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Abstract
Background: Microarray technology has allowed to molecularly characterize many different cancer sites. This
technology has the potential to individualize therapy and to discover new drug targets. However, due to
technological differences and issues in standardized sample collection no study has evaluated the molecular profile
of epithelial human cancer in a large number of samples and tissues. Additionally, it has not yet been extensively
investigated whether metastases resemble their tissue of origin or tissue of destination.

Methods: We studied the expression profiles of a series of 1566 primary and 178 metastases by unsupervised
hierarchical clustering. The clustering profile was subsequently investigated and correlated with clinico-
pathological data. Statistical enrichment of clinico-pathological annotations of groups of samples was investigated
using Fisher exact test. Gene set enrichment analysis (GSEA) and DAVID functional enrichment analysis were
used to investigate the molecular pathways. Kaplan-Meier survival analysis and log-rank tests were used to
investigate prognostic significance of gene signatures.

Results: Large clusters corresponding to breast, gastrointestinal, ovarian and kidney primary tissues emerged
from the data. Chromophobe renal cell carcinoma clustered together with follicular differentiated thyroid
carcinoma, which supports recent morphological descriptions of thyroid follicular carcinoma-like tumors in the
kidney and suggests that they represent a subtype of chromophobe carcinoma. We also found an expression
signature identifying primary tumors of squamous cell histology in multiple tissues. Next, a subset of ovarian
tumors enriched with endometrioid histology clustered together with endometrium tumors, confirming that they
share their etiopathogenesis, which strongly differs from serous ovarian tumors. In addition, the clustering of
colon and breast tumors correlated with clinico-pathological characteristics. Moreover, a signature was
developed based on our unsupervised clustering of breast tumors and this was predictive for disease-specific
survival in three independent studies. Next, the metastases from ovarian, breast, lung and vulva cluster with their
tissue of origin while metastases from colon showed a bimodal distribution. A significant part clusters with tissue
of origin while the remaining tumors cluster with the tissue of destination.

Conclusion: Our molecular taxonomy of epithelial human cancer indicates surprising correlations over tissues.
This may have a significant impact on the classification of many cancer sites and may guide pathologists, both in
research and daily practice. Moreover, these results based on unsupervised analysis yielded a signature predictive
of clinical outcome in breast cancer. Additionally, we hypothesize that metastases from gastrointestinal origin
either remember their tissue of origin or adapt to the tissue of destination. More specifically, colon metastases in
the liver show strong evidence for such a bimodal tissue specific profile.
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Background
Microarray technology has allowed to molecularly charac-
terize many different types of cancer [1]. One of the first
landmark studies using microarray technology to analyze
primary tumor samples was done by Golub et al. [2]. This
study on human acute leukemia demonstrated that it was
possible to use microarray data to distinguish acute mye-
loid leukemia from acute lymphoblastic leukemia with-
out any previous knowledge. The authors showed for the
first time the potential of microarray technology by illus-
trating its use in discovering new classes and by using
microarray data to assign tumors to known classes. Class
prediction gives the clinician an unbiased method to pre-
dict the outcome of cancer patients in comparison to tra-
ditional methods based on histopathology or empirical
clinical data, which do not always reflect patient outcome.
More recently, for some cancer sites these initial discover-
ies have been validated in independent data sets [3-5].
This and other initial applications of microarray technol-
ogy primarily focused on discovering molecular subtypes
within each cancer site using only samples from the pri-
mary tumor site [6-9].

Other groups focused on tissue specific differences
between cancer sites by building supervised models that
classify samples according to their tissue of origin [10,11]
or by comparing cancer from multiple tissues with normal
tissue [12]. In a landmark study by Ramaswamy et al. the
expression profile of primary and metastatic adenocarci-
noma of diverse origins was compared and they found
that a signature distinguishing primary and metastatic
tumors was also active in many primary tumors [13]. This
signature proved to be significantly correlated with metas-
tasis and poor clinical outcome in independent data sets.
In a similar study Glinksy et al. developed an 11-gene sig-
nature that was predictive of a short interval to disease
recurrence, distant metastasis, and death after therapy in
cancer patients diagnosed with many types of cancer [14].
Also Rhodes et al. have performed a meta-analysis by com-
paring the expression profiles of many types of cancers
with normal tissue from many published studies. They
concluded that a common transcriptional program exists
characterizing neoplastic transformation [12].

These studies indicated that the primary site can poten-
tially be predicted for cancer of unknown origin. This is an
important issue for clinicians since in 3-5% of cancer cases
the primary tissue is unknown. This is often called cancer
of unknown primary (CUP) [15] and many efforts have
been done to find ways to predict the primary site based
on microarray data. Reported performances are in the
range of 70-90% accuracy [16-20]. Overall these studies
have shown that many metastatic tumors "remember"
their tissue of origin.

These studies demonstrated that microarray technology
can molecularly characterize cancer and its enormous het-
erogeneity when discovered in multiple tissues. However,
due to technological differences and issues in standard-
ized sample collection, no study in a large number of sam-
ples and tissues has been done to molecularly profile both
primary and metastatic epithelial cancer in an unbiased
way. For primary tumors, previous studies focused on a
single cancer site [2-9] or compared a limited number of
tumors from a limited number of cancer sites [10,11].
Additionally, an extensive investigation whether metas-
tases resemble their tissue of origin or tissue of destination
has not been performed. The previously mentioned CUP
studies have shown that tissue of origin can be predicted
with reasonable accuracy; however, none of these studies
have reported misclassifications of their signatures in
detail and whether they are tissue specific.

In this contribution, we studied the expression profiles of
a series of 1566 primary tumors and 178 metastases of dif-
ferent tissues gathered in the framework of the expression
project for oncology (expO) project by the international
genomics consortium. We used unsupervised analysis to
identify, in an unbiased way, the relationships between
primary tumors and their metastases. The clustering pro-
file was subsequently investigated and extensively corre-
lated with clinico-pathological data. Our results reveal
relationships between cancers in different tissues, show
the existence of new molecular subgroups across tissues
and we found a signature predictive of clinical outcome.
Moreover, our results on the behavior of metastases of
epithelial human cancer can have important conse-
quences for the treatment of CUP and its associated
research.

Methods
Data
We used data from the expression project for oncology
(expO) gathered by the International Genomics Consor-
tium to investigate the molecular differences between pri-
mary epithelial tumors and their metastases. The expO
project started in 2004 and new data is still being added
to the repository. We used data from the batches 1 to 16
(December 2008) which amounts to 2173 microarrays in
142 different cancer sites extracted from GEO (GSE2109)
[21]. We selected 1566 primary epithelial tumors from 18
cancer sites (see Table 1 and Table 2) and 178 metastases
of similar primary cancer sites, metastasizing to over 40
different tissues or anatomical sites. Non-epithelial can-
cers were not included since their numbers were rather
low and their etio-pathogenesis is essentially different
from that of epithelial cancers. Tissues were not excluded
based on a small number of samples.
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Preprocessing
The tumors were profiled using the Affymetrix GeneChip
Human Genome U133 Plus 2.0 Array. Due to the size of
the complete data set, preprocessing was done using the
simpleaffy implementation of the MAS5 preprocessing
algorithm [22]. We used a custom cdf file developed by
Manhong Dai and colleagues (version 10 May 2007,
Hs133P_Hs_ENTREZG) such that probe sets are up-to-
date with the genome sequence and correspond to Entrez
gene identification [23]. Next, to check whether similar
genes were called expressed in both primary and metas-
tases tumors, we selected genes that were present in 80%
of the samples in each set separately before merging both
data sets.

Unsupervised modeling
To facilitate interpretability of the clustering, the 250
genes with the highest variance were selected from the
data set. Unsupervised modeling was subsequently per-
formed using hierarchical clustering with the Euclidean
distance for calculating the similarity between genes and
the cosine distance for the similarity between samples

using average linkage. Matlab version R2009b and the
bioinformatics toolbox from Matlab version 3.4 were
used for hierarchical clustering.

Statistical analysis
Statistical enrichment of clinico-pathological annotations
of groups of samples was investigated using Fisher exact
test. All reported p-values are based on Fisher exact test
unless otherwise reported. Gene set enrichment analysis
(GSEA) and DAVID functional enrichment analysis were
used to investigate the molecular pathways, enriched in
differentially expressed gene lists between groups of
tumors [24-26]. Kaplan-Meier survival analysis and log-
rank tests were used to investigate prognostic significance
of gene signatures using SAS version 9.1. Differential
expression analysis was done using the wilcoxon rank
sum test to rank genes.

Results
Preprocessing
After preprocessing each sample separately using the sim-
pleaffy implementation of MAS5, only probes with a

Table 1: number of primary tumor samples in each cluster

Primary tumors

Primary 
tumors

Breast 
cluster

Colon 
cluster

Lung 
cluster

Ovary 
cluster

Kidney 
cluster

Prostate 
cluster

Thyroid 
Kidney 
cluster

Mix cluster Total

bladder 6 1 10 11 0 0 0 0 28
breast 331 3 4 3 4 0 2 6 353
cervix 3 8 18 0 1 0 0 1 31
colon 14 254 6 2 1 0 1 1 279
endometri
um

1 2 1 52 0 0 1 6 63

fallopian 
tube

0 0 0 0 0 0 0 0 0

kidney 7 0 0 0 248 0 20 3 278
liver 0 1 2 0 9 1 0 1 14
lung 4 0 107 5 0 0 4 1 121
ovary 2 9 7 147 0 0 1 9 175
pancreas 0 0 0 0 0 0 0 0 0
peritoneu
m

0 0 0 0 0 0 0 0 0

prostate 1 0 2 0 0 80 0 0 83
rectosigmo
id

1 30 0 0 0 0 0 0 31

rectum 5 30 1 0 0 0 0 0 36
renal pelvis 2 0 2 3 0 0 1 0 8
small 
intestine

1 3 1 0 0 0 1 1 7

stomach 0 8 1 0 0 0 0 2 11
testis 0 0 0 0 0 0 0 0 0
thyroid 1 2 5 0 1 0 22 2 33
uterus 1 0 0 2 0 0 0 2 5
vulva 1 0 9 0 0 0 0 0 10

Total 381 351 176 225 264 81 53 35 1566
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present call in 80% of the samples were retained [22]. This
was done separately for the set of primary and metastatic
tumors. Additionally, updated annotation files based on
reorganizing probes to Entrez gene specific probe sets
excluding inaccurate or wrongly annotated probes was
used to annotate the Affymetrix probes [23]. This resulted
in 7732 and 7689 genes out of 17527 that were called
present in the primary and metastatic data set respectively.
7504 genes overlapped between these two sets, indicating
that similar genes have present calls in primary and meta-
static tumors.

Primary tumors
Figure 1 shows the clustering of all primary and metastatic
tumors using the top 250 genes with the largest variance
over all samples. Five large groups can be distinguished
enriched for primary breast, colon, lung, ovary and kidney
tissues. In addition three smaller clusters can be distin-
guished corresponding to a prostate cluster, a thyroid-kid-
ney cluster and a cluster with mixed tissues. We have
named each cluster according to its enriched primary tis-
sue. Figure 2 and Figure 3 show the composition of each
molecular cluster, separately for primary and metastatic
tissues (see also Table 1 and 2 for the complete composi-

tion of the clusters and Additional File 1 for a list of sam-
ples in each cluster).

Table 1 and Figure 1 show that the prostate cluster is the
most homogeneous cluster compared to all other clusters.
98% (80/82) of the samples in this cluster are primary
prostate tumors and only 3.6% (3/83) of primary prostate
samples do not cluster here, indicating that prostate tissue
is very different from all other tissues. This is further sup-
ported by gene set enrichment analysis (GSEA) analysis
since a set of genes upregulated by androgen in neoplastic
prostate epithelium [27] is the most significantly
expressed gene set in this cluster compared to all other
clusters (See Additional File 2).

The kidney cluster is the second most homogeneous clus-
ter consisting of 89% (248/278) primary kidney tumors.
Additionally, only 30 primary kidney tumors do not clus-
ter here. This cluster primarily expresses pathways related
to hypoxia and cytokine receptor interaction when com-
pared to the other clusters (See Additional File 2). The kid-
ney cluster also contains a primary liver subcluster; 64%
(9/14) of primary liver tumors cluster here (See Figure 4).

Table 2: number of metastatic tumor samples in each cluster, with the metastases represented according to their primary tissue

Metastatic tumors

Primary tissues Breast 
cluster

Colon 
cluster

Lung 
cluster

Ovary 
cluster

Kidney 
cluster

Prostate 
cluster

Thyroid 
Kidney 
cluster

Mix cluster Total

bladder 0 0 1 0 0 0 0 0 1
breast 5 1 0 0 0 0 0 0 6
cervix 0 0 2 1 0 0 0 0 3
colon 1 18 2 5 10 0 1 0 37
endometrium 4 2 1 9 0 0 0 4 20
fallopian tube 0 0 0 5 0 0 0 0 5
kidney 0 0 1 0 1 0 0 0 2
liver 0 0 0 0 0 0 0 0 0
lung 0 1 4 1 0 0 0 0 6
ovary 6 0 1 63 1 1 0 5 77
pancreas 1 1 1 0 0 0 0 0 3
peritoneum 0 0 0 2 0 0 0 0 2
prostate 0 0 0 0 0 0 0 0 0
rectosigmoid 0 1 0 1 1 0 0 0 3
rectum 0 2 0 0 1 0 0 0 3
renal pelvis 0 0 0 0 0 0 0 0 0
small intestine 0 0 1 0 0 0 0 1 2
stomach 0 3 0 0 0 0 0 0 3
testis 1 0 0 0 0 0 0 0 1
thyroid 0 0 0 0 0 0 0 0 0
uterus 0 0 1 0 0 0 0 2 3
vulva 0 0 1 0 0 0 0 0 1

Total 18 29 16 87 14 1 1 12 178
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Next, the breast cluster contains a significant portion of
the primary breast tumors (84% or 331/353). However,
this cluster is less homogeneous with 83% (331/399) of
the tumors in this molecular cluster being primary breast
samples. A more detailed analysis shows that these breast
tumors are subdivided according to histology and grade.
The left branch is a mixed lobular-ductal cluster contain-
ing 87% (33/38, P-value < 0.000009) of the lobular carci-
noma while the right branch is a mainly ductal cluster
(89% or 136/152) (Clusters A and B in Figure 5, respec-
tively). It should be mentioned that all lobular carcino-
mas in the expO data set are of the classical, non-
pleomorphic type. Overall, the ductal breast carcinoma
are approximately equally divided over both subclusters
(48% in lobular-ductal vs. 52% in the pure ductal subclus-
ter). However, the pure ductal cluster is enriched for grade
3 while the mixed lobular-ductal cluster contains mostly
grade 1 and 2 primary breast tumors (see Additional
File 3).

On the next level in the hierarchical tree, both cluster A
and B separate in two distinct clusters (clusters 1-2, and
clusters 3-4, respectively, see Figure 5). Cluster 1 contains
the highest concentration of lobular tumors. Clusters 3
and 4 are separated according to receptor status. Cluster 4

is enriched with triple negative tumors (ER, PR and ERBB2
negative) (71% or 32/45, Pvalue < 4.74e-8), while Cluster
3 has similar receptor positivity as the remaining breast
tumors in Cluster A.

The association of the clusters with histology, tumor grade
and receptor status indicated a possible relationship with
breast cancer prognosis. Therefore, we investigated
whether differential expression between subgroups con-
tains prognostic information. Starting from all genes, we
selected the 250 most differentially expressed genes
between Cluster 1 and Cluster 4 and used this set of genes
as a prognostic signature (see Figure 5 and Additional File
4). Cluster 1 contains the highest concentration of lobular
tumors with lowest grade, while Cluster 4 is purely ductal,
high grade and contains most triple negative tumors. We
used three external data sets to investigate the ability of
this signature to distinguish between prognostic groups
by clustering patients with the signature genes and using
the first split in the hierarchical tree as prognostic groups
(See Table 3). In all three data sets comprising 539
patients in total, the signature was significantly predictive
for disease specific survival with p-values of 0.0271,
0.0001 and 0.0230 for the Chin, Miller and Pittman data
sets, respectively (log-rank test, see Figure 6).

Hierarchical clustering of 1566 primary epithelial human cancer tumors and 178 metastatic tumors of epithelial originFigure 1
Hierarchical clustering of 1566 primary epithelial human cancer tumors and 178 metastatic tumors of epithe-
lial origin.
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The following cluster, the colon cluster, contains 91%
(254/279) of colon samples which defines 67% (254/
380) of this cluster. In addition, this cluster is enriched for
all other primary tumors of gastrointestinal origin since it
contains 97% (30/31) of all primary rectosigmoid
tumors, 83% (30/36) of the primary rectum tumors, 72%
(8/11) of the stomach tumors and 43% (3/7) of the pri-
mary small intestine tumors. Taken together 325/364
tumors (89%, Pvalue < 5.58e-255) of gastrointestinal ori-
gin are in this molecular cluster. When investigating the
subclustering within this colon cluster in more detail, a
small and a large colon subcluster, which we will refer to
as Colon A and Colon B (See Figure 7), appear from the
data. When focusing solely on the primary colon samples
in these cluster, Colon A is enriched for high grade tumors
(Grade >= 3, Pvalue 9.71e-05) and positive lymph nodes
(N >0, Pvalue 0.012) when compared to Colon B. There
was no significant relationship for tumor stage and histol-
ogy between both groups.

Next, the lung cluster contains 88% (107/121) of primary
lung tumors but is the least homogeneous cluster contain-
ing 44% (85/192) other primary tumors. This includes
90% (9/10) of primary vulva tumors and a significant por-
tion of primary cervix tumors (58% or 18/31). This is
most likely due to the enrichment of the squamous cell
carcinoma histology in this cluster. The cervix tumors in
this cluster are enriched for squamous cell carcinoma (16/
18 are squamous cell carcinoma), compared to the cervix
tumors in the colon cluster containing no squamous cell
carcinoma (0/8). Similarly, all vulva samples in this clus-
ter are of the squamous type (9/9). Taken together, the
lung cluster is highly enriched for the squamous cell carci-
noma histology since 38% (66/176) of tumor samples are
of this type and of different tissues (i.e. bladder, cervix,
lung and vulva) but more importantly 83% (66/80,
Pvalue < 3.66e-54) of all squamous tumors cluster here.

The ovary cluster consists of 84% (147/175) of the pri-
mary ovarian tumor samples which make up 47% (147/

Cluster composition for the primary tumor samplesFigure 2
Cluster composition for the primary tumor samples. The total number of primary samples in each cluster is indicated.
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312) of this cluster. In addition, 83% (52/63) of the
endometrium tumors cluster here. More specifically, the
ovarian cluster is divided into two subclusters: an
endometrioid-enriched cluster and a serous-enriched
cluster. The former contains all endometrium tumors and
88% (22/25, P-value < 0.00015) of pure endometrioid
ovarian tumors.

The 28 bladder tumors are spread over three different clus-
ters: breast, lung and ovary. 39% (11/28) cluster in the
endometrioid subcluster of the ovary cluster. Most blad-
der tumors in the expO data set are transitional cell carci-
noma (TCC). TCC of the ovary also exist [28,29] and
occurred twice in our data set, both clustered in the same
endometrioid subcluster possibly explaining why a signif-
icant part of bladder tumors clusters together with the
endometrioid ovaries.

Finally, the thyroid/kidney cluster contains a significant
amount of thyroid (41% or 22/54) and kidney samples
(37% or 20/54). The subgroup of kidney tumors that clus-
ters with thyroid tumors rather than in the kidney cluster
is enriched for the chromophobe histology (P-value <
6.3e-8). In addition, when ignoring the kidney tumors
from the granular cell carcinoma histology since this is a
nonspecific, outdated descriptor [30], the enrichment is
even more significant with 9/13 of the remaining kidney
tumors being chromophobe (P-value < 2.5e-9). In addi-
tion, the thyroid tumors in this cluster are more frequently
follicularly differentiated (9/22) compared to the thyroid
tumors in other clusters (3/11); however, not significantly
due to the low number of thyroid tumors of follicular dif-
ferentiation. In addition, all non-papillary follicular thy-
roid tumors cluster here. GSEA analysis on the thyroid-
looking kidney samples vs. the kidney samples in the kid-

Cluster composition for the metastatic tumor samples according to their primary siteFigure 3
Cluster composition for the metastatic tumor samples according to their primary site. The total number of 
metastases samples in each cluster is indicated.
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ney cluster reveals that gene sets related to oxidative phos-
phorylation and mitochondrion are upregulated in this
subset of thyroid-looking kidney tumors (see Additional
File 5).

Metastases
To investigate whether metastases cluster with tissue of
origin or destination, we assigned each tissue to a cluster
where it was most significantly enriched with its corre-
sponding primary tumors. Then we investigated if a met-
astatic tumor clusters with its tissue of origin or tissue of

destination. When a tissue was enriched in multiple clus-
ters we did not investigate metastases of this tissue, which
was the case for the cervix and bladder tissues.

Metastases originating from breast (P-value < 0.003), lung
(P-value < 0.002), cervix (P-value < 0.034), endometrium
(P-value < 0.004), stomach (P-value < 0.010) and ovarian
(P-value < 2.8e-36) are significantly enriched in their tis-
sue of origin cluster. The latter, the metastases of ovarian
origin, are more specifically enriched in the serous ovarian
sub cluster (P-value < 1.72e-13). In addition, one vulva-
to-liver metastasis clusters with the primary vulva tumors
and all fallopian tube and peritoneum metastatic tumors;
although both tissues are not represented with primary
tumors, cluster in the most likely related ovarian molecu-
lar cluster. Together, this indicates that metastases from
these tissues "remember" their tissue of origin and reflect
the original tissue in their molecular profile.

Exceptions to this rule are metastatic tumors arising from
gastrointestinal origin such as colon, rectum and rectosig-
moid, where a bimodal distribution is seen. A significant
part of these tumors cluster with the tissue of origin while
another part clusters with the tissue of destination. For
example, for the metastases from colon, 49% (18/37)
cluster in the colon molecular cluster while metastasizing
to different sites (i.e liver, omentum, ovary, bladder and
lung). However, 14% (5/37) cluster in the ovary cluster
enriched for colon to ovary metastases (P-value < 0.02)
and 27% (10/37) cluster in the kidney/liver cluster
enriched for colon to liver metastases (P-value < 0.01). A
similar result for a much smaller group and thus not sig-
nificant, is seen for three colon-to-lung metastases of
which two tumors cluster in the colon cluster and one in
the lung cluster.

Moreover, similar results are seen for smaller groups of
tumors in the rectosigmoid and rectum site. Two rectum-
to-liver metastases cluster in the colon cluster while the
remaining rectum-to-liver metastases clusters in the kid-
ney/liver cluster. One of the rectosigmoid metastases clus-
ters in the colon cluster while the other two, a
rectosigmoid to ovary and a rectosigmoid to liver metasta-
sis cluster in the ovary and kidney/liver cluster, respec-
tively.

Because the colon-to-liver metastases are the largest group
of tumors within this class, we focused on this subset for
a more detailed analysis. We used GSEA to investigate the
molecular differences between the colon-to-liver metas-
tases that cluster in the colon cluster (9/20) vs. the colon-
to-liver metastases that cluster in the kidney/liver cluster
(9/20). Additional File 6 shows the significantly upregu-
lated pathways in the colon and liver subgroups. Interest-
ingly, a set of liver specific genes is upregulated in the liver

Kidney subclusteringFigure 4
Kidney subclustering.

Breast subclusteringFigure 5
Breast subclustering.
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Investigation of the prognostic relationship of the breast clustering signature in three external data sets with 1 = good progno-sis group and 2 = poor prognosis groupFigure 6
Investigation of the prognostic relationship of the breast clustering signature in three external data sets with 1 
= good prognosis group and 2 = poor prognosis group.
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subgroup indicating that these colon-to-liver metastases
indeed adapt to the liver tissue. Additionally, a set of
genes upregulated in hepatocellular carcinoma (HCC) of
good survival is also upregulated in the liver subgroup
while the gene set corresponding to poor survival in HCC
is upregulated in the colon subgroup. In addition, gene
sets related to well known metabolic processes in the liver
are significantly upregulated in the colon-to-liver metas-
tases clustering with the primary liver tumors.

Discussion
Our results show interesting correlations between tissues
and clinicopathological variables such as stage, grade or
histology. Now, we will discuss the most compelling
results for each cluster.

Prostate cluster
This cluster is clearly the most homogeneous one. Since
only 16% of tumors in this cluster were low-grade (i.e.
Gleason score <7), this homogeneity can not be explained
by the assumption that most of these tumors are well dif-

ferentiated and form a very distinct cluster based on the
high expression of prostate-specific genes as such. In con-
trast with most other epithelial tumors, prostate cancer is
characterized by little or no desmoplastic reactive stroma
[31]. Thus, the homogeneity can be explained by the fact
that in a sample of prostate cancer the expression of tis-
sue-specific genes by epithelial tumor cells is less 'contam-
inated' by the stroma compared to samples of epithelial
tumors of other organs. As further discussed in the breast
cluster, this underscores that the role of tumor stroma has
to be taken into account when evaluating molecular data
from non-microdissected samples.

Kidney cluster
The kidney cluster mainly expressed hypoxia related
genes. This corresponds to a large body of research that
has shown that loss of the VHL gene activates HIF result-
ing in uncontrolled angiogenesis in the kidney [32].
Moreover, it has been shown that loss of VHL is connected
to CXCR4 up-regulation implicating the cytokine receptor
pathway [33]. Our results confirm this since both hypoxia
related pathways and the cytokine receptor pathway are
over-expressed in the kidney cluster. In addition the kid-
ney cluster is enriched for clear-cell renal carcinoma (P-
value < 0.002) which has been shown to be caused by loss
of VHL.

The similarity between liver and kidney tumors is striking
(See Figure 4) and seems to be caused by similar genes
defining the liver and kidney tissues. This can be
explained due to a significant overlap between liver and
kidney specific genes based on tissue expression profiles
from the TIGER database compared to other tissue com-
parisons (see Additional File 7) [34]. More specifically, 38
genes overlap between liver and kidney specific genes. In
addition, all liver tumors in this cluster are hepatocellular
carcinoma (HCC) of grade 2 and low stage (i.e., <= 2),
possibly indicating that their tissue specific profile has not
been significantly scrambled by oncogenic processes. On
the other hand, the remaining HCC are of high stage and
grade (i.e., >= 3) and appear to cluster randomly, possibly
indicating a loss of primary tissue profile associated with
grade (see Table 1).

Table 3: data sets used for investigating the prognostic relationship of the breast cluster signature

Data set name Number of patients Microarray type Outcome

Chin [72] 130 Affymetrix GeneChip Human Genome U133A 
Array Set

Disease specific survival 
(Event = death from breast cancer)

Miller [73] 251 Affymetrix GeneChip Human Genome U133 
Array Set

Disease specific survival 
(Event = death from breast cancer)

Pittman [74] 158 Affymetrix GeneChip Human Genome U95av2 
Array Set

Overall survival 
(Even t = death from breast cancer)

Colon subclusteringFigure 7
Colon subclustering.
Page 10 of 16
(page number not for citation purposes)



BMC Medical Genomics 2009, 2:69 http://www.biomedcentral.com/1755-8794/2/69
Breast cluster
The breast cluster is subdivided according to histology in
a mixed lobular-ductal cluster with mainly low and inter-
mediate grade tumors and a ductal-enriched cluster with
mainly high grade tumors. This confirms the hypothesis
that non-pleomorphic lobular breast carcinoma can be
considered as a low-grade subtype of ductal breast tumors;
only the status of CDH1 expression is strongly different
between the two types, which causes strong morphologi-
cal differences [35-37]. When comparing the lobular and
ductal tumors in the lobular-ductal cluster (Cluster A),
CDH1 is the most significantly differential gene and
upregulated in the lobular tumors (see Additional File 8).

Moreover, the clear association with tumor grade poten-
tially indicates that the molecular differences between the
two subtypes have prognostic implications. We therefore
investigated the prognostic significance of a gene signa-
ture differentially expressed between the hypothesized
good and poor prognosis groups. The positive external
validation of the signature confirms that classical, non-
pleomorphic lobular are related to good prognosis while
ductal tumors appear in both prognostic groups but can
be separated according to grade. In addition, the triple
negative receptor status in Cluster 4 is confirmed as hav-
ing a negative prognostic impact [38,39]. Our signature is
robust since it could be validated in breast cancer data sets
that were heterogeneous regarding grade, stage and ER-
status.

The association of grade with clinical outcome has already
been confirmed by others [40,41].

More specifically, the group of Sotiriou has shown that the
performance of prognostic signatures is due to the pres-
ence of proliferation-related genes [42]. Our signature
shows an overlap of 23 genes with the Genomic Grade
Index (GGI) of Sotiriou [40]. As it has previously been
shown that most signatures studying the same disease and
outcome share few genes but more pathways [43], a path-
way analysis was performed. These results show signifi-
cant overlap with the GGI, highlighting proliferation
pathways such as mitosis, cell cycle and cell division
which are highly expressed in Cluster 4 (see Additional
File 9). However, when focusing on the genes over-
expressed in the lobular enriched cluster (Cluster 1), other
pathways seem to characterize the good prognosis sam-
ples. These include genes related to or located in the extra-
cellular matrix, secreted genes and genes containing the
EGF domain (see Additional File 9). The latter are present
in a large number of membrane-bound and extracellular
proteins.

We also compared our clustering with the intrinsic breast
cancer subgroups initially described by Perou et al. [6] and

later validated in many independent data sets [4,9,44].
This analysis showed that Cluster 1, 2 and 3 largely corre-
spond with the luminal subgroup while cluster 4
expresses both the basal and the ERBB2 (also called HER-
2/neu) genes (See Figure 8). This corresponds with previ-
ous research implicating the classical, non-pleomorphic
lobular and low grade ductal tumors in the luminal sub-
group [37] whereas the basal tumors are associated with
high grade ductal tumors [39]. The reason why we did not
find a separate ERBB2-cluster might be related to the fact
that the intrinsic gene list is based solely on breast tumors,
while our clustering is based on genes that show variance
between all types of epithelial tumors, or in other words
our gene list is both intrinsic and extrinsic. In addition,
also in the original clustering both the ERBB2 and basal
cluster are related to each other [6,44].

In addition, a few of the most differentially expressed
genes such as CAV1 and CAV2 have recently been shown
to have prognostic predictive power [45,46]. More specif-
ically, high expression of CAV1 and CAV2 in stromal cells
of breast tumors is associated with a more favorable prog-
nosis [47], which is in line with their high expression in

Clustering with intrinsic genesFigure 8
Clustering with intrinsic genes.
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our good prognosis cluster. Moreover, there is evidence
that CAV1 expression is inversely correlated with progres-
sion of ductal carcinoma in situ (DCIS) to invasive breast
cancer [48] and several recent studies highlighted the
important role of the stroma surrounding DCIS in the
progression to invasion [49,50]. Unfortunately, valida-
tion of our signature to the pre-invasive stage was not pos-
sible, since there are no public available gene expression
data sets consisting of non-microdissected DCIS samples
with follow-up data.

Also, reduced expression of proteoglycans has been asso-
ciated with poor outcome and also in our signature the
leucin rich small proteoglycans decorin (DCN) and fibro-
modulin (FMOD) are overexpressed in the good progno-
sis cluster [51]. This further underscores the prognostic
significance of stromal gene expression in breast tumors,
which is a concept that has only recently emerged [52-54].

Lung cluster
The lung cluster is highly enriched for squamous cell car-
cinoma of different tissues, while such a phenomenon is
not observed for adenocarcinoma. As shown in the result
section adenocarcinomas cluster mainly according to
their tissue of origin. It is indeed well known among
pathologists that there are currently no immunohisto-
chemical markers for the determination of the likely site
of origin of squamous carcinoma, while this is in most
cases possible for adenocarcinomas [55]. Our results indi-
cate that this problem is not related to the lack of appro-
priate antibodies for immunohistochemical staining, but
due to the absence of a molecular signature in these
tumors reflecting their tissue of origin. Further attempts to
identify such antibodies therefore seem useless.

Thyroid/Kidney cluster
It has been known for quite some time that cortical tubuli
in end-stage kidney diseases frequently show a morphol-
ogy resembling thyroid follicles [56]. More recently, some
cases of thyroid follicular carcinoma-like tumors of the
kidney have been reported. This type of tumor is morpho-
logically indistinguishable from follicular thyroid carci-
noma and does not represent a kidney metastasis of a
thyroid tumor. [57,58]. The strong molecular connections
between thyroid tumors with follicular differentiation
and chromophobe renal cell carcinomas in our study
indicate that thyroid follicular carcinoma-like tumors
indeed exist and probably represent a special variant of
chromophobe renal cell carcinoma. Although confirma-
tion is needed, this implies that this rare type of tumor
should be clinically considered and treated as a chromo-
phobe renal cell carcinoma.

Ovary-endometrium cluster
The ovarian cluster segregates into two subclusters, one
enriched for the endometrioids also containing the pri-
mary endometrium tumors and a cluster enriched with
the serous tumors also enriched with the ovarian metas-
tases. This clustering confirms the well-known link
between ovarian endometrioid tumors and endometrio-
ids originating from the endometrium [59] because these
tumors are thought to arise from benign endometrium
epithelial tissue either through endometriosis or metapla-
sia [60]. Serous tumors on the other hand are thought to
arise form surface epithelium and usually present in more
advanced stage, which explains the rather high proportion
of metastasizing serous tumors in this subcluster. Our
findings in this cluster clearly show that our approach is
able to recover previous research findings, which indi-
rectly increases the validity of our new findings in this
study.

Colon cluster
Besides the enrichment of primary colon tumors, this
cluster was also enriched with other gastrointestinal
tumors such as rectum, rectosigmoid, stomach and small
intestine tumors. In addition, two subclusters emerged
from the data related to clinico-pathological characteris-
tics. The Colon A cluster clearly looks much more aggres-
sive than Colon B. In addition no differences were found
for tumor stage and histology, although mucinous histol-
ogy in colon cancer has been reported as a prognostically
unfavorable feature in several studies. However, a more
recent analysis of a large population-based data set indi-
cated that there is no difference in stage-specific survival
between mucinous adenocarcinoma and classical adeno-
carcinoma [61]. The fact that mucinous carcinoma did not
show a preference for either of the two clusters supports
the findings of this study.

Metastases
The bimodal nature of the tissue specificity of some met-
astatic tumors may offer an explanation why it is not pos-
sible for a specific subgroup of tumors to predict the tissue
of origin. Breast, lung, cervix, endometrium, stomach and
ovarian metastases cluster significantly in their respective
primary tissue clusters while gastrointestinal metastases
such as colon, rectum and rectosigmoid cluster with their
tissue of destination.

Ovarian metastases occur mostly in the peritoneal cavity,
most likely after losing cell adhesion processes [59,62].
This process is rather different compared to processes
underlying distant metastasis via blood and lymphatic
vessels and can (most likely) account for the conservation
of ovarian specific expression signatures in these metas-
tases. Breast metastases on the other hand do metastasize
to distant organs, but cluster together with their primary
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tissue. This has also been shown in other studies, more
specifically the 70 gene prognosis profile for predicting
breast cancer prognosis has been shown to be conserved
in breast cancer metastases [3].

Metastases of gastrointestinal origin surprisingly showed a
bimodal distribution. Approximately 50% clusters
together with its tissue of origin while the remaining
tumors cluster in the tissue of the metastatic site. Due to
the size of the colon-to-liver subset, we focused on these
tumors to investigate this phenomenon in more detail
and showed that these findings were supported by GSEA.
Moreover, when focusing on the genes differentially
expressed between the colon and liver looking metastases
the A2M gene is one of the most differentially expressed
genes. A2M is an acute phase reactant produced by hepa-
tocytes, but it has been shown in a rat model that this gene
is also strongly expressed in liver metastases of colon can-
cer [63]. Furthermore, this gene has been shown to be a
marker of pre-neoplastic and neoplastic primary liver
lesions [64]. In addition, others have shown that colon-
to-liver metastases express liver specific RNAs and that this
is due to the interaction of metastatic cells with the liver
microenvironment [65]. These findings together with our
data indicate that a proportion of colon adenocarcinomas
that metastasize to the liver adopt hepatic features, which
suggest that they represent an aggressive form of metasta-
sis since they respond to signals from the hepatic micro-
environment.

We validated this bimodal behaviour in three external
data sets containing colon-to-liver metastases [66-68] by
clustering the samples in each external data sets with the
genes differentially expressed between both colon-to-liver
subgroups. In all three data sets, the first split of the hier-
archical tree was significantly enriched according to the
up/down regulation in the original signature (Fisher exact
test p-values < 2.2e-16).

For metastases originating from other gastrointestinal tis-
sues the number of samples is too small to make any con-
clusions. However, our results support large and more
detailed studies of these primary and metastatic tumors to
investigate if this bimodal behavior can be generalized to
all gastrointestinal tissues.

Conclusion
The expO data set provides a unique opportunity to com-
pare the expression profiles of many different tissues of
both primary and metastatic tumor samples. In addition,
extensive clinicopathological data is available, making it
possible to link subgroups of tumors with clinicopatho-
logical characteristics such as histology, stage and grade.
Many previous attempts in meta-analysis were limited
due to different technological platforms, experimental set-

up (e.g. one channel vs. two channel) or normalization
methods [69]. In addition, there is still a lack of accurate
and complete reporting of microarray data of cancer tissue
samples. In many cases preprocessed data are reported
instead of raw data making it in many cases prohibitive to
use these data for meta-analysis. Moreover, phenotypic
characterization of tumor samples is in many cases
incomplete or even lacking while phenotypic information
is crucial in the reporting of any omics data [70,71]. In the
expO data set these problems are not present such that we
can assume that our results are not confounded with the
above mentioned issues.

An important caveat of our analysis is that due to the clin-
ical setup of the expO study significant biases in sample
selection are present. For example colorectal metastases
resection is often performed in patients demonstrating
metastases confined to the liver while patients with dif-
fuse metastases are in most cases treated palliatively and
are most likely not represented in the expO study. These
issues however are not unique to the expO study and are
also present in many of the abovementioned studies.

Our results show that distinct clusters exist corresponding
to the main tissues of epithelial human cancers. In addi-
tion, similar tissues cluster together, such as tumors aris-
ing from gastrointestinal and gynecological origin. Next,
breast tumors subclustered according to their main histo-
logical groups and grade. Moreover, we were able to vali-
date a prognostic signature relevant for disease specific
survival based on an unsupervised analysis in 539
patients. This prognostic signature had significant overlap
with the GGI but we also found that genes related to stro-
mal expression signatures were an important part of this
prognostic signature.

Next, we also found compelling evidence that chromo-
fobe renal cell carcinomas have overlapping gene expres-
sion features with follicularly differentiated thyroid
carcinomas. Therefore, the recent morphologically
defined entity of thyroid follicular carcinoma-like kidney
tumors should probably be considered and treated as
chromophobe carcinoma.

In addition, we also found that, in contrast with adenocar-
cinoma, the majority of squamous cell carcinoma cluster
together irrespective of their primary tissue, supporting
the immunohistochemical observation that squamous
cell carcinoma do not reflect their primary tissue expres-
sion profile.

Finally, we investigated the relationship of metastatic
tumors with their tissue of origin and metastatic site. Most
metastases cluster with their tissue of origin. This was the
case for metastases arising from breast, lung, cervix,
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endometrium, stomach and ovary. In the case of ovarian
metastases this can be expected since ovarian metastases
are thought to arise by loss of cell-cell adhesion whereas
the main tissue expression profile remains the same. Lung
and breast metastases on the other hand prefer more dis-
tant sites for metastasis but still cluster with their tissue of
origin.

Another group of metastases, originating from gastroin-
testinal tissue showed a bimodal distribution, either
resembling tissue of origin or tissue of destination. More
specifically, colon-to-liver metastases, the largest group,
showed this interesting pattern, also confirmed with
GSEA analysis.

Whether colon-to-liver metastasis that respond to the liver
micro-environment by expressing liver-specific genes are
also more responsive to adjuvant chemotherapy is an
important question. This issue appears worthwhile to be
evaluated in a translational arm of a clinical study by
assessing the expression of liver-specific genes by PCR of
immunohistochemistry, followed by correlation with
tumor regression on imaging performed during adjuvant
treatment given before resection.

We believe that our taxonomy of epithelial cancers has
implications on many fronts. We have shown relation-
ships with clinical outcome, discovered new subgroups,
identified a squamous expression profile over multiple
tissues and studied the relationship between primary and
metastatic tumors. These findings will provide important
information for pathologists interpreting histological
slides, researchers investigating CUP and the develop-
ment of prognostic signatures for breast cancer.
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