needs to be refined to generate
high-quality data so that biologists can identify the gene
regulatory relation more precisely. For dealing with miss-
ing values in microarry dataset, the overall imputed ratio
by KNN algorithmis about 34% see Additional file 1. The
imputed ratios of the microarray datasets are all less than
50%, it seems to be reasonable to assume the imputed
dataset is good enough to analyze the gene regulatory net-
work. There are 66% of the genes with above 80% consist-
ent expression and 99.4% of the genes with above 50%
consistent expression across similar samples and more
genes with consistent gene expressions will help us to
identify the relations between pair of genes correctly.

Biological knowledge processing

Use the genes after microarray data pre-processing to map
2665 genes that belong to the "transcription regulator
activity" category specified in GO. Each gene that can find
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Table 5: the number of genes in different steps in processing

Step Cancer Normal
(A) 44014 44014
(B) 11130 11524
©) 7588 7673

(A): the number of genes in microarray experimental data

(B): the number of filter data when removing the genes that have
more than 20% missing values in the microarray dataset

(C): the number of genes after imputing missing values with KNN (K
= 15) method

a match in the category of transcription regulator activity
in GO is regarded as a transcription regulator gene. Take
an example gene SRF in normal dataset to be treated as a
transcription regulator gene and 494 genes are first found
to be dependent with SRF using statistical test method.
The transcription factor analysis then helps to filter out
those links possibly without biological significance and
finally resulted in 13 dependency genes that can be con-
sidered to "effectively" interact with SRF. Since the biolog-
ical toolkits and databases are not complete enough, they
would tend to miss transcription factors that are not yet
found and it may cause the incompleteness of the inferred
interaction networks and thus reduces the recall of the
inference method that misses some inferred gene rela-
tions. But the gene interaction networks found are at least
under the sanction of current biological knowledge of
transcription factors to the reasonable extent.

Revising gene regulatory networks based on Bayesian
network

We use d-separation concept and conditional independ-
ency test after Bonferroni correction to further verify the

0.185 T T T T T T T T T T T
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Figure 8
Effect of number of nearest neighbors used in KNN
method for imputing missing values.
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direct or indirect links between transcription regulator
gene and its dependent genes. Table 6 shows the number
of links between initial gene regulatory network and the
revised gene regulatory network using d-separation con-
cept and conditional independency test. The filter-out
ratios of the sub-networks are almost larger than 40% and
it means that modelling gene regulatory network only
depending on the statistics and biological knowledge
between any two genes doesn't fit the real networks
inferred from microarray data. It may contain a lot of extra
links among genes in the networks. Take gene SRF in nor-
mal dataset as a simple example to show the CI test
between SRF and its transcription factor dependent genes
in Table 7. Row "Dg of SRF" shows 7 transcription factor
dependent genes of SRF. Row "d-sep genes" denotes the
dseparation set between SRF and each dependent gene by
using d-separation set finding procedure. "p-value" shows
the significant value computed in the conditional inde-
pendency between SRF and each dependent gene using CI
test. "NF" represents none genes can be found in d-sepa-
ration set and "NA" represents none available because d-
sep genes are empty. The p-values of conditional inde-
pendency between SRF and Gene C140RF122, STCH, and
MARCKS are larger than 0.05 and the direct connected
links between SRF to these genes should be removed. It
shows gene SRF does not directly affect these genes and
has an indirect relationship through gene HSF2 in the
normal microarray dataset.

Network measure

Complex diseases depend on the altered interactions
among multiple genes and different expression change in
the critical genes comparing with normal cell. We use two
points of view to see the different between normal and
cancer network: one is global and the other is detailed.
Global point of view provides the network topology
approach we mentioned in and overall function and path-
way enrichment using DAVID[24] and GSEA[25] toolkits.
The detailed can give new and interesting genes involved
in the specific network motifs which may relate to the can-
cer and are often quite subjective.

According to the statistical network measure that we men-
tioned in section 3.4, we use the linear regression to calcu-
late the straight line in a double logarithmic plot that
shows the degree distribution against the number of links
in Figure 9. While x-axis represents the log of the k links
and y-axis represents the log of degree distribution. The
linear fitting function of cancer network is y = -
5.5856x+1.291 with the correlation RZ = 0.9305, other-
wise, the normal network is y = -2.2111x-0.2769 with the
correlation R2=0.8931. The topology of the degree distri-
bution forms a straight line and it indicates a scale-free
connectivity distribution. Scale-free networks have a few
nodes with a very large number of links and many nodes
with only a few links [21]. Some transcription factors are
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Table 6: Number of links between two networks
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Links Cancer Normal
Initial gene regulatory network (Before Cl test) 15659 3765
Revised gene regulatory network (After Cl test without Bonferroni correction) 8393 3497
Revised gene regulatory network (After Cl test with Bonferroni correction) 8298 3497
Filter-out ratio 47% 7%

connected with each other and may play an important
role in regulatory events. In our experiment data, R, corre-
lations are all larger than 0.75, it means the relationship
fits very well to a linear function. It can be concluded that
the topology of gene regulatory networks modeled by our
method are actually scale-free networks that are compati-
ble with previous studies regarding the topology property
of a gene network We also calculate the probability P(k)
of finding a vertex with k links using follows the formula:

P(k)o< k™*
where s = scaling exponent of the network.

In the normal gene regulatory network, the in-degree of
the gene is 1.465216 that means each dependent gene is
regulated by less than 2 transcription factors. In the cancer
gene regulatory network, the in-degree is 2.84916 means
that each gene is regulated by nearly 3 transcription fac-
tors. Cancer networks seem to have more complex inter-
actions than normal network. In Figure 10, we use the
linear regression to calculate the straight line in a double
logarithmic plot for the clustering coefficient against the
number of links while x-axis represents the log of the k
links and y-axis represents the log of clustering coefficient.
The linear fitting function of the regulated network of a
normal gene is y = -1.0722x-1.3954 with the correlation
R? = 0.9103. The linear fitting function of the regulated
network of a cancer gene is y = -1.1638x-0.7922 with the
correlation R? = 0.8291. The clustering coefficient C(k)
depending on the link k can be approximated with a
power law formula as follows:

Ck) = k™"

where w = scaling exponent of the network

The value of scaling exponent w is close to -1 that indicates
that the hierarchical modularity and both cancer and nor-
mal samples tend to have a hierarchical modular struc-
ture. It implies that the sparsely connected nodes in the
gene regulatory network are part of highly clustered
regions with communication [26]. Table 8 summarizes
the comparison on the overall statistical measures of net-
works for both normal and cancer samples. While the
mutation is happened in cancer networks, the overall sta-
bility of a network in the biological system should against
the changes. The highly connected genes in the network
may cause major global effects to their dependent genes
and the evolution of biological system should lead to
increased stability in order to maintain its robustness
[27]. High-degree nodes increase in cancer network may
use shorter paths to reach other genes and cancer cell may
take different routes to regulate cell growth and cell divi-
sion toward to the metastasis [28]. We use all pairs short-
est path Dijkstra's algorithm|[29] to detect the length of
any one of gene can link to others see Additional file 2 and
it shows the shortest paths are most involved in cancer
network and the route in cancer network may be shorter.
The cancer has ability to metastasize may inherit the
changing of one or groups of transcription regulator
genes' gene expressions and trigger different genetically
interactions in tumor cell [28,30].

The mechanism of gene regulations can control the pro-
tein interactions of organisms are considered to play fun-
damental roles in the operation of all processes. We use
the synonym names of the dependent gene's product to
map the proteins in KEGG pathway[31] and successful
reconstruct the paths from EGFR to BCL2 in KEGG path-

Table 7: The p-value and d-separation set of SRF gene and its Transcription factor dependent gene

Dependent gene of SRF CHST5 CI140RF122 STCH TMED3 ENPP2 MARCKS SCD5
d-sep genes NF HSF2 HSF2 NF NF HSF2 NF
p-value NA 0.09 0.11 NA NA 0.09 NA
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way database in Figure 11 to validate our results. Figure
11(a) shows the one path in prostate cancer pathways Fig-
ure 11(b) shows the paths reconstruct from our method
and also provides the upstream of transcription factor
genes and their corresponded genes. The dash lines
denote the corresponded genes between two paths. We
can map the genes in the KEGG path in Figure 11(a)
except IKB that did not exist in the microarray data. If pair
of the transcription regulator genes has interactions with
each other, we can infer their dependent genes also have
interactions. For example, transcription regulator gene
E2F3 interacts with its dependent gene AKT3 and tran-
scription regulator gene ARNT interacts with its depend-
ent gene CHUK. Because E2F3 interact with ARNT, we can
infer the interactions between two dependent genes AKT3
and CHUK and map to their gene products, protein PKB
and IKK in prostate cancer pathway.
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Clustering coefficients of cancer and normal net-
works on log-log plot.
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Table 8: The parameter of degree distribution and clustering
coefficient between normal and cancer

Parameter Normal Cancer
Degree distribution
scaling exponent s 1.915916 2.120915
<k> 2.71823 3.026623
ki, 1.465216 2.84916
Clustering coefficients
scaling exponent w -0.93048 -1.396294
<C> 0 0.00576

Discussion

Comparison of gene regulatory networks between cancer
and normal data

In the cancer and normal network comparison, the tran-
scription regulator genes and their dependent target genes
passing through significant p-value using statistical
hypothesis testing and promoter analysis. The transcrip-
tion factors as biomarkers (PBX1, EP300, STATG6, SREBF1,
NFKB1, STAT3, EGR1, E2F3, NR2F2) see Additional file 3
are only involved in the cancer networks and those genes
are annotated in cancer-related transcription regulatory
factors (p-value 1.18E-9). Otherwise, E2F4 only exists in
normal network. The regulation of the transcription regu-
lator gene E2F4 plays a key role in the control of normal
development and proliferation [32]. 561 extras depend-
ent genes are in normal network; 3495 extras dependent
genes are in cancer network and 2,283 genes interact with
biomarkers. SREBF1 gene has been shown as up-regulated
in the prostate cancer and the early growth response 1
(EGR-1) is a transcription factor regulates the expression
of its dependent genes involved in cell growth or survival.
We take 2,283 dependent genes affected by biomarkers
(PBX1, EP300, STAT6, SREBF1, NFKB1, STAT3, EGRI,
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Figure 11
Reconstruct part of KEGG pathway by our method.
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E2F3, NR2F2) and not exist in normal network to do the
functional annotation using DAVID online toolkit and
there are 2,110 genes can be annotated in DAVID toolkit.
We filtered the results at least 3 members in each func-
tional category and P-value < 0.05 with Bonferroni correc-
tion and FDR<0.25 see Additional file 4. The functional
annotation clustering results show that the cancer net-
works are associated with regulation of progression
through cell differentiation, cell death, I-kappaB kinase/
NF-kappaB cascade, vesicle-mediated transport, apoptosis
biological functions and processes. We also consider per-
forming the pathway enrichment from GSEA online tool
which is calculated by hypergeometric distribution
method and there are 2,259 genes can be annotated in
GSEA online tool. We filtered the indeed functional
enrichment canonical pathways from the gene set in our
networks with at least 3 members in each functional cate-
gory and P-value < 0.05. The results denote cell adhesion
molecules, androgen and estrogen metabolism, smooth
muscle contraction and some GO annotated pathways see
Additional file 5. The genes in the cancer network are
involved in the significant pathways such as Toll like
receptor, PPAR, ERBB, P53 and WNT signaling pathway
see Additional file 6. In summary, we have identified
androgen related gene TMPRSS2 that is regulated by
SREBF1, PBX1 and ETS family members that are associ-
ated with the prostate cancer and gene TMPRSS2 has been
found in 80% of tumor experiments [33].

Besides the difference between the cancer and normal net-
works, it also consists of interactions of transcription reg-
ulator genes and their dependent genes with different
expressions between the cancer and normal networks. We
take the interactions with the activate expressions in the
cancer and the inhibitive expressions in the normal data-
sets and vice versa. There are 48 directed links that contain
13 transcription regulator genes and each gene in the
inside circle is a transcription regulator gene and outside
the circle is a transcription factor dependent gene in Figure
12. In addition, there are 36 links that contain 10 tran-
scription regulator genes which contain inhibitive expres-
sions in the cancer and activate expressions in the normal
datasets that are shown in Figure 13. See Additional file 7
shows the p-value of the independent test between the
transcription regulatory genes and their co-expressed
genes with d-separated genes in Figure 12 and 13. Addi-
tional file 8 denotes the information of conditional inde-
pendence testing results between without and with
Bonferroni correction in cancer network.

If the degree of a vertex is high in the gene networks, it
may represent a primary factor in the cancer cell. We com-
bine the degree and different expressions between normal
and cancer network in order to identify the potential sig-
nificant genes. We chose transcription factors YY1, SP1,

http://www.biomedcentral.com/1755-8794/2/70

and MYC in our experiment as an example. Those genes in
the cancer network can be mapped to the GO classifica-
tion that is related to the androgen functions and proc-
esses in the development of the prostate cancer and in
promoting the cell death in a cell cycle. In the Figure 14(a)
shows SP1 has coherent FFLs in cancer gene network. Both
SP1 and RAN genes are in the category of positive regula-
tion of transcription and ATF2 gene has a transcription co-
activator function in GO respectively. In Figure 14(b)
shows that MYC gene in the cancer network decreases the
expressions of VEGF and POU2F1 genes and has the neg-
ative regulation function. MYC belongs to the cell cycle
and apoptosis genes and becomes a key role in developing
the prostate cancer. In Figure 14(c), NFYB and PRL genes
are identified as having a DOR structure. They both regu-
late CDC40, FNTB, and MNAB genes. The transcription
factor PRL regulates RB1 which has androgen receptor
binding function and is involved in the androgen receptor
signaling pathway. RB1 gene also has the negative regula-
tion function on cell growth and can promote the cell
death. Inhibition of those genes may suggest a possible
reason to explain the uncontrolled growth in cancer. In
Figure 14(d), TBP is the initial transcription factor and
interacts with RUNX1 in the normal gene network.
RUNX1. YY1 gene has the feedback loop with RUNX1
gene which belongs to the category of the positive regula-
tion of transcription. We also discover the positive inter-
action between RUNX1 and YY1 genes. Figure 14(e)
shows the feedback loop of YY1 gene in the cancer gene
network. Comparing with the normal gene network, YY1
gene shows a different expression level and interacts with
ATF2 gene which is mediated by the zinc ion binding of
the YY1 molecular function. If zinc function has an early
damage, it may lead to a prostate cancer. YY1 gene should
play a critical role for the prostate cancer that is reported
in [34]. The transcription regulatory genes in FBL, DOR
and FFL network motifs in cancer and normal networks
see Additional file 9, 10 &11.

For more general evaluation, we used Atlas of Genetics
and Cytogenetics in Oncology and Haematology database
[35] which collects genes in cancers and divides them into
two groups: the annotated match genes and the genes pos-
sibly implicated in cancer. There are 37.5% "Match" genes
and 62.5% "Possible" genes in our predicted results see
Additional file 12 and it also indicate that our method is
useful to detect to the possible genes implicated in cancer
and the gene regulatory networks constructed by our
methods seem to be modelled effectively. Although the
verification of the modelling process through literature
reports is an indirect way to evaluate gene regulatory net-
works, it at least shows that the gene regulatory networks
modelled by our methods are compatible with the exist-
ing literature findings. More detail verifications based on
the literature reports see Additional file 13.
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Transcription regulator genes and their dependent genes which contain the activation interaction in cancer
and the inhibition interaction in normal. Inside circle nodes denote transcription regulator genes and outside circle

nodes denote dependent genes.

Comparison of gene regulatory networks with different
clinical data

Besides comparing the normal and cancer networks, we
also identify the significant networks of tumor differenti-
ation at different grades and stages. For the clinical data
provided from [2], we divided 62 primary prostate tumor
Gleason grade into two classes of low grade and high
grade (=3+4 vs. Z4+3). It consists of 39 data in low grade
class and 23 data in the other class. We detect genes
SREBF1, STAT6 and PBX1 that only exist in high grade
class and SP1, Elk1, JUN and EGR2 that only exist in low
grade class. The expression of ETS transcription factor Elk1
decreases from low grade to high grade samples. We pre-
dict the differential expression of several transcription reg-

ulator genes (including HSF2, ARNT, MEF2A, ATF2 and
YY1) that are strongly related to the cancer grade.

In the other experiments, we divided the pathological
stage into two parts, the stage of 28 data belong to early
stage (=T2) and the other 34 data belong to late stage
(=T3). GATAS3 regulation happened in the early stage and
the outcome of the prostate cancer at the late stage of
tumor development that are related to genes MZF1,
SREBF1, PRL, and DDIT3. The SP1, MAX, RUNX1 and
STAT3 sub-networks are involved in both early and late
stages of the tumor but are expressed with different gene
expressions. Enhancer of Zeste Homolg 2 (EZH2) expres-
sion is regulated by RUNX1, STAT3 and E2F3 and high
expression of EZH2 gene is associated with the tumor
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Figure 13

Transcription regulator genes and their dependent genes which contain the inhibition interaction in cancer
and the activation interaction in normal. Inside circle nodes denote transcription regulator genes and outside circle

nodes denote dependent genes.

death and also correlated to the pathological stage [36].
For example, gene SLC22A3 regulated by our predicted
significant markers (EP300, STAT6, SRF, PBX1) is strong
related in high grade and late stage. The discovery is also
reported in most enriched literatures associated with the
tumor progression.

Conclusions

We provide a computational framework to reconstruct the
genetic regulatory network from the microarray data using
biological knowledge and constraint-based inferences.
The method validated in is helpful in verifying possible
gene interaction relations in gene networks and filtering
out incorrect relations inferred by imperfect methods. We
predicted not only individual gene related to cancer but
also discovered significant gene regulation networks and
the predicted results are also validated in published jour-
nals or experiment results. However, to elaborate the work
to its best extent, there are still problems to be solved.

Since the biological toolkits and databases are not com-
plete enough, they would tend to miss transcription fac-
tors that are not yet found. For example, the PSSM from
TFSEARCH database is incomplete to detect necessary
transcription factors and binding sites. This can reduce the
recall of the inference method to miss the inferring genes
in the interaction networks. In future work, we could use
different microarray data about the cancers to test our
methods and integrate further the protein-protein interac-
tion information to construct a more complete gene and
protein networks. Then the biologists armed with infor-
mation of the discover up-stream and down-stream bio-
logical interaction mechanisms of genes and proteins
could possibly understand more clearly the reaction path-
ways of biological organisms response to various diseases.
We want to explore the network variation underlying dif-
ferent conditions and develop a networkbased method to
classify the different clinical heterogeneity.

Page 16 of 19

(page number not for citation purposes)



BMC Medical Genomics 2009, 2:70

4638

+
(d) FBL (e) FBL
in nermal

(a)SP1 Coherent FFL (b) MYC Incoherent FFL
in cancer

() DOR
In cancer

Figure 14
The example of network motifs in normal and cancer
networks.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

HY carried out the design of the workflow, algorithm and
molecular studies and drafted the manuscript. SW partici-
pated in algorithm design, performed program and statis-
tical analysis. YC focused on design the workflow and
algorithm, particular the network analysis and network
motif discovery. SF carried out molecular studies and sta-
tistical analysis. VW participated in its overall design and
coordination of the research and helped to draft the man-
uscript.

Additional material

Additional file 1

KNN imputed ratio. Table shows the maximal values can be imputed by
KNN algorithm and the number of values is exactly imputed in each
microarry data. The imputed ratio is the proportion of the real imputed
genes to the maximal genes. The less the imputed ratio is, the more
imputed data similar to real experiment data. The result shows that the
imputed ratios of the microarray data are all less than 50%, it seems to be
reasonable to assume the imputed dataset is good enough to analyze the
gene regulatory network.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-70-S1.PDF]

Additional file 2

All pair shortest path in cancer and normal network. We use all pairs
shortest path Dijkstra's algorithm to detect the length of any one of gene
link to other genes in cancer and normal network.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-70-S2.PDF]

http://www.biomedcentral.com/1755-8794/2/70

Additional file 3

Transcription regulator genes in cancer and normal network. It shows
the transcription regulator genes in cancer and normal network.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-70-S3.PDF]

Additional file 4

functional annotations and their p-values of dependent genes affected
by transcription regulatory genes in cancer network. We filtered the
functional annotations results at least 3 members in each functional cat-
egory and P-value < 0.05 with Bonferroni correction and FDR<0.25 using
DAVID online toolkit.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1755-
8794-2-70-S4.PDF]

Additional file 5

the enrichment canonical pathways and their p-values in cancer net-
work. We filtered the indeed functional enrichment canonical pathways
of the overlap of the gene set in our networks with at least 3 members in
each functional category and P value < 0.05 using GSEA online toolkit.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-70-S5.PDF]

Additional file 6

The genes are belong to the enrichment canonical pathways in cancer
network. The genes are belong to the functional enrichment pathways in
cancer network.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1755-
8794-2-70-S6.PDF]

Additional file 7

the p-value of pair of genes involved in the figure 12 and 13. It shows
the p-value of pair of genes involved in the figure 12 and 13. The column
"Co-expressed genes: denotes dependent genes (Dgs) of transcription reg-
ulator genes (Tgs). The column "TF" means transcription regulator genes
(Tgs). The column "d-separated genes" denotes the minimum d-separated
genes between Co-expressed genes and TF. The column "P-value" means
the statistical p-value calculated by conditional independency testing in
cancer and normal network.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-70-S7.PDF]

Additional file 8

the conditional impendence testing results between without/with Bon-
ferroni correction. It shows the conditional impendence testing results of
two genes between without/with Bonferroni correction. The column "Co-
expressed genes: denotes dependent genes (Dgs) of transcription regulator
genes (Tgs). The column "TF" means transcription regulator genes (Tgs).
The column "d-separated genes" denotes the minimum d-separated genes
between Co-expressed genes and TF. The column "P-value" means the sta-
tistical p-value calculated by conditional independency testing. The col-
umn "with Bonferroni correction" and "without Bonferroni correction"
show the multiple testing to verify the result dependent on d-separated
genes and only with a significant value 0.05 to verify the results.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-70-S8.PDF]

Page 17 of 19

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1755-8794-2-70-S1.PDF
http://www.biomedcentral.com/content/supplementary/1755-8794-2-70-S2.PDF
http://www.biomedcentral.com/content/supplementary/1755-8794-2-70-S3.PDF
http://www.biomedcentral.com/content/supplementary/1755-8794-2-70-S4.PDF
http://www.biomedcentral.com/content/supplementary/1755-8794-2-70-S5.PDF
http://www.biomedcentral.com/content/supplementary/1755-8794-2-70-S6.PDF
http://www.biomedcentral.com/content/supplementary/1755-8794-2-70-S7.PDF
http://www.biomedcentral.com/content/supplementary/1755-8794-2-70-S8.PDF

BMC Medical Genomics 2009, 2:70

Additional file 9

Feedback loop network motifs in cancer and normal network. It shows
the genes and their relations involved in the feedback loop network motifs
in cancer and normal network. Tg denotes transcription regulatory gene
and the sign (+, -) mean the activation or inhibition of pair of genes.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-70-S9.PDF]

Additional file 10

Transcription regulator genes in DOR network motifs in cancer and
normal networks. It shows only the transcription regulator genes involved
in the dense overlapping regulons network motifs in cancer and normal
network.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-70-S10.PDF]

Additional file 11

Transcription regulator genes in FFL network motifs in cancer and
normal networks. It shows only the transcription regulator genes in the
feed forward loop network motifs in cancer and normal network. Tg
denotes the first transcription regulatory gene and co-Tg means the second
transcription regulatory gene which affects the dependent genes with the
first Tg.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-70-S11.PDF]

Additional file 12

Evaluated result of Transcription regulator genes with respect to pros-
tate cancer. There are three labels which we used to evaluate each tran-
scription regulator gene (Tg) implicated in cancer network: Match,
Possible, and Not-related. "Match" means if Tg is published in the litera-
ture and reported an important role to affect the cancer. "Possible" means
one of "Other genes possibly implicated in cancer" listed in Atlas of Genet-
ics and Cytogenetics in Oncology and Haematology. If no information
about the relationship of Tg and a cancer is labeled as "Not-related".
Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-70-S12.PDF]

Additional file 13

Verifications based on literature reports of each Transcription regula-
tor genes in cancer network. It shows the Verifications based on litera-
ture reports of each transcription regulator genes in cancer network and
label the strength of those genes belong to the prostate cancer.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1755-
8794-2-70-S13.PDF]

Acknowledgements

This research is partially supported by the Bioresources Collection and
Research Center of LinkoChung Gang Hospital and National Tsing Hua
Universityof Taiwan R. O. C. under the grant number CGTH96-T |3
(CGMH-NTHU Joint Research No.I3).

http://www.biomedcentral.com/1755-8794/2/70

References

20.

21.

Parkin DM, Bray Fl, Devesa SS: Cancer burden in the year 2000.
The global picture. European Journal of Cancer 2001, 37(Supple-
ment 8):4-66.

Lapointe J, Li C, Higgins JP, Rijn M van de, Bair E, Montgomery K, Fer-
rari M, Egevad L, Rayford W, Bergerheim U, Ekman P, DeMarzo AM,
Tibshirani R, Botstein D, Brown PO, Brooks D, Pollack JR: Gene
expression profiling identifies clinically relevant subtypes of
prostate cancer. Proceedings of the National Academy of Sciences of
the United States of America 2004:81 1-816.

Akutsu T, Miyano S, Kuhara S: Algorithms for identifying
Boolean networks and related biological networks based on
matrix multiplication and fingerprint function. Proceedings of
the fourth annual international conference on Computational molecular
biology, New York, NY, USA 2000:8-14.

de Hoon MJL, Imoto S, Miyano S: Inferring Gene Regulatory Net-
works from Time-Ordered Gene Expression Data Using Dif-
ferential Equations. In Proceedings of the 5th International
Conference on Discovery Science London, UK: Springer-Verlag;
2002:267-274.

Friedman N, Linial M, Nachman |, Pe'er D: Using Bayesian net-
works to analyze expression data. Journal of Computational Biology
2000, 7(3):601-620.

Mayo M: Learning Petri net models of non-linear gene inter-
actions. Biosystems 2005, 82:74-82.

Cheng J, Bell D, Liu W: Learning bayesian networks from data:
An efficient approach based on information theory. In Techni-
cal Report University of Alberta; 1998.

Segal E, Barash Y, Simon |, Friechnan N, Koller D: From promoter
sequence to expression: A probabilistic framework. Proceed-
ings of Sixth Annual International Conference on Computational Molecular
Biology 2002:263-272.

Haverty PM: Computational inference of transcriptional regu-
latory networks from expression profiling and transcription
factor binding site identification. Nucleic Acids Research 2004,
32:179-188.

Wei H, Kaznessis Y: Inferring gene regulatory relationships by
combining target-target pattern recognition and regulator-
specific motif examination. Biotechnology and Bioengineering 2005,
1:53-77.

Tamada Y, Kim S, Bannai H, Imoto S, Tashiro K, Kuhara S, Miyano S:
Estimating gene networks from gene expression data by
combining Bayesian network model with promoter element
detection. Bioinformatics 2003, 19:227-236.

Troyanskaya O, Cantor M, Sherlock G, Brown P, Hastie T, Tibshirani
R, Botstein D, Altman RB: Missing value estimation methods for
DNA microarrays. Bioinformatics 2001, 17(6):520-525.
Ashburner M, Ball CA, Blake ]JA, Botstein D, Butler H, Cherry |M,
Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-
Tarver L, Kasarskis A, Lewis S, Matese ]JC, Richardson JE, Ringwald M,
Rubin GM, Sherlock G: Gene Ontology: Tool for the unification
of biology. The Gene Ontology Consortium. Nature Genetics
2000, 25(1):25-29.

Neapolitan RE: Learning Bayesian Networks.
2003.

Bairoch A: The ENZYME database in 2000. Nucl Acids Res 2000,
28:304-305.

Curwen V, Eyras E, Andrews TD, Clarke L, Mongin E, Searle SM,
Clamp M: The Ensembl Automatic Gene Annotation System.
Genome Research 2004, 14(5):942-950.

TFSEARCH [http://www.cbrc.jp/research/db/TFSEARCH.html]
Lopez-Serra L, Esteller M: Proteins that bind methylated DNA
and human cancer: reading the wrong words. BrJ Cancer 2008,
98(12):1881-1885.

David JC, Bell DA, Liu W: An Algorithm for Bayesian Belief Net-
work Construction from Data. Proceedings of Al & STAT
1997:83-90.

Acid S, Campos LMD: An Algorithm for Finding Minimum d-
Separating Sets in Belief Networks. Proceedings of the twelfth
Conference of Uncertainty in Artificial Intelligence 1996:3-10.

Barabasi AL, Oltvai ZN: Network biology: Understanding the
cell's functional organization. Nature Reviews Genetics 2004,
5(2):101-13.

Prentice Hall;

Page 18 of 19

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1755-8794-2-70-S9.PDF
http://www.biomedcentral.com/content/supplementary/1755-8794-2-70-S10.PDF
http://www.biomedcentral.com/content/supplementary/1755-8794-2-70-S11.PDF
http://www.biomedcentral.com/content/supplementary/1755-8794-2-70-S12.PDF
http://www.biomedcentral.com/content/supplementary/1755-8794-2-70-S13.PDF
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14711987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14711987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14711987
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11108481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11108481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16024165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16024165
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14704355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14704355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14704355
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11395428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11395428
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10592255
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15123590
http://www.cbrc.jp/research/db/TFSEARCH.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18542062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18542062
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14735121
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14735121

BMC Medical Genomics 2009, 2:70

22. Shen-Orr SS, Milo R, Mangan S, Alon U: Network motifs in the
transcriptional regulation network of Escherichia coli. Nat
Genet 2002, 31(1):64-68.

23. Sherlock G, Hernandez-Boussard T, Kasarskis A, Binkley G, Matese
JC, Dwight SS, Kaloper M, Weng S, Jin H, Ball CA, Eisen MB, Spellman
PT, Brown PO, Botstein D, Cherry JM: The stanford microarray
database. Nucleic Acids Research 2001, 29:152-155.

24. Huang DW, Sherman B T, Lempicki R A: Systematic and integra-
tive analysis of large gene lists using DAVID Bioinformatics
Resources. Nat Protoc 2009, 4(1):44-57.

25. Subramanian A, Tamayo Po, Mootha V K, Mukherjee S, Ebert Bn L,
Gillette M A, Paulovich A, Pomeroy S L, Golub T R, Lander E S,
Mesirov | P: Gene set enrichment analysis: A knowledge-based
approach for interpreting genome-wide expression profiles.
PNAS 2005, 102(43):15545-15550.

26. Potapov AP, Voss N, Sasse N, Wingender E: Topology of Mamma-
lian Transcription Networks. Genome Informatics 2005,
16(2):270-278.

27. Sol'e RV, Ferrer-Cancho R, Montoya |M, Valverde S: Selection,
tinkering, and emergence in complex networks. Complex
2002, 8:20-33.

28. Wagner A, Wright J: Alternative routes and mutational robust-
ness in complex regulatory networks. Biosystems 2007, 88(l-
2):163-172.

29. Dijkstra EW: A note on two problems in connexion with
graphs. Numerische Mathematik 1959, 1:269-271.

30. Benson M, Breitling R: Network Theory to Understand Micro-
array Studies of Complex Diseases. Current Molecular Medicine
2006, 6(6):695-701.

31. Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M: The KEGG
resource for deciphering the genome. Nucleic Acids Res 2004,
1:277-80.

32. Humbert P, Rogers O, Ganiatsas C, Landsberg S, LTrimarchi R, Dan-
dapani |M, Brugnara S, Erdman C, Schrenzel S, M Bronson RT: E2F4
is essential for normal erythrocyte maturation and neonatal
viability. Molecular cell 2000, 6(2):281-291.

33. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun
XW, Varambally S, Cao X, Tchinda ], Kuefer R, Lee C, Montie JE, Shah
RB, Pienta KJ, Rubin MA, Chinnaiyan AM: Recurrent Fusion of
TMPRSS2 and ETS Transcription Factor Genes in Prostate
Cancer. Science 2005, 310(5748):644-648.

34. Gordon S, Akopyan G, Garban H, Bonavida B: Transcription factor
YYI: structure, function, and therapeutic implications in
cancer biology. Oncogene 2005, 25(8):1125-1142.

35. Atlas of Genetics and Cytogenetics in Oncology and Haema-
tology database [http://atlasgeneticsoncology.org/Genes/
Geneliste.html]

36. Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM,
Kalyana-Sundaram S, Wei JT, Rubin MA, Pienta K], Shah RB, Chinnai-
yan AM: Integrative molecular concept modeling of prostate
cancer progression. Nat Genet 2007, 39(1):41-51.

Pre-publication history
The pre-publication history for this paper can be accessed
here:

http://www.biomedcentral.com/1755-8794/2/70/prepub

http://www.biomedcentral.com/1755-8794/2/70

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 19 of 19

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11967538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11967538
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11125075
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19131956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19131956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19131956
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16199517
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16901109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16901109
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16860925
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16860925
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17022739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17022739
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10983976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10983976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10983976
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16254181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16254181
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16254181
http://atlasgeneticsoncology.org/Genes/Geneliste.html
http://atlasgeneticsoncology.org/Genes/Geneliste.html
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17173048
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17173048
http://www.biomedcentral.com/1755-8794/2/70/prepub
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Cope with missing values in Microarray data
	Constructing initial gene networks by transcription factor analysis
	Revising and inferring the gene networks using conditional independency
	Network measure
	Network motifs

	Results
	Microarray data pre-processing
	Biological knowledge processing
	Revising gene regulatory networks based on Bayesian network
	Network measure

	Discussion
	Comparison of gene regulatory networks between cancer and normal data
	Comparison of gene regulatory networks with different clinical data

	Conclusions
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References
	Pre-publication history

