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Abstract

Background: Apoptosis is a critical biological phenomenon, executed under the guidance of the
Apoptotic Machinery (AM), which allows the physiologic elimination of terminally differentiated,
senescent or diseased cells. Because of its relevance to BioMedicine, we have sought to obtain a
detailed characterization of AM Omics in Homo sapiens, namely its Genomics and Evolution,
Transcriptomics, Proteomics, Interactomics, Oncogenomics, and Pharmacogenomics.

Methods: This project exploited the methodology commonly used in Computational Biology (i.e.,
mining of many omics databases of the web) as well as the High Throughput biomolecular analytical
techniques.
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Results: In Homo sapiens AM is comprised of 342 protein-encoding genes (possessing either anti-
or pro-apoptotic activity, or a regulatory function) and |10 MIR-encoding genes targeting them:
some have a critical role within the system (core AM nodes), others perform tissue-, pathway-, or
disease-specific functions (peripheral AM nodes). By overlapping the cancer type-specific AM
mutation map in the fourteen most frequent cancers in western societies (breast, colon, kidney,
leukaemia, liver, lung, neuroblastoma, ovary, pancreas, prostate, skin, stomach, thyroid, and uterus)
to their transcriptome, proteome and interactome in the same tumour type, we have identified the
most prominent AM molecular alterations within each class. The comparison of the fourteen
mutated AM networks (both protein- as MIR-based) has allowed us to pinpoint the hubs with a
general and critical role in tumour development and, conversely, in cell physiology: in particular, we
found that some of these had already been used as targets for pharmacological anticancer therapy.
For a better understanding of the relationship between AM molecular alterations and
pharmacological induction of apoptosis in cancer, we examined the expression of AM genes in
K562 and SH-SY5Y after anticancer treatment.

Conclusion: We believe that our data on the Apoptotic Machinery will lead to the identification
of new cancer genes and to the discovery of new biomarkers, which could then be used to profile
cancers for diagnostic purposes and to pinpoint new targets for pharmacological therapy. This
approach could pave the way for future studies and applications in molecular and clinical Medicine
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with important perspectives both for Oncology as for Regenerative Medicine.

Background

Cells use sophisticated mechanisms to functionally con-
nect their molecules and machineries with the aim of acti-
vating, sustaining and modulating their critical functions:
survival, growth, proliferation, differentiation, and death
[1,2]. Following the characterization of very complex
cross-talks among the different signalling cascades, a
molecular network view of cell biology and physiology
has emerged together with the concept of Biological Com-
plex Systems [3]. The ultimate outcome of this structural
and functional organization is the metabolism of organ-
isms and their cells. Recently, the striking evolution of
experimental HT (High Throughput) strategies (i.e., com-
putational, molecular, cellular, and systemic techniques)
has made it possible for Biology to become holistic, thus
providing also a top > down view of organisms [4]. The
complex biological system par excellence is the human
being. However, because of the technological and concep-
tual limits that this type of study still presents, it seems
appropriate to focus on more discrete entities such as the
molecular machineries specifically responsible for a phe-
notypic phenomenon or a biomolecular function (e.g.,
the Transcription Apparatus, TA, or the Apoptotic Machin-
ery, AM) [5,6]. The critical importance of apoptosis for the
BioPathology of Homo sapiens is stressed by the following
considerations. Apoptosis performs a central role during
development and differentiation (e.g., morphogenesis,
immune and nervous system development, and sexual
differentiation), and at steady state during adult life (e.g.,
tissue homeostasis, elimination of damaged or abnormal
cells, and defence against infections) [7,8]: for instance,
each day about one in a million of our cells dies (about
50-100 x 10% out of 50-100 x 10!>), mostly via apoptosis,

to be replaced through stem cells proliferation and differ-
entiation [9]. Unsurprisingly, apoptosis is the most com-
mon and evolutionarily conserved among the
mechanisms causing cell death [10,11]. Its critical biolog-
ical functions make it very likely that AM dysfunctions
also would have an important pathogenetic role in many
diseases [12,13]. It is known that an abnormal increase of
apoptosis is involved in degenerative diseases (e.g., Dia-
betes, Arterioschlerosis), neurodegenerative diseases (e.g.,
Alzheimer's and Parkinson's Disease), autoimmune dis-
eases (e.g., Multiple Sclerosis), ischemic pathologies (e.g.,
myocardial infarction), pathologies caused by toxins (e.g.,
hepatitis induced by alcohol), viral or bacterial infections
(e.g., HIV or Neisseria meningitidis) [14-16]. On the other
hand, inhibition of apoptosis is present in most cancers:
in fact, one of the critical goals of contemporary Oncology
is to understand how cancer cells evade death, both the
one endogenously activated as well as that induced by
host mechanisms of immune surveillance or by therapeu-
tic treatments [17-19]. Accordingly, molecular profiling of
apoptotic pathways within the AM of a specific cancer
should be critical to rationally design strategies toward its
elimination [20,21]. Incidentally, this work may lead to
understanding the molecular bases of cancer immortality
[22,23]. In this paper, we focus on AM Omics in Homo
sapiens (Genomics, Transcriptomics including MIRs, Pro-
teomics including PTMs and NUPs, Interactomics,
Oncogenomics, and Pharmacogenomics) and describe
AM evolution through the analysis of its structure in
ninety organisms from Homo sapiens to Escherichia coli. We
then use these data to characterize AM Omics in the four-
teen most frequent cancer types in the Western World,
with the aim of identifying new markers for the design of

Page 2 of 35

(page number not for citation purposes)



BMC Medical Genomics 2009, 2:20

innovative antineoplastic strategies. Finally, we experi-
mentally validate our work through HT analysis of AM
transcriptome changes in CML and neuroblastoma, after
in vitro treatment with commonly used therapeutic drugs.

Methods

Dataset of genes involved in apoptosis

Because of the intrinsic nature of biological systems and
processes, the unequivocal identification of a gene's
involvement in a specific process is nontrivial. Since genes
participate in a varied spectrum of biomolecular phenom-
ena with a varying degree of involvement, the experimen-
tal work involves inference that admits some false
positives and negatives and hence does not always neces-
sarily yield clear-cut answers. Nonetheless, within a cellu-
lar machinery such as AM it is possible to identify: (i)
putative core nodes, ubiquitously expressed genes
endowed with a central biomolecular role in the activa-
tion or inhibition of apoptosis (e.g., death receptors,
members of the Bcl2 family, caspases); (ii) putative periph-
eral nodes, genes with tissue-, pathway-, or disease-spe-
cific functions: in many cases these perform a regulatory
role. We first searched the GO database [24] by using as
key words apoptosis and cell death and compiled a prelimi-
nary list of human genes associated with apoptosis; this
was then manually filtered by using literature data from
PubMed, in order to experimentally verify the involve-
ment of these genes in apoptosis [25]. The final list of AM
genes was compiled by using interactome data for verify-
ing the functional connections among these proteins
[26,27]. This approach (i.e., combining GO, PubMed and
Interactome data) allowed us to establish a dataset con-
sisting of 342 genes involved in apoptosis, whose prod-
ucts were physically or functionally interacting. The
experimentally supported data of interactions between
AM transcripts and MIRs were extracted from Tarbase
[28]. Recent comparative studies among target prediction
methods have shown that no single one of them is signif-
icantly better than others. Accordingly, it has become
common to use multiple prediction tools, concentrating
on the intersecting results, in order to overcome the well-
known problems related to MIR targets identification
[29]. In this project, we used miRGen [30], which inter-
sects the results from three different classic tools
(miRanda, PicTar, and TargetScan) to predict the MIRs
controlling AM genes. The data about MIRs genomic posi-
tion were extracted from miRBase [31].

Genomics

The cytogenetic and genomic position of each AM gene
was obtained by searching the database Gene of NCBI
[25]. The genome map of AM genes was displayed by
Caryoscope [32] to identify the position of AM genes in the
genome. The distribution of AM genes in each chromo-
some was compared to that of all human genes [33]. AM
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cytogenetic map was compared to that of tumour-associ-
ated chromosomal structural mutations. The latter was
determined by using data from the Mitelman database
and CGH informations from Progenetix (a database of
cytogenetic abnormalities in cancer) for the most frequent
anatomic cancer sites (breast, cervix, colon, kidney, liver,
lung, neuroblastoma, ovary, pancreas, prostate, skin,
stomach, and thyroid) [34,35]. The overlap of the two
maps was examined through Caryoscope. A red-green
matrix (AM genes x tumours, in which the positive values
indicate the frequency of gains while the negative ones
indicate the frequency of losses) led to identification of
AM genes clusters: these were displayed with MeV4.2 [36].
The information on cancer-related gene mutations was
obtained by screening the database Cosmic [37]. Cancer-
related methylation data were from PubMeth [38].

Evolution

To characterize the phylogenetic distribution of AM pro-
teins, we collected AM orthologs from a large number of
taxa [Prokaryotes (Bacteria, Archaea), Unicellular Eukaryo-
tes (Alveolata, Diplomonadida group, Entamoebidae,
Euglenozoa, Mycetozoa), Viridiplantae, Fungi, Invertebrates
(Acoelomata, Pseudocoelomata, Protostomia), Vertebrates
(Actinopterygii, Amphibia, Sauropsida, Mammalia)] and
Viruses (both dsDNA viruses and retro-transcribing
viruses) from the databases Homologene [39], iProClass
[40] and Metazome [41]. The search for AM orthologs was
performed by using BLASTp with human AM proteins as
queries against all protein databases [42]. The total
number of organisms used for analyzing AM phylogenesis
was ninety. The evolutionary rate of AM proteins was
assessed by carrying out a multiple alignment (MA) of
each human protein with its orthologs from a series of
model organisms (Mus musculus, Gallus gallus, Xenopus lae-
vis, Danio rerio, Takifugu rubripes, Drosophila melanogaster,
Caenorhabditis elegans, Dictyostelium discoideum, Bacillus
subtilis, Methanococcus jannaschii). MA was performed with
ClustalW [43], while aligned sequences were processed
with Mega 3.0 [44] to obtain the Poisson Corrected dis-
tance (k): this provides an estimate of the difference
between two sequences (meant as percentage of amino
acid substitutions) for all pairs of orthologs. The evolu-
tionary rate (v) was calculated through Kimura's parame-
ter, v = k/2 t, where t represents the time of divergence
between two species [45]. Histone H4 (a highly conserved
protein), SOD2 (a protein with an average degree of con-
servation) and Fibrinopeptide (a protein characterized by a
low conservation level) were used as evolutionary markers
[46]. The evolutionary rate was calculated for those pro-
teins expressed at least in all vertebrates.

Transcriptomics
Gene expression data on AM genes were obtained from
three datasets: Human Transcriptome Map (HTM), NCI60
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Cancer Microarray Project, and Oncogenomics for cancer
and normal tissues [47-49]. Because of the small sample
size, fdr (false discovery rate) analysis with an empirical
null model (as proposed by Efron) was deemed infeasi-
ble. Instead, the t-test was applied to identify those genes
with expression values that differ significantly between
normal and tumour samples (for HTM and Oncogenom-
ics datasets) in each cancer model. We performed a test
between subjects: Group A (normal tissues), Group B
(cancer tissues); Welch approximation; Alpha (overall
threshold p-value) = 0.001; the p-value is based on per-
mutation (100 permutation per gene); the significance
was determined by the Adjusted Bonferroni Correction.
The resulting differentially expressed genes were further
analyzed: for each differentially expressed gene, in each
cancer model, we calculated the natural logarithm of the
ratio between the mean of expression values of group B
and the mean of expression values of group A. We chose
the stringent cut-off of +1 and -1 (about three fold up- or
down-regulated) to determine the up regulation and
down regulation, respectively: the genes with In ratio val-
ues between +1 and -1 were considered not significantly
changed [50,51]. To further strengthen our analysis, we
compared and completed these data with expression val-
ues from NCI60 datasets (analyzed as described above).
Data analysis was performed and displayed with MeV4.2.
The overlapping of AM transcriptome map with the AM
mutation map was performed by Caryoscope. Expression
data on MIRs, that target AM genes in different normal
and tumour tissues, were derived from the database VITA
[52], which contains MIR profiling obtained from bead-
based flow cytometry of mature forms of MIRs [53].

Proteomics

AM protein expression data were obtained from The
Human Protein Atlas and NCI60 protein datasets [54,55].
Due to the incomplete structure of these databases, some
important cancer-related proteins were not included in
our analysis. The data concerning protein features such as
PTM, the presence of metal ions or an intrinsically
unfolded structure, were obtained from HPRD and Dis-
Prot databases [27,56]. The structural characterization of
protein motifs and domains was performed by screening
the database ExPASy [57].

Interactomics

Data on protein-protein and protein-DNA interactions
were obtained from BIND [26] and HPRD [27] databases,
while pathway data are from Kegg and Biocarta [58,59].
The AM interactome was analyzed and visualized by Cyto-
scape [60], CentiBin [61], and iVici [62]. By using Cyto-
scape plug-ins, interactome data were interpolated with
structural information on AM proteins, to derive the rela-
tionships between structural motifs and interactions. Phe-
nome data from knock-out experiments in the mouse
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were obtained from Mouse Genome Informatics [63].
Drug targeting information was extracted from DrugBank
[64].

Cell lines and culture conditions

The K562 cell line was derived from a patient with CML in
blast crisis and expressing the chimaeric non-receptor
tyrosine kinase p210Bcr-Abl [65]. Cell were cultured in
RPMI 1640-glutamax, supplemented with 10% heat-inac-
tivated fetal bovine serum (FBS; Gibco BRL), 2% L-
glutamine, 1% penicillin/streptomycin. Cells were grown
under 5% CO,/95% O, in a 37°C humified incubator.
Imatinib (STI571, Gleevec) was provided by Novartis
Pharma (Basel, Switzerland). A 10 mM stock solution was
freshly prepared in sterile phosphate-buffered saline and
diluted in RPMI 1640 medium before use. K562 cells,
exposed to 1 uM imatinib and relative controls, were col-
lected and analyzed at different time points (0 h, 2 h, 4 h,
7h,12h, 24 h, 48 h, 72 h). Human SH-SY5Y neuroblast-
oma cells, derived from a patient with a bone marrow
metastasis [66], were grown in a 1:1 mixture of DMEM
and Ham's F-12 medium (Cambrex Bio Science, Verviers
Belgium), supplemented with 10% fetal bovine serum,
1% L-glutamine and 1% penicillin/streptomycin (Gibco,
Invitrogen, Carlsbad, CA), in a humidified atmosphere of
5% CO, in air. For apoptosis induction, 3 x 10° cells were
seeded into 75 cm? flasks in 15 ml of culture medium.
Fenretinide (dissolved in absolute ethanol) was added to
cultures to a final concentration of 3 uM; an equal volume
of ethanol (~0.3% of culture volume) was used to treat
control cells. SH-SY5Y cells exposed to 3 uM fenretinide
and relative controls were collected and analyzed at differ-
ent time points (0 h, 12 h, 24 h, 48 h, 72 h, 96 h).

Cell population dynamics and detection of apoptosis or
necrosis

To detect apoptosis or necrosis, one aliquot (2 x 105 cells)
was used for flow cytometric analysis. Cell fluorescence
was assessed with a Facscalibur flow cytometer (Becton
Dickinson, San Jose, CA) by using the CellQuest software
(Becton Dickinson). Standard protocols were followed to
determine annexin-positivity with an Annexin V-FITC
Apoptosis Detection Kit (Sigma, Saint Louis, Missouri).

Real - time PCR

Total RNA was extracted with Trizol (Invitrogen) from
treated cells and untreated controls after trypsinization
(for the neuroblastoma cell line) and centrifugation (for
both lines) at 1200 rpm for 10 min. Total RNA (3 ng) was
reverse-transcribed using SuperScript II and random hex-
amers (Roche Diagnostics GmbH, Mannheim, Germany)
[19]. cDNA (30 ng) was added to each well of a PCR array
for quantitative PCR (Apoptosis PCR arrays and RT? Pro-
filer PCR Array, SuperArray Bioscience Corporation, MD,
USA). The array consisted of 96 primers for 84 genes of

Page 4 of 35

(page number not for citation purposes)



BMC Medical Genomics 2009, 2:20

AM core protein-encoding genes, plus five housekeeping
genes and three RNA and PCR quality controls. PCR cycles
were performed according to the manufacturer instruc-
tions. The relative level of mRNA expression for each gene
in each sample was first normalized to the expression of
housekeeping genes (also provided in the array) in treated
samples and then normalized with respect to the level of
cDNA expression in control samples according to the 2-
AACT method [67]. Quantitative real-time PCR was per-
formed on Mx3005P™ QPCR system (Stratagene, La Jolla,
CA, USA). The results were considered significant when
the expression of a specific cDNA was at least either three
times higher or lower than that of controls.

Results

Physiology

AM general features

The 342 protein-encoding genes, that we assigned to
Homo sapiens AM, encode 596 different mRNAs that are
translated into 548 proteins (Tables 1, 2; Additional files
1, 2): 25% of them are involved in apoptosis induction,
20% in its inhibition, 40% in regulation, 15% in tissue-,
pathway-, and disease-specific functions. Despite their
common involvement with apoptosis, AM proteins are
highly heterogeneous according to three GO categories:
(i) Biological Process; (ii) Molecular Function; (iii) Sub-
cellular Location (Additional file 2). As expected, the most
represented biological process is apoptosis (65%), but
many also are involved in metabolism (54%) or cell com-
munication (55%) (Additional file 2). The most frequent
molecular functions of AM proteins are receptor- or
kinase-activity within signal transduction pathways (20%
each), nucleic acid binding (17%), transcription factor
activity (9%) (Additional file 2); their most frequent sub-
cellular localizations are the nucleus (51%), the plasma
membrane (43%), and mitochondria (10%) (Additional
file 2). We identified 110 MIRs whose targets are AM pro-
tein-encoding genes, of which fourteen had been experi-
mentally validated (Additional files 1 and 3). We also
found other five MIR-encoding genes physically located
within introns of AM protein-encoding genes: while wait-
ing for the experimental verification of their involvement
in AM functions, we propose to temporarily assign them
to the AM (Additional file 4). Accordingly, the total count
of AM genes would amount to 457. Interestingly, MIRs of
the Apoptotic Machinery preferentially target AM protein-
encoding genes that negatively regulate apoptosis or con-
trol cell cycle through transcription factors and protein
serine/threonine kinases (Additional file 2).

AM genomics and evolution

AM genes are uniformly spread in the human genome,
including the pseudoautosomal regions of X and Y chro-
mosomes (Additional file 5). However, we also identified
small clusters of phylogenetically related sequences: five
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genes of the TNFR family and two DNA fragmentation fac-
tors are localized at 1p36; three interferon genes map at
9p21; two members of the BIRC family and four caspases
are at 11q22; three members of the STAT family are local-
ized at 17q21; four members of the NALP family are local-
ized at 19q13; two Interferon Receptors are at 21q22
(Additional file 6). These clusters are conserved in at least
two other mammals (Pan troglodytes and Mus musculus)
with the exception of CASP5 and NALPS, not found in the
mouse, and the CASP12 pseudogene that turns out to be
an expressed gene in both the chimpanzee and the mouse
(Additional file 6). We also detected MIR-encoding genes
physically located within introns or UTRs of AM protein-
encoding genes; it is at present unknown if these MIRs are
involved in AM functions (Additional file 4). Phyloge-
netic analysis of unicellular eukaryotes demonstrated the
presence of several orthologs of human AM genes, for
instance Programmed Cell Death 5 and 6 (PDCD5 and
PDCDG6) that are involved in apoptosis-like phenomena
(Figure 1, Panel A). About 4% of human AM genes,
belonging to different GO categories (transcription fac-
tors, kinases, regulators of the cell cycle or of proliferation,
differentiation, and apoptosis), appear to have orthologs
in Bacteria and Archaea; however, these genes are peripheral
rather than core AM nodes (Figure 1, Panel A). Cyto-
chrome c is the only gene with a central role in apoptosis,
found in the Domains of both Prokarya and Archaea; in
metazoans the protein is a constitutive member of the
apoptosome, whilst in more ancestral organisms it is
mainly involved in oxidative phosphorylation (Figure 1,
Panel A). About 7% of human AM genes are found inside
viral genomes (both DNA and RNA viruses): they encode
transcription factors involved in cell cycle control, prolif-
eration, and differentiation (Figure 1, Panel A). Our phyl-
ogenetic analysis of AM structure in a large series of
organisms confirmed the evolutionary increase of the
number of AM genes, concurrent with that of AM structure
complexity (Figure 1, Panel B). AM functional core (BCL2
family members, Death Associated Proteins, BAG, BIRC,
Caspases) appeared in multicellular organisms and was
enriched with new molecular elements (e.g., DEATH
receptors and their ligands, CARDs and TRAFs) with the
onset of vertebrates. The emergence of mammals coin-
cided with a further increase in the number of AM genes:
this presumably was caused by the expansion of gene fam-
ilies that characterized the evolution of these genomes
(Figure 1, Panel B). Analysis of the evolutionary rate (v) of
AM proteins has allowed us to establish the evolutionary
trend of AM (Figure 1, Panel C). Most AM proteins show
a low or medium degree of conservation with respect to
the three evolutionary markers used (i.e., a v similar to
fibrinopeptide). However, there is a small group of proteins
(< 10%) characterized by a medium to high degree of con-
servation with a v value ranging between that of histone H4
and SOD2. These conserved proteins are involved in cell
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Table I: Pro AM core genes

AM GENES FAMILY PATHWAY FUNCTION
APAF| p53 Pathway, Apoptosome PRO
BAD Apoptotic Mitochondrial Pathway PRO
BAKI BCL-2 RELATED Apoptotic Mitochondrial Pathway PRO
BAX BCL-2 RELATED Apoptotic Mitochondrial Pathway, p53 Pathway PRO
BCL2LI BCL-2 RELATED Apoptotic Mitochondrial Pathway PRO*
BID BCL-2 RELATED Apoptotic Mitochondrial Pathway PRO
CARDI2 NALP Caspase Cascade PRO
CARD4 NALP Caspase Cascade PRO
CARDS8 NALP Caspase Cascade PRO
CASPIO CASPASE Caspase Cascade PRO
CASP3 CASPASE Caspase Cascade PRO
CASP6 CASPASE Caspase Cascade PRO
CASP7 CASPASE Caspase Cascade PRO
CASP8 CASPASE Caspase Cascade PRO
CASP9 CASPASE Caspase Cascade, Apoptosome PRO
CFLAR CASPASE FAS Signaling Pathway PRO*
CHUK SER/THR KINASE AKT Signaling Pathway, Induction of Apoptosis through DR3 and DR4/5 Death PRO
Receptors
CYCS Caspase Cascade, Apoptosome PRO
DAP IFN-Gamma-Induced Cell Death PRO
DAP3 IFN-Gamma-Induced Cell Death, FAS Signaling Pathway, SODD/TNFRI Signaling PRO
Pathway
DAPKI IFN-Gamma-Induced Cell Death PRO
DAXX FAS Signaling Pathway PRO
DFFA Apoptotic DNA Fragmentation and Tissue Homeostasis PRO
DFFB Apoptotic DNA Fragmentation and Tissue Homeostasis PRO
FADD FAS Signaling Pathway PRO
FAS TNF RECEPTOR FAS Signaling Pathway PRO*
FASLG TNF FAS Signaling Pathway PRO
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Table I: Pro AM core genes (Continued)
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HRK Apoptotic Mitochondrial Pathway PRO
ILIA INTERLEUKIN | CYTOKINE NF-kB Signaling Pathway PRO*
ILIRI INTERLEUKIN | RECEPTOR NF-kB Signaling Pathway PRO*
MCLI BCL-2 RELATED Apoptotic Mitochondrial Pathway PRO*
NALPI NALP FAS Signaling Pathway PRO
NFKBIA AKT Signaling Pathway, Induction of Apoptosis through DR3 and DR4/5 Death PRO
Receptors, NF-kB Signaling Pathway
RIPK I SER/THR KINASE NF-kB Signaling Pathway, Induction of Apoptosis through DR3 and DR4/5 Death PRO
Receptors
TNF TNF SODD/TNFRI Signaling Pathway PRO*
TNFRSFI0A TNF RECEPTOR Induction of Apoptosis through DR3 and DR4/5 Death Receptors, Natural Killer PRO
Cell Mediated Cytotoxicity
TNFRSFI10B TNF RECEPTOR p53 Pathway, Natural Killer Cell Mediated Cytotoxicity PRO
TNFRSFIA TNF RECEPTOR SODD/TNFRI Signaling Pathway PRO
TNFSF10 TNF Induction of Apoptosis through DR3 and DR4/5 Death Receptors PRO
TP53 TP53-RELATED Apoptotic Signaling in Response to DNA Damage, ATM Signaling Pathway, PRO
TRADD Induction of Apoptosis through DR3 and DR4/5 Death Receptors PRO
TRAF2 TRAF Induction of Apoptosis through DR3 and DR4/5 Death Receptors PRO*

The symbol "*" means involvement also in anti-apoptotic functions.

cycle regulation (e.g., AKT3, members of the cullin family,
GSK3B, SRC), signal transduction (e.g., HRAS, MAPK,
PDCD6, YWHAE, YWHAG), protein metabolism and
post-translational modifications (e.g, BECN1, MASK,
RPL5, STK25) (Figure 1, Panel C).

AM proteomics

The molecular weight (MW) of AM proteins ranges
between 4,430 daltons (isoform 6 of E2F6) and 527,622
daltons (BIRC6). About 20% of these proteins have a MW
of approximately 20 kD (Additional file 7). Analysis of the
post-translational modifications of AM proteins from the
database HPRD showed that the most frequent are phos-
phorylation (35%) and proteolytic cleavage (15%). For
25% of these proteins there is no PTM information (Addi-
tional file 7). About 16% of AM proteins are metallo-pro-
teins containing zinc (9.5%), calcium (3.2%),
magnesium (2.9%), iron ions (0.9%) (Additional file 7).
By scanning their primary structure, we identified 113 dif-
ferent motifs or domains with a total of 471 different
structural modules: as expected, many AM proteins com-

prise more than a single module (Additional file 8). Direct
structural characterization demonstrated that about 6.5%
of AM proteins are NUPs [56]. With the exclusion of struc-
tural modules widespread within the human proteome
(as the Protein Kinase domain and ANK Repeats), the
most frequent structural motifs (i.e., BH, CARD, CASP,
TNFR) are linked to AM core functions such as reception,
transduction and execution of death signals (Figure 2,
Panel A). By overlapping these data to the interactome, it
is possible to identify a hypothetical pathway of interac-
tions among protein domains, coupling it to their propen-
sity to perform anti- or pro-apoptotic functions (Figure 2,
Panel B). This analysis confirms previous literature data,
suggesting that the death domains CARD, DAPIN,
DEATH, DED can mediate and modulate both the recep-
tion as the transduction of apoptotic signals originating
from the plasma membrane (TNFR domains), and of
those incoming from mitochondria (BCL2 domains in all
their variants resulting from recombination of BH
motifs), up to the final effectors (CASP domains) (Figure
2, Panel B) [68]. The death domains may reciprocally
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Table 2: Anti AM core genes

AM GENES FAMILY PATHWAY FUNCTION
AKTI SER/THR KINASE FAS Sgnaling Pathway ANTI
BAGI BCL2-ASSOCIATED ATHANOGENE SODD/TNFRI Signaling Pathway ANTI
BAG3 BCL2-ASSOCIATED ATHANOGENE SODD/TNFRI Signaling Pathway ANTI
BAG4 BCL2-ASSOCIATED ATHANOGENE SODD/TNFRI Signaling Pathway ANTI
BCL2 BCL-2 RELATED Apoptotic Mitochondrial Pathway, p53 Pathway ANTI

BCL2LI BCL-2 RELATED Apoptotic Mitochondrial Pathway ANTI*
BIRC2 BIRC Apoptotic Mitochondrial Pathway, Caspase Cascade ANTI
BIRC3 BIRC Apoptotic Mitochondrial Pathway, Caspase Cascade, SODD/TNFRI ANTI

Signaling Pathway

BIRC4 BIRC Apoptotic Mitochondrial Pathway, Caspase Cascade, B Cell Survival ANTI
Pathway

BIRC5 BIRC B Cell Survival Pathway ANTI
CFLAR CASPASE FAS Signaling Pathway ANTI*
FAS TNF RECEPTOR FAS Signaling Pathway ANTI*
ILIA INTERLEUKIN | CYTOKINE NF-kB Signaling Pathway ANTI*
ILIRI INTERLEUKIN | RECEPTOR NF-kB Signaling Pathway ANTI*
MAP3K 14 SER/THR KINASE NF-kB Signaling Pathway, Induction of Apoptosis through DR3 and DR4/5 ANTI

Death Receptors

MCLI BCL-2 RELATED Apoptotic Mitochondrial Pathway ANTI*
MYD88 NF-kB Signaling Pathway ANTI
NFKBI AKT Signaling Pathway, Induction of Apoptosis through DR3 and DR4/5 ANTI

Death Receptors, NF-kB Signaling Pathway

NFKB2 AKT Signaling Pathway, Induction of Apoptosis through DR3 and DR4/5 ANTI
Death Receptors, NF-kB Signaling Pathway

RELA NF-kB Signaling Pathway ANTI
TNF TNF SODD/TNFRI Signaling Pathway ANTI*
TNFRSFI10C TNF RECEPTOR Natural Killer Cell Mediated Cytotoxicity ANTI
TNFRSFI0OD TNF RECEPTOR Natural Killer Cell Mediated Cytotoxicity ANTI
TRAF2 TRAF Induction of Apoptosis through DR3 and DR4/5 Death Receptors ANTI*

The symbol "*" means involvement also in pro-apoptotic functions.
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interact as homomers or heteromers (CARD and DED), as
they do with other protein domains that control their sig-
nal transduction activity (i.e., MATH) (Figure 2, Panel B).
Core AM nodes are negatively regulated by: (1) the BAG
domain, which negatively modulates the BCL2 domains
of pro-apoptotic proteins; (2) the BIR domain, which
represses the CASP domains [68]. This model is based on
high-throughput interactome data (see Methods) and is
consistent with other motif interaction maps [69-72],
even though some of its specific details are different
respect to low-throughput data [6,21,73]. Typically, the
comparison between HT analysis and tests performed
gene by gene (or protein by protein) results in a mis-
matched set of data [74,75]. This is especially true for
interactome data. The very large spectrum of the analysis
is generally coupled to low-confidence results. However,
as demonstrated by a large amount of literature [22,76],
the worth of HT data remains valid because they allow us
to observe the behaviour of a whole system (a cell or a
molecular machinery).

AM interactomics and molecular networks

According to BIND and HPRD data, protein-protein and
protein-nucleic acids interactions are known for 86% of AM
genes for which we found 1012 interactions (Figure 3, Panel
A). The AM network is structurally and functionally based on
the interactions among members of the BCL2, Caspase, and
STAT families, which comprise about 42% of all links (Figure
3, Panel B). Its hubs, interacting with more than 10% of their
neighbours, are CASP3 (13.5%), CASP8 (12.4%), TRAF2
(12%), and BCL2 (11%). By considering different centrality
measures (betweenness, centroid, closeness, degree, eccen-
tricity), the most central AM nodes are AKT1, CASP3, CASPS,
MAPK1 (Figure 3, Panel C). These nodes, as many others
with high centrality such as BCL2 or TRAF2, represent lethal
embryonic perinatal or lethal postnatal genes in the mouse
(MGI phenome data). Inside the AM network we identified
two clusters of highly interconnected nodes: (a) the BCL2
family interaction cluster (BAX, BAK1, BCL2, BCL2L1, and
BCL2L10); (b) the STAT family interaction cluster (CSF2RB,
EPOR, NMI, STAT1, STAT3, STAT5A, and STAT5B). This
could be potentially important for understanding the func-
tional relationships among these gene in physiology and
pathology. By comparing the human AM network with that
of M. Musculus, C. elegans, D. Melanogaster, we found that the
interactions between BCL2/APAF1, BCL2/BAX, BIRCs/
CASPs, CASP9/APAF1, and CASPs/CASPs were conserved in
these organisms (Figure 4). Interestingly, we failed to find
any significant correlation between network centrality and
specific phenotypic features.

Pathology

AM oncogenomics

By overlapping the AM genome map with the chromosome
aberration map in tumours, we found that AM protein-
encoding genes at 8q23 and 8q24 are potentially involved in

http://www.biomedcentral.com/1755-8794/2/20

gain-type mutations (duplication or amplification) with a
frequency higher than 20% in about 50% of cancers. This
also occurs with AM genes at 1q23 and 1g32 (about 40% of
cancers). On the contrary, AM genes at 8p21 and 8p22 are
located in regions that are loss-prone in 35% of cancers (Fig-
ure 5, Panel A; Additional file 9). The most represented can-
cers in this amplification/deletion AM map are
neuroblastoma (146 AM protein encoding genes), lung (84
AM protein encoding genes), pancreas (79 AM protein
encoding genes) (Figure 6, Panel A). MIRs regulating the
expression of AM genes (most frequently endowed with anti-
apoptotic functions) also are localized in regions frequently
altered in cancer: MIR9-1, MIR29B2, MIR29C, MIR181B1,
MIR199A2, MIR205, MIR213 map to chromosome 1 long
arm, a gain-prone region in 6 out of 14 of cancer models; the
same is true for MIR30B and MIR30D, both localized at
8q24.22, a gain-region in 7/14 of cancer models (Figure 5,
Panel B). On the other hand, MIR124A1 and MIR320 are
localized in loss-prone regions in 5/14 of the models (Figure
5, Panel B). Screening of databases for somatic mutation in
cancer demonstrated that the most frequently mutated AM
protein-encoding genes are the protooncogene BRAF
(mutated in 100% of cancer models) and the tumour sup-
pressors CDKN2A and TP53. The latter two are altered in
100% and 90% of cancer models analyzed, respectively
(Table 3; Figure 6, Panel B). BRAF is frequently subject to
point mutations in skin and thyroid cancers (41% and 36%,
respectively), but at much lower frequencies in the other
tumour types (1-5%). CDKN2A is mutated in about 10-
15% of samples, with the highest incidence in pancreas
tumours. Point mutations were detected at the TP53 locus
with an incidence of about 50% in each tumour model, with
a maximum of 83% in thyroid neoplasms (Figure 6, Panel
B). Intriguingly, BRAF, CDKN2A, TP53, RB1 are frequently
co-mutated in the same cancer types, strongly suggesting that
this co-occurrence could be important for activation or pro-
gression of the neoplastic process (Table 3).

AM epigenomics

According to PubMeth, DAPK1, PYCARD, RB1, and TP73
are methylated in at least half of our fourteen cancer mod-
els (Table 4). According to our transcriptome data, DAPK1
(reported to be a tumor suppressor candidate) is down
expressed in breast, colon cancer, leukemia, neuroblast-
oma and is methylated in all models analyzed. However,
unlike other hypermethylated genes, DAPK1 is localized
in a genomic region that is never loss-prone in cancer.
This could suggest that its down regulation, possibly rele-
vant in some cancer phenotypes, may be obtained
through aberrant methylation rather than genome muta-
tions, possibly because the deletion of its chromosomal
region could impair the vitality of the cell.

AM transcriptomics: protein-encoding genes
By performing the normalization and discretization of the
expression of AM protein-encoding genes in breast, colon,
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kidney, leukaemia, liver, lung, neuroblastoma, ovary,
pancreas, prostate, skin, stomach, and thyroid, we identi-
fied those that are transcriptionally deregulated in these
tumours (Figure 7, Panel A; Additional file 10). Expres-
sion of these AM genes is frequently altered in neuroblas-
toma and leukaemia (about 60% and 52%, respectively)
(Figure 7, Panel B). Our analysis showed that AATF,
LGALS3, and SRC are up regulated in 8/13 of cancer mod-
els, and CDC2L2, E2F6, LGALS9, PDCDS8, RELB, TRADD,
and TRAF2 in 7/13 (Figure 7, Panel A; Additional file 10).
On the other hand, the most frequently down regulated
AM genes are TGFBR2 (7/13 of cancer models), BAG3,

CLU, LGALS1, LTBR, SGK (in 6/13) (Figure 7, Panel A;
Additional file 10). Notably, comparison of AM transcrip-
tome patterns suggests that each cancer model has its own
specific AM transcriptome profile, even if some (e.g.,
leukemia and neuroblastoma) showed similar patterns
(Figure 7, Panel C). Not surprisingly, the positive regula-
tors of apoptosis tend to be down regulated in all cancer
models (in particular in cancers of the ovary and thyroid);
also the negative regulators of apoptosis are generally
down regulated in most models, except for pancreas, pros-
tate, thyroid cancers in which they are up regulated
instead. These data confirm the complexity of the cancer
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Figure 4
The most evolutionarily conserved interactions in AM.
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genome alterations and further emphasize the need for a
System Biology approach to its pathogenesis and therapy
(Figure 8, Panels A, B).

AM transcriptomics: MIR-encoding genes

By searching the database VITA, we determined the
expression profile of MIRs predicted to target AM proteins
in colon, kidney, lung, pancreas, prostate cancers (Figure
9, Panels A, B). Our analysis demonstrated that different
AM proteins, that are up regulated in different cancers, are
computationally predicted targets of MIRs, that are down
regulated in the same tumours (Table 5). In particular,
CUL3, over expressed in kidney and prostate cancers, is a
target of several dysregulated MIRs: MIR22, MIR23A,
MIR23B, MIR218-1, MIR218-2, and MIR301, which are
down regulated in kidney cancers, and of MIR22,
MIR23A, MIR181A, and MIR181C, which are down regu-
lated in prostate cancers (Table 5). These data supply a list
of new candidate MIRs possibly involved in cancer (Table
5). Our proposal is strengthened by the presence, within
this list, of MIRs that were already experimentally demon-
strated to target AM protein encoding genes (Additional

file 3). In fact, we found that in lung cancer over expres-
sion of BCL2 could be explained by the under expression
of MIR15A, MIR16-1, and MIR16-2, while in kidney
tumours over expression of DFFB, HTATIP and RELA
could be related to the under expression of MIR124A-1,
MIR124A-2, and MIR124A-3 (Table 5). Similar to the
AATK gene that contains it, also MIR338 is up regulated in
neuroblastoma (M Ragusa et al., 2009, submitted).

AM genomics vs transcriptomics

Overlapping the chromosomal mutation map to AM
expression profiles in each cancer model showed that
28% of AM genes with transcriptional alterations were
located in genomic regions potentially mutated in neopla-
sia. The highest rate of overlapping was found in prostate
cancers (50% in regions of gain, 11% in regions of loss)
and neuroblastoma (35% in regions of gain, 29% in
regions of loss), whilst the lowest was in lung (7% in
regions of gain, 2.5% in regions of loss) and liver cancers
(8.5% in regions of gain, 4.4% in regions of loss) (Figure
10; Additional file 11). We overlapped the MIR transcrip-
tome to CGH-array data in colon, kidney, lung, pancreas,
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and prostate tumours. Prostate cancer is the one with the
highest number of altered genomic regions and concomi-
tant aberrant expression of MIR genes (50% of regions
with gain- or loss-mutations also show up- or down regu-
lation of their MIRs). In many cases we found that down
regulation of a MIR could correspond to the heterozygous
deletion of the encoding gene (Table 6).

AM proteomics

By performing the normalization and discretization of
AM protein expression in cancers of the breast, colon, kid-
ney, leukaemia, liver, lung, neuroblastoma, ovary, pan-
creas, prostate, skin, stomach, thyroid, we identified a set
of proteins that are dysregulated in these tumours (Figure
11, Panels A, B). EP300, ISGF3G, STAT1, and STAT3 are
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up regulated in 8/13 of cancer models, while ATM, BAX,
BCL2L11, HTATIP2, LGALS3, MAPK1, and TP73L are
down regulated in half of cancer models (Figure 11, Panel
A). By overlapping protein expression data to transcrip-
tome data, we identified the AM genes with transcriptome
alterations mirroring their proteome dysregulation (Table
7). Because of this degree of consistency, these genes may
be assumed to represent relevant cancer candidates in dif-
ferent tumour models. We found that this correlation was
more evident in leukemia (17.4% of up regulated, and
7.6% of down regulated), liver cancer (27% of up regu-
lated, and 5.5% of down regulated), and neuroblastoma
(18.7% of up regulated, and 13% of down regulated) (Fig-

ure 12, Panel A). We also identified those genes that are
potentially rearranged (both gain- or loss-type of muta-
tion) and have altered transcriptome and proteome
expression (Table 8). Cancers showing a noteworthy over-
lapping of genome mutations, transcriptome dysregula-
tion and altered protein expression were pancreatic
tumours and neuroblastoma for up- or down regulated
AM proteins, and lung cancers for down regulated AM
proteins (Figure 12, Panel B). Analysis of the function of
dysregulated AM proteins showed that the positive regula-
tors of apoptosis tend to be down regulated in all cancer
models, whereas the negative regulators of apoptosis gen-
erally tend to be up regulated in most models (Figure 13,
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Table 3: AM genes mutated in specific cancers

Breast ATM — BIRCé — BRAF — BRCA2 — CDKN2A — CHUK — DAPK| — HRAS — HUWEI — NFKBI — NFKBIA — PTPN I3 — RBI -
STATI —TP53
Colon BRAF — BRCA2 — CDKN2A —RB| — SRC — TP53
Kidney ATM — AVEN — BRAF — CASP3 — CASP9 — CDKN2A — CUL3 — HRAS — MAPK8 — RBI — TP53
Leukemia ABL| — BRAF — CDKN2A — HRAS — RBI — TP53
Liver BRAF — BRCA2 — CDKN2A —RBI — TP53
Lung AATK — ABLI — APAFI — ATM — BCL2L 13 — BIRC4 — BIRC6 — BIRC8 — BNIP3 — BRAF — BRCA2 — CARDé6 — CASP14 —

CASP4 — CASP5 — CDKN2A — CHUK — CREBBP — CUL4B — CYCS — DAPK3 — FASTK — HRAS — IRAK3 — MAP3K 14 —
MYBL2 — NTRKI — P53AIP| — PAX7 — PDCD5 — RAFI —RBI — RET — SGK — SGK3 — STK17B — STK3 — TGFBR2 — TNFRSF9
—TP53

Neuroblastoma BRAF — CDKN2A — TP53

Ovary AATK — BRAF — BRCA2 — CDKN2A — DAPK3 — MAP3K 14 — NTRKI — RAFI —RBI — RET — STK3 — TP53
Pancreas BIRC6 — BRAF — CDKN2A — FAFI — TP53
Prostate BRAF — CDKN2A — HRAS — RBI — TP53
Skin ABLI —BAX —BCL2LI3 —BCL2LI4 — BIRC3 — BIRC6 — BNIP3 — BRAF — BRCA2 — CARD 14 — CARD6 — CASP10 — CASP4 —
CASP8 — CD40 — CDC2LI — CDKN2A — COROIC — CREBBP — CUL4A — DAXX — E2F6 — ENCI — HIPK2 — HRAS — IL4R —
MAPK7 — MYCN — PDCD4 — PDCD6IP — RBI — RIPKI — TNF — TNFRSFIA — TNFRSF8 — TNFRSF9 — TNFSFI10 — TNFSFI3 —
TP53 — TP73L — TRAF2
Stomach AATK — ATM — BRAF — CDKN2A — FASTK — HRAS — JAK| — NTRKI — RBI — SGK — TGFBR2 — TP53
Thyroid BRAF — CDKN2A — HRAS — RET

Panels A, B). The same analysis performed on AM genes
with common transcriptome/proteome alterations
showed a tendency to flattening of the anti/pro genes bal-
ance.

AM interactomics and molecular networks

Analysis of the relationship between the link number of a
gene to genome mutations and transcriptome alterations
allowed us to discover that the genes with more links to
mutated genes are more likely to be dysregulated in
tumours (Figure 14). Our analysis demonstrates that the
hubs of the AM network typically represent the nodes with
the highest number of genome, transcriptome or pro-
teome alterations in all cancer models analyzed, even
though the oncogenic relevance of each hub seems to be
tumour (or tumour group) - specific (Additional file 12).
Moreover, we found that the average degree of the
mutated nodes is significantly higher than the average
degree of not mutated ones (p < 0.0001, Wilcoxon signed-
rank test). Intriguingly, approximately 70% of NUPs are
nodes with a higher degree of connectivity than the aver-
age AM proteins and some of them are hubs (i.e., AKT1,

BCL2, BCL2L1, CDKN2A, and TP53): indeed, the NUPs
showed a higher degree (degree > 17) than the other non-
NUP proteins (p < 0.01, Fisher's exact test).

AM pharmacogenomics

By plotting the available data related to drugs targeted at
the AM network, we found that most of AM proteins tar-
geted by drugs were characterized by high connectivity;
particularly, there was a highly significant association
between the betweenness of these proteins and their being
targets of drugs (p < = 0.004072, Wilcoxon Signed-Rank
Test) (Figure 15).

Apoptosis induced by imatinib in K562 cells and by fenretinide in SH-
SY5Y cells

A time course FACS analysis with Annexin V-FITC demon-
strated that following treatment of K562 cells with Imat-
inib 1 puM, annexin-positive cells appeared 12 h after
treatment (17% of treated cells). The percentage of apop-
totic cells reached its peak 24 h after treatment (22.3%),
while the conclusion of the apoptotic process apparently
occurred within 72 h (Figure 16, Panel A). Real time PCR
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Table 4: Methylations of AM genes associated to cancer
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GENE

Breast Colon Kidney Leukaemia Liver Lung NB Ovary Pancreas Prostate Skin Stomach Thyroid

ABLI

APAFI

47

98 35

ATM

BCL2

BCL2LI0

22

52

80

BDNF

80

BIRC4

75

75

BNIP3

66

80 49

BRCA2

CASP8

100 37

CD44

20

33

CDKNIA

41

CFLAR

DAPKI

55

47

32 16 7 34 16

67 14 16 19 51 24

DIABLO

25

DUSPé

42

FAS

40

FOXEI

70

GADD45A

60

GADD45G

20

33 20 40

GPR37

72

GSK3B

HRAS

100

HRK

IGFBP3

38 70

43 32 71

PYCARD

25

RBI

TGFBR2

100
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Table 4: Methylations of AM genes associated to cancer (Continued)
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TNFRSFI0 48

A

TNFRSFI10 70 26 23 25 31 65

Cc

TNFRSFI10 74 28 3l 25

D

TP53 12 13

TP73 50 6l 20 22 29 14 29

Numeric values correspond to the mean of methylation degree (% of sample where methylation was detected in primary samples, according to

Pubmeth).

transcriptome analysis of 84 AM core genes was per-
formed at 4 h after induction (before K562 cells had
shown any phenotypic sign of apoptosis) and at 24 h (at
the peak of apoptosis according to annexin positivity)
(Figure 16, Panel A). When checked with the 2-2ACT
method, the 4 h point showed no significant change of
AM genes expression with respect to the control, while the
same analysis at the 24 h point revealed remarkable mod-
ifications in the transcriptome: these consisted of an up
regulation of the genes that trigger or positively control
the apoptotic mitochondrial pathway (proapoptotic
members of the BCL2 family, inhibitors of BCL2 and BCL-
XL, apoptosome members), caspases (CASP3, CASP4,
CASP6, CASP7, CASP8, and CASP9), or their positive reg-
ulators. More specifically, the following pro-apoptotic AM
genes reached a peak of expression at this time point:
APAF1, BCLAF1, BIK, TNFSF10, and TNFRSF25 (Figure
16, Panel C). TP73 was over expressed with respect to the
control, suggesting a possible activation of a DNA repair
pathway or the activation of genes that positively control
apoptosis or negatively modulate the cell cycle. The
increased expression of many caspases is concomitant to
the up regulation of BIRC family members (caspases
inhibitors), suggesting a co-existing subpopulation of
cells resistant to apoptosis induction (Figure 16, Panel C).
Focusing on the specific biological pathways activated in
this model, we found that most of the AM genes down
regulated at 24 h belong to the TNF/Stress Related Signal-
ing and SODD/TNFR1 Signaling Pathways, while the
members of the caspase cascade and mitochondrial apop-
totic signalling were all up regulated. Among the AM
genes whose expression was apparently unaffected in our
model, about 70% are potential candidates for involve-
ment in leukemia (Figure 16, Panel D). The Annexin-V
propidium test on SH-SY5Y, treated with fenretinide 3
uM, showed that apoptosis peaked 24 h after drug admin-
istration and was apparently concluded at 72 h (Figure 16,
Panel B). A real time PCR analysis of AM core genes was
performed in the early phases of treatment (12 h), at the
point with the highest percentage of annexin positive cells

(26%) (24 h), and at the conclusion of the process (72 h).
Expression of pro-apoptotic genes GADD45A, TNFRSF1A,
and TNFRSF10A peaked at 24 h. Similar to K562 cells, the
real-time expression data in treated SH-SY5Y cells showed
a massive activation at 72 h of the caspase family genes
CASP1, CASP4, CASP5, CASP10, and CASP14, including
CASPS, that is emi-methylated in the SH-SY5Y cell line
and has been reported to be induced after fenretinide
treatment [77] (Figure 16, Panel C). 72 h after treatment
both pro- and anti-apoptotic members of the Bcl2 family
were induced: some pro-apoptotic members (i.e., BAX,
BCL2L10, BCL2L11) began to increase slightly starting at
24 h, while some anti-apoptotic genes (i.e., BCL2,
BCL2A1, MCL1.) were down regulated at 24 h. Death
receptors and their ligands (CD40, CD40LG, CD70, FAS,
FASLG, LTBR, TNF, TNFRSF11B, TNFRSF21, TNEFSFS,
TNESF10) decreased during the post-treatment interval 12
h - 24 h, reaching their highest expression at 72 h; expres-
sion of the transducers AKT1 and RIPK2 followed a simi-
lar kinetics. Interestingly, the caspase inhibitors BIRCs, in
particular BIRCS8, showed an increased expression at 72 h.
TP53 and TP73 expression values were lower at 24 h than
at 12 h and increased at 72 h, while GADD45A exhibited
its peak of expression at 24 h (Figure 16, Panel C). By ana-
lyzing the modulation of the biological pathways, we
found that during the interval 12 h - 24 h many genes
involved in the Caspase cascade and the TNF pathways
were transcriptionally down regulated, while during the
interval 24 h - 72 h most of genes up regulated were mem-
bers of the Fas and TNF pathways, the Caspase cascade
and the mitochondrial apoptotic signalling. The number
of core AM genes, transcriptionally changed after Fenreti-
nide administration, increased during the time course
(about 34% and 50% at 24 h and 72 h, respectively) (Fig-
ure 16, Panel D). Similar to K562 cells, an important frac-
tion of transcriptionally unaltered genes (about 60%) are
candidates, previously identified for their potential
involvement in neuroblastoma: as with the K562 cell line,
this may suggest that their activation is prevented by criti-
cal mutations. Again similar to K562 cells, we also
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Table 5: Transcriptome and proteome alterations of AM targets of MIRs

GENE mRNA PROTEIN MIRs
BCL2 Up regulated in LUNG Up regulated in LUNG MIRI5A, MIR16-1, MIR16-2, MIR34A down regulated in LUNG
CUL3 Up regulated in KIDNEY, Up regulated in KIDNEY, MIR22, MIR23A, MIR23B, MIR218-1, MIR218-2 MIR301 down
PROSTATE PROSTATE regulated in KIDNEY; MIR22, MIR23A, MIRI8IA, MIRI8IC
down regulated in PROSTATE
DFFB Normal in KIDNEY Up regulated in KIDNEY MIR124A-1, MIRI124A-2, MIRI24A-3 down regulated in
KIDNEY
HTATIP Normal in KIDNEY Up regulated in KIDNEY MIR124A-1, MIR124A-2, MIR[24A-3 down regulated in
KIDNEY
ILIA Up regulated in LUNG; normal in  Up regulated in LUNG; normal MIR30B down regulated in LUNG and PROSTATE; MIR30D
PROSTATE in PROSTATE down regulated in LUNG
IRFI Normal in LUNG, KIDNEY, Up regulated in LUNG, MIRI30A, MIR130B down regulated in LUNG, KIDNEY,
PANCREAS KIDNEY, PANCREAS PANCREAS; MIR23A down regulated in LUNG, KIDNEY
NGFR Normal in KIDNEY Up regulated in KIDNEY MIR7-1, MIR7-2, MIR7-3, MIR128A, MIR128B down regulated in
KIDNEY
PDCD4 Down regulated in LUNG Up regulated in LUNG MIR15B, MIR16, MIR145, MIR195 down regulated in LUNG
RBI Normal in KIDNEY Up regulated in KIDNEY MIR98, MIRLET7G down regulated in KIDNEY
RELA Normal in KIDNEY Up regulated in KIDNEY MIR[24A-1, MIR124A-2, MIR124A-3 down regulated in
KIDNEY
STAT3 Normal in KIDNEY Up regulated in KIDNEY MIR106 down regulated in KIDNEY
TP73L Down regulated in LUNG; Up regulated in LUNG, MIR92 down regulated in LUNG, PANCREAS

normal in PANCREAS PANCREAS

detected a modification of the expression of AM genes
that based on our computational analysis were not
expected to be involved in neuroblastoma pathogenesis:
this confirms, if needed, the importance of the experimen-
tal verification of computational data (Figure 16, Panel
D).

Discussion

The omic characterization of the apoptotic machinery: a
model for a system biology approach to Homo sapiens
biopathology

Understanding the molecular bases of complex and bio-
medically important phenotypes, as cancer and degenera-
tive diseases, is one of the critical challenges for
contemporary BioMedicine [14,78]. Different approaches
have been proposed to explain cancer onset and heteroge-
neity, ranging from the study of single genes to large-scale
system analysis [79,80]. The molecular oncology data
obtained in the last decades have shown that the neoplas-
tic phenotype is mainly due to genetic or epigenetic
defects of two complex molecular machineries: the Cell
Cycle and DNA Replication Apparatus (CCDRA) and the

Apoptotic Machinery (AM) [22,82,83]. Typically, the bio-
pathology of tumour cells is double faced: these cells are
prone to uncontrolled proliferation with a scarce propen-
sity to differentiate [84,85], but they also possess an ever
evolving tendency to escape cell death: the consequent
immortality provides them with a strong selective advan-
tage over the wild-type ones, also endowing them with
resistance to chemotherapy. Accordingly, many mutations
and dysregulations of CCDRA and AM genes are found in
all cancer types [22,82,83]. However, the involvement of
apoptosis dysfunctions in cancer has remained elusive at
the system level. Based on these premises, we decided to
characterize the Omics of the Apoptotic Machinery for
using them: (i) as a tool to identify new cancer genes; (ii)
to profile cancers for diagnostic purposes; and finally, (iii)
to pinpoint new targets for pharmacological therapy. Our
data suggest that the potential involvement of AM genes is
heterogeneous in different cancer models, both for
number and type of chromosomal breakpoints as for fre-
quency of genomic mutations, suggesting heterogeneity
of pathogenesis (Figures 5, 6). The highest levels of chro-
mosomal mutations involving AM loci were observed in
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Figure 10
Overlapping between AM genome alterations and transcriptome dysregulation in cancer. Percentage of AM
genome/transcriptome alterations in cancer models.

Table 6: MIR genes localized in rearranged genome regions and transcriptionally altered

Genome/ COLON KIDNEY LUNG PANCREAS PROSTATE
Transcriptome

GAIN/UP MIRI10A
GAIN/DOWN MIR133A2%, MIRI-I* MIRI-1*
LOSS/DOWN MIRI-2* MIRI33A1*,  MIRLET7G, MIR128B MIRLET7FI, MIR130B, MIR141, MIRI5A, MIR16-1,
MIR30C-1 MIRLET7G, MIRLET7D, MIR182, MIRI9A, MIRI19A, MIR19BI
MIR101-2, MIRI0A, MIRI19BI, MIRI9B2,
MIR128B, MIR 43, MIR200C, MIR222,
MIR152, MIRI5A, MIR92AI1, MIR92A2
MIR15B, MIR16-1,
MIR195, MIRI99B,
MIRI19A, MIRI9BI,

MIR218-1, MIR218-2,
MIR23B, MIR26A-1,
MIR29C, MIR30B,
MIR30D, MIR320,
MIR34A, MIR34B

The symbol * indicates those mature MIRs that could be encoded by different pre-MIR genes, localized in different genomic positions.
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neuroblastoma, lung and pancreatic cancers (Figure 6).
Their paucity in other cancers suggests either different
pathomolecular mechanisms (e.g., still uncharacterized
point mutations outside coding regions), or the involve-
ment of other cellular machineries and pathways, such as
CCDRA or the DRA [86,87].

AM structure and evolution

Few AM peripheral proteins are expressed in Prokaryotes
and unicellular Eukaryotes, possibly with biological roles
unrelated to metazoan apoptosis [10]. At the time of plu-
ricellularity onset, the molecular core of apoptosis induc-
tors and executors (caspases, death receptors, and
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teome alterations in cancer.
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Proteome alteration of regulators of apoptosis. Panel A: Positive regulators of AM. Panel B: Negative regulators of AM.
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Table 7: AM genes with concordant transcriptome and proteome dysregulation in cancer

BNIPI+, CSEIL+, EP300+, IL18+, LGALS3BP+, NTRK I+, STAT I+, TP53+, CD44-, RELA-, STAT5A-, STAT5B-

BREAST
COLON CDKN2A+, HTATIP2-, PTPNI 3-
KIDNEY AATF+, ANGPTL4+, CASP10+, CASP9+, CCNEI+, CD44+, LGALSI+, LGALS3+, RIPK|+
LEUKEMIA AATF+, ACIN I+, BAK I+, BCL2+, BCL2L 13+, CASP2+, CCNEI+, CDC2L 1+, CSF2RB+, CYCS+, FADD+, GRB2+,
ILIA+, JAK1+, MAPK |+, NMI+, STAT |+, STAT3+, TRAF6+, CREBBP-, GZMB-, IL65T-, MCLI-, TNFSFI0-
LIVER BAK 1+, CD44+, EP300+, LGALS |+, LGALS3+, MAPK I+, TNFRSFIB+, DAP3-
LUNG BAK I+, CD44+, EP300+, LGALS I+, LGALS3+, MAPK I+, TNFRSFIB+, DAP3-
NEUROBLASTOMA  ACINI+, BBC3+, BCL2+, BID+, BIRC5+, CASP6+, CCNE I+, CHUK+, CSEIL+, CUL4B+, CYCS+, DAXX+, GRB2+,
HRAS+, ILIRI+, MAPK8+, MOAPI|+, PDCD4+, PYCARD+, RBI+, TRAF2+, AKT |-, ANGPTL4-, ATM-, CASP8-,
CLU-, CREBBP-, CUL3-, DFFB-, HTATIP2-, MMPI |-, NFKBIA-, NTRK I -
OVARY ATM+, BAGALT I+, BAK I+, BAX+, NTRKI+, PIK3R1+, STAT |+
PANCREAS BAD+, CD44+, LGALS3+, LGALS3BP+, RELA+, SRC+, STAT I+, STAT3+, CLU-, PDCD4-
PROSTATE BAD+, BCLI0+, CASP10+, CUL3+, CYCS+, FADD+, JAKI+, MALT |+, CD44-, LGALS3-, LGALS3BP-
SKIN RIPK 1+, TRAF2+, CD44-
STOMACH BCLI0+, CD44+, CDKN2A+, SRC+, STAT |+, STAT3+, PDCD4-

+ indicates up regulation, — indicates down regulation.

Table 8: AM genes mapping in frequently mutated genome regions with concordant transcriptome and proteome alterations in

cancer
BREAST LIVER LUNG OVARY PANCREAS STOMACH NEUROBLASTOMA
NTRK I+ BAKI+ CD44- BAKI+ LGALS3+ STAT3+ AKTI-
AKTI- NTRK I+ LGALS3BP+ SRC+ ANGPTL4-
STATI+ RELA+ ATM-
SRC+ DFFB-
STATI+ HTATIP2-
STAT3+ NFKBIA-
BAD+ BCL2+
PDCD4- BID+
CLU- BIRC5+
CSEIL+
CYCS+
DAXX+
GRB2+
ILIRI+
RBI+

The sign + indicates the potential gain according to CGH data and up regulation in transcripts and proteins, while — indicates the potential loss

according to CGH and down regulation of transcripts and proteins.
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Correlation between mutated links and transcrip-
tome alterations. The X-axis represents the distribution
classes of AM network genes (without mutations), based on
the number of the cancer mutated genes linked to a specific
gene. The Y-axis represents the weighted average of the
altered transcriptome AM genes for each class.

adapters) was already assembled (Figure 1). With the
appearance of Vertebrates, the evolution of the Apoptotic
Machinery proceeded by accretion [88,89] (that is,
through the recruitment of new molecules capable of
interacting with the existing ones), possibly accelerated by

number of drug targets

ouOOOOOOOOO
e high betweenness
e low betweenness

Figure 15

Correlation between drug targeting and between-
ness of nodes. yFiles Circular Layout of AM network that
emphasizes the nodes with high betweenness. The nodes
with high betweenness are localized on the left half of the cir-
cle (blue colour and highest density of the edges). These pro-
teins are characterized by their propensity to be drug
targets, as shown with the major size of nodes.

http://www.biomedcentral.com/1755-8794/2/20

the presence of molecular motifs favouring specific inter-
actions. Its complexity further increased with the arrival of
mammals, very likely due to the expansion of gene fami-
lies that characterized their evolution (Figure 1) [90-92].
This is a common trend in the evolution of Eukaryotes,
previously observed for other molecular machineries such
as those controlling intracellular molecular trafficking or
RNA interference [93,94]. The analysis of a more complex
molecular apparatus (such as CCDRA) showed that Homo
sapiens shares only 60% of its CCDRA genes with other
eukaryotes (e.g., Saccharomyces cerevisiae and Arabidopsis
thaliana). Interestingly, a sizeable fraction of the genes
expressed during the cell cycle do not have orthologs in all
the organisms analyzed: this suggests that each species
may also synthesize a different and specific set of cell cycle
proteins [95,96]. By analogy, the presence of different AM
transcriptome profiles in different organisms could be
expected. Phylogenetic analysis of unicellular eukaryotes
identified orthologs of several AM genes encoding tran-
scription factors and kinases, that in Metazoa are involved
in the control of cell cycle, proliferation, differentiation
and apoptosis (Figure 1). This could suggest that a molec-
ular apparatus, responsible for the execution of a geneti-
cally guided form of cell death, was present in the first
Eukaryotes: however, many of the genes performing it
seem to be exclusive of unicellular eukaryotes [97]. As
expected, higher Eukaryotes share only few AM genes with
Bacteria. It seems logical to hypothesize that the biomo-
lecular function of these proteins could be different in the
two Domains and not necessarily bear a functional rela-
tionship with cell death in Bacteria (original sin hypothe-
sis) [10,98]. AM genes shared with viral genomes (both
DNA and RNA viruses) are transcription factors involved
in the control of cell cycle, proliferation, differentiation
and in the MAP kinase pathway. These viral genes possess
an oncogenic potential and presumably are the result of a
horizontal gene transfer from vertebrates [99]. Most AM
proteins show a medium-to-low conservation degree and
have an evolutionary rate similar to that of fibrinopeptide
(Figure 1). This high rate of evolution suggests a relaxed
structure/function relationship, that would allow them to
stand many types of mutations without impairing their
biological role. Many AM genes were found to be mutated
in different types of neoplasia. Indeed, the loss of the self-
destruction ability of a cell gives it an immediate selective
advantage over the others, even though it may be detri-
mental for the whole organism [100]. Furthermore,
almost 50% of AM genes are members of a gene family:
these genes tend to evolve more quickly because of the
functional redundancy that characterizes the family after
their duplication [101,102]. AM proteins characterized by
a medium-to-high conservation degree (< 10%) are
peripheral AM nodes, frequently at the boundaries with
other cell machineries: they also are involved in other
important functions, as cell cycle regulation (e.g., AKT3,
the members of the cullin family, GSK3B, and SRC), sig-
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Figure 16

Apoptosis induced by drugs. Panel A: Kinetics and extent of apoptosis induction after exposure of K562 cells to | pM Imat-
inib (as determined through the annexin test and FACS analysis). Panel B: Kinetics and extent of apoptosis induction after
exposure of SH-SY5Y cells to 3 uM of Fenretinide. Panel C: Modification of the AM transcriptome in K562 and SH-SY5Y after
drug treatment (see Materials and Methods). Panel D: Modification of the expression of AM cancer candidates (i.e., previously
identified as potentially involved in the pathogenesis of specific cancers) as opposed to that of other AM genes, presumed not
to be involved in the process (i.e., not candidates) during apoptosis induction in K562 and SH-SY5Y.
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nal transduction (e.g.,, HRAS, MAPK, PDCD6, YWHAE,
YWHAG), metabolism, post-translational modifications
(e.g., BECN1, MASK, RPL5, STK25) (Figure 1). Their bio-
logical role mainly consists in the regulation of the activity
of receptors, transductors, and executors of the apoptotic
program. Since they perform a critical role, these mole-
cules were subjected to a strong selective pressure and
have largely preserved structure and functions. In many
cases, these proteins function within some of the most
ancient biological processes: about 50% of these mole-
cules are found in unicellular Eukaryotes and in Prokary-
otes (e.g., the MAP kinases) [103]. Our data confirm
results previously published on the evolution of the
human genome: proteins operating in regulatory proc-
esses (e.g., transcription factors and receptors) have
remained relatively well conserved during eukaryotic evo-
lutions [104]. However, it remains true that the most con-
served genes are those involved in such critical biological
processes as metabolism, protein synthesis, and molecu-
lar transport [104]. Our data seem also to suggest that in
most of cancer models the genome regions most fre-
quently affected by loss-type mutations contain the most
conserved AM genes, suggesting a strong phenotype - gen-
otype correlation (see Results, Oncogenomics).

Specificity of the AM transcriptome: cancer profiling

The analysis of the AM transcriptome profile showed that
the transcriptional involvement of this apparatus is heter-
ogeneous in different cancer models for number and type
of AM genes involved. These data suggest that AM could
be involved in different tumours through tumour-specific
mechanisms of transcriptional activation or repression
[105,106]. According to our data, the main sources of AM
transcriptional failure are represented by apoptosis regu-
lators (i.e., transcription factors, kinases, and death recep-
tors) rather than by its executors (e.g., members of the
apoptosome, death transductors, and caspases) (Figure
7). This could suggest that frequently exploited mecha-
nisms for cancer transformation are mutations of the
genes at the top of the death signalling network: they are
generally at the boundaries with other molecular machin-
eries involved in cancer, such as the CCDRA or the DRM,
and could have a pleiotropic effect on the activities of sev-
eral other genes (Figure 7). The identification of specific
AM molecular signatures (cancer profiling) could be use-
ful for precise tumour diagnosis and specific therapy
design, distinguishing the different molecular alterations
associated to different tissues. As the number of AM genes
transcriptionally altered in cancers is reasonably limited
(between 25 and 200), specific low-cost platforms for AM
transcriptome analysis could be designed for routine
molecular screening of patients to understand the origin
of the cancer and its metastases [107,108]. Furthermore,
the comparison of molecular profiles would allow: (i) the
identification of the common alterations among tumours;
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(ii) to understand the common basis of AM involvement
in cancer transformation [107,108]. It is notable that a
fraction of AM transcriptome dysregulations could be the
result of an altered control of expression of these genes,
triggered by the metabolism and cell cycle imbalance, and
characteristic of neoplastic cells; in some cases, they could
be due to aberrant gene methylation [83]. Various tran-
scriptome alterations were mirrored in the proteome and
in some cases we also detected the corresponding
genomic mutations (Figure 12). This approach allowed us
to obtain a list of very reliable candidates for the malfunc-
tioning apoptosis in cancer cells (Tables 7, 8). It is inter-
esting to note that our functional analysis on AM
dysregulated genes and proteins, based on GO, showed a
possible different regulation of anti-apoptotic and pro-
apoptotic genes. This could have different explanations:
(i) its molecular basis could be a qualitative and quantita-
tive mismatch between transcriptome and proteome, pos-
sibly due to post-transcriptional modifications, the latter
being the real cause of cell phenotype [109,110]; (ii) the
apoptotic cascade is mainly a protein signalling network
based on protein/protein interaction and PTM (post-
translational modification), frequently proteolysis and
phosphorylation: usually, cells have most of the apoptotic
actors constitutively present but in the inactive state [7];
(iii) blocking of apoptosis does not necessarily require a
global down-regulation of all pro-apoptotic genes or an
overall up-regulation of all anti-apoptotic genes: in prin-
ciple, it is sufficient that the expression of only a few of
these genes (logically the hubs of the AM network, acting
as masters) were altered to functionally modify cell behav-
iour [111]. We should expect that the relationship
between AM qualitative alterations and the neoplastic
phenotype is neither consistent nor simple to read [112].

AM network and cancer therapy

The mere qualitative and quantitative analysis of the alter-
ations of a molecular machinery could be misleading, if
not inserted in a tetradimensional scenario (the three
dimensions of space plus time) that would allow one to
detect the relevance and the functional influence of all the
elements of the machinery within the organism. The AM
network shows a very interesting structure. Namely,
approximately 50% of its core proteins (effectors and
executor of death) have at least one death domain
(DEATH, DED, CARD, and DAPIN): this demonstrates a
very efficient strategy of modular signal transduction (Fig-
ures 2, 4). Only a few modules are sufficient to establish
the reciprocal interactions among at least 50 different pro-
teins. The relatively small number of functionally related
protein modules within AM suggests a possible evolution-
ary pathway. Most likely, when the molecular machinery
responsible for apoptosis first appeared, it may have com-
prised a small group of proteins, characterized by few
classes of motifs and domains, which allowed reciprocal
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protein interactions to induce, transduct and execute the
apoptotic process. The subsequent gene duplication
events and the phenomena of exon shuffling or meiotic
recombination determined the evolution of the appara-
tus. This phase included its growth by accretion due to the
recruitment of new interacting partners, spurred by newly
acquired molecular sequences important for specific
molecular interactions [88,89]. However, the structural
and functional protein modules remained unchanged,
together with the signals modulating and executing apop-
tosis [113,114]. Some AM proteins are NUPs: this suggests
that for an appropriate control of apoptosis it may be use-
ful that some proteins possess a malleable structure,
endowing them with functional features not shown by
other rigidly ordered proteins involved in death signalling
[115,116]. The advantages of the great conformational
freedom of NUPs are the ability to fold upon binding to
their biological targets (coupled folding and binding) and
an increased speed of interaction. Their extended structure
and freedom in orientational search enable them to con-
tact their partners over a large binding surface and to rec-
ognize distant determinants on the target [115,116]. This
flexibility may be critical for the assembly of specific mac-
romolecular complexes, which cannot be made of rigid
components because of their sizes and topological con-
straints. Finally, the NUPs have an extreme proteolytic
sensitivity that allows them to very rapidly turn over upon
receiving appropriate signals. We found that NUPs typi-
cally represent the hubs of the AM network, suggesting
that their structural plasticity makes them very important
for the biology of the cell (Figure 6). Malfunctions of these
dynamic nodes affect the stability of the network and seri-
ously modify cell behaviour. It is not surprising that many
cancer-related AM genes carrying point mutations are
NUPs, in particular some of those frequently mutated (as
HRAS, TP53, and CDKN2A) (Figure 6). The analysis of
AM alterations related to cancer, based on a network view,
has pinpointed the critical role of the hubs, the structur-
ally and functionally most important nodes of the net-
work, which could critically impair network's stability and
accordingly the physiologic status of the cell [117]. In fact,
these nodes are lethal - embryonic perinatal or lethal
postnatal genes in knock-out mice, and unsurprisingly
they show genomic alterations, coupled to transcriptional
dysregulations, in many cancer models [118,119]. More-
over, we found that highly connected nodes are frequently
mutated (Table 3; Figures 3, 6). All these data seem to sug-
gest that tumour-related defects, occurring in the hubs of
AM, are preferentially selected. The functional impair-
ment of a few nodes, which control directly or indirectly
the activities of many others in the context of the co-occur-
rence of multiple genetic defects, could represent a selec-
tive advantage during neoplastic transformation
(Additional file 12). The relationship between network
connectivity and molecular alterations of AM is also
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stressed by our observation that the genes with more links
to mutated genes are themselves highly susceptible to be
dysregulated in cancer (Figure 14). We propose to exploit
this approach, based on the search for nodes connected to
AM mutated hubs, to discover new cancer biomarkers
[22]. Accordingly, the knowledge of the critical role of AM
hubs in the neoplastic phenotype could provide us with a
powerful strategy for designing targeted pharmacological
treatment. Apoptosis induction as strategy for cancer treat-
ment is one of the most exploited therapeutic approaches.
As we have shown in this paper, activation of cell death is
the common result of the administration of different
drugs (e.g., Imatinib and Fenretinide) in different cancer
types (e.g., CML and neuroblastoma). Imatinib and Fen-
retinide work by triggering different AM pathways of
molecular signalling (by blocking the ATP binding site of
BCR-ABL or by highly increasing the production of ROS,
respectively). However, these biochemical cascades lead
to the same final event: apoptotic death [120,121]. The
real - time transcriptome analysis of K562 and SH-SY5Y
cells (treated with Imatinib and Fenretinide, respectively)
showed similar expression trends, although with a differ-
ent correlation to the corresponding morphological
events (Figure 16). This analysis agrees with the observa-
tion that their AM dysregulation profiles at steady-state
are very similar (Figure 7, Panel C). Caspase activation,
coupled to the triggering of mitochondrial death and par-
tial suppression of the extrinsic death pathway, are the
common changes observed in both cancer cell lines fol-
lowing pharmacological administration. The transcrip-
tome changes observed during apoptosis induction
involved both AM genes dysregulated in cancer as AM
genes previously thought to be unaffected (Additional file
10). We note that the expression of some AM genes, pre-
viously identified as candidates for leukaemia and neu-
roblastoma, was apparently unchanged in our models:
this behaviour may suggest they may have suffered func-
tional impairment, due to genomic mutations or epige-
netic modifications. The choice of the molecular cascade,
leading to drug induced - apoptosis, is probably con-
strained by defects in some parts of the death machinery
(e.g., mutations or epigenetic repression of death recep-
tors). Therefore, the knowledge of the cancer-associated
alterations of AM could be a critical tool to predict
whether a pharmacological treatment, based on apoptosis
induction, will be effective [20,122]. The proposal to
identify all of the weak points along the AM network of
specific cancers could be exploited for designing pathway-
specific therapies to induce apoptosis in tumours. This
strategy could be especially useful for those cancers that
apparently are very resistant to death induction: the exact
knowledge of their AM's Achilles' heels should allow the
identification of alternative molecular targets, usable to
induce apoptosis by new unaffected and unexplored path-
ways [123]. As the hubs seem to be the major actors in
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apoptosis defects related to cancer, they could be consid-
ered very appropriate targets for drug design. In fact, we
are not surprised that most of AM proteins, targeted by
drugs, are characterized by a high degree of "betweenness"
(Figure 15). These characteristics indicate their relevance
as organizing regulators within a specific network and
their potential influence on maintaining the functions of
signalling mechanisms [124]. Ideally, drugs should be
selected so as to preferentially target proteins controlling
complex signalling cascades, rather than functionally iso-
lated nodes: consequently, they would affect the behav-
iour of the cell in a significant way to produce relevant
clinical effects (Figure 15). Moreover, the pharmacologi-
cal targeting of the critical nodes of the AM network
should be extended also to small RNAs that participate in
regulating apoptosis. Our data suggest that more than 100
MIRs potentially target AM genes. These MIRs are local-
ized in frequently altered regions in cancer and have an
altered expression in many tumours (Figures 5, 9; Tables
5, 6). As already reported [125,126], MIRs have an impor-
tant role in the pathogenesis of cancer and it may be
expected that many of them could have a critical function
in determining defects of AM functions [127,128]. Knowl-
edge of dysregulated MIRs and their target specificity
could be used for new therapeutic approaches based on
blocking the up regulated MIRs (e.g., by using the antago-
mirs) or restoring their function (by MIR transfection with
liposoluble or synthetic carriers, such as microspheres)
[129,130]. The use of MIRs as therapeutic repressors of
oncogenes would be an innovative medical strategy,
which could improve the efficacy of traditional pharma-
cological therapies, or in some cases replace it [131].

Conclusion

We suggest that the Omic characterization of the Apop-
totic Machinery, a critically important biological appara-
tus, could pave the way for further studies and critical
applications in the world of Molecular BioMedicine with
important perspectives both for Oncology as well as for
Regenerative Medicine and Stem Cell Biology (D Barba-
gallo, S Piro, M Ragusa et al., 2009, submitted). We are
encouraged to believe that this approach, if also applied
to other cell machineries as CCDRA and DRA, will even-
tually allow the identification of the molecular signals
critically involved in not just the normal functioning of an
organism, but also in its differentiation from the zygote.
Time could now be ripe for the emergence of a new
research field, that under the name of Signal Biology
could focus on the search for the determinants of specific
molecular interactions within organisms and their cells.
Such a field would rely on the vast amount of biomolecu-
lar data already available and amenable to manipulation
by the wide set of tools devised by the Computational
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Biology and Experimental BioMedicine communities.
Data from these integrated studies should be critically
important to deepen our knowledge of development and
differentiation, as well as of biological complexity and its
relationship to the phenotype. They should also help to
intelligently devise strategies for therapeutic interventions
and individualized Medicine, and eventually for fulfilling
the promises of Synthetic Biology and Bionics [132,133].
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