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Background
Epithelial ovarian cancer (EOC) is the leading cause of
cancer mortality from gynecologic malignancies [1]. The

Abstract

Background: We performed a time-course microarray experiment to define the transcriptional
response to carboplatin in vitro, and to correlate this with clinical outcome in epithelial ovarian
cancer (EOC). RNA was isolated from carboplatin and control-treated 36M2 ovarian cancer cells
at several time points, followed by oligonucleotide microarray hybridization. Carboplatin induced
changes in gene expression were assessed at the single gene as well as at the pathway level. Clinical
validation was performed in publicly available microarray datasets using disease free and overall
survival endpoints.

Results: Time-course and pathway analyses identified 317 genes and 40 pathways (designated
time-course and pathway signatures) deregulated following carboplatin exposure. Both types of
signatures were validated in two separate platinum-treated ovarian and NSCLC cell lines using
published microarray data. Expression of time-course and pathway signature genes distinguished
between patients with unfavorable and favorable survival in two independent ovarian cancer
datasets. Among the pathways most highly induced by carboplatin in vitro, the NRF2, NF-kB, and
cytokine and inflammatory response pathways were also found to be upregulated prior to
chemotherapy exposure in poor prognosis tumors.

Conclusion: Dynamic assessment of gene expression following carboplatin exposure in vitro can
identify both genes and pathways that are correlated with clinical outcome. The functional
relevance of this observation for better understanding the mechanisms of drug resistance in EOC
will require further evaluation.
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majority of patients present with advanced disease that is
typically managed with surgical cytoreduction followed
by postoperative chemotherapy [2]. Platinum analogs
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including carboplatin (CBDCA, cis-diammine-1,1-cyclob-
utane dicarboxylate platinum) are the mainstay of treat-
ment yielding response rates of approximately 70% in
newly diagnosed patients with advanced disease [3,4].
However, the major limitation to the successful treatment
of EOC is the frequent development of disease recurrence,
followed by resistance to chemotherapy, resulting in an
overall 5-year survival of only 20-30% for patients with
advanced disease.

In an attempt to understand the mechanisms of chemo-
therapy resistance, several studies have used microarray
technology to assess tumor gene expression at the time of
diagnosis or at the time of subsequent recurrence [5-8]. A
limitation of this approach is the difficulty of obtaining
tumor tissue at the time of relapse, and the fact that such
tissue may not be fully representative of the mechanisms
that mediate drug response early in the patient course, at
a time when first line chemotherapy is being adminis-
tered.

In order to overcome these limitations, we wished to
determine whether a dynamic assessment of gene expres-
sion after carboplatin exposure in vitro might have clinical
relevance and provide insights into the mechanisms of
chemoresistance. For this purpose, we employed time-
course and pathway analysis approaches in order to cap-
ture changes in individual genes as well as gene pathways
[9-12]. The significance of using this approach for path-
way discovery in EOC is discussed.

Methods

Cell line

The 36M2 human EOC cell line was developed in our lab-
oratory as previously reported [13-15]. This cell line was
derived from serial passage of ovarian serous carcinoma
cells in nude mice and exhibits clinical and histologic
characteristics similar to papillary serous EOC in humans.
It was grown in RPMI 1640 media with L-glutamine, 10%
fetal bovine serum and 1% of penicillin/streptomycin.

Cell death detection assay

Cell death was measured using the Cell Death Detection
ELISA (Roche Diagnostics, GmBH, Mannheim Germany),
according to manufacturer's instructions. Cell Death
Detection ELISA is a photometric enzyme immunoassay
that allows qualitative and quantitative in vitro determina-
tion of cytoplasmic histone-associated fragments (mono-
and oligonucleosomes). In brief, after cell lysis and cen-
trifugation, the cytoplasmic fractions were prediluted 1:10
with incubation buffer that contained both biotin-conju-
gated mouse monoclonal anti-histone antibodies and
horseradish peroxidase-conjugated mouse monoclonal
anti-DNA antibodies (sandwich ELISA principle). Quanti-
fication of DNA fragments (a surrogate of in vitro apopto-
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sis) was done by photometric determination of
horseradish peroxidase using ABTS (2,2'-azino-di [3-
ethylbenzthiazoline sulfonate]) [16].

Design of time-course microarray experiment

We treated the 36 M2 cell line with varying concentrations
(0.1 uM to 200 uM) of carboplatin for 24 hrs. Cells were
then washed thoroughly with PBS and allowed to grow in
fresh medium. Cell death was assessed for each carbopla-
tin dosage at distinct time points using the previously
described ELISA assay.

Doses of carboplatin up to 10 uM resulted in apoptotic
cell death similar to control at all time points, while treat-
ment with 200 uM was associated with significant apop-
totic death at early time points (see Additional File 1).
Treatment with 100 uM resulted in early apoptotic
changes at 36 hours, followed by significant cell death at
48 hours (see Additional File 2).

Since our goal was to capture the transcriptional response
to carboplatin up until early apoptotic changes became
evident, we treated the 36M2 cell line with carboplatin
100 uM or vehicle-control for 24 hrs and cells were har-
vested and processed for RNA isolation at 24, 30 and 36
hrs after treatment. We did not study time points beyond
36 hrs since significant apoptotic cell death could obscure
the transcriptional response to carboplatin. All data for all
time points were obtained in duplicates.

RNA Isolation and Affymetrix GeneChip Hybridization
Total RNA was isolated using the RNeasy Mini Kit (Qiagen
Valencia, CA, USA) according to manufacturer's instruc-
tions. cDNA synthesis and hybridization on oligonucle-
otide microarrays (U133 Plus 2.0 Array GeneChip,
Affymetrix, Inc., Santa Clara, CA) containing approxi-
mately 54,700 transcripts were carried out using standard
protocols. Microarray experiments were performed at the
Beth Israel Deaconess Medical Center (BIDMC) Genom-
ics Core [8,17,18] as previously described. Raw data were
processed using Robust Multi-Array (RMA) analysis [19].
Signal intensities were normalized, background corrected,
and bottom-trimmed at signal intensity of 50. Genes were
filtered out if their log intensity variation percentile was
less than 25% and/or if they were absent in more than
85% of the experiments. All raw microarray data are pro-
vided in GEO, accession number: GSE13525.

Statistical Methods

a. Time series analysis

Time series analysis was performed using BRB-ArrayTools
Version 3.6 [developed by Dr Richard Simon (Biometrics
Research Branch, National Cancer Institute, Bethesda,
MD)]. Time series analysis is a regression analysis of time
course microarray data (see Additional File 3). This
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approach applies a regression model to estimate the effect
of the interaction between time and class (in this case class
reflects treated versus control cells) and identifies genes
whose variation of expression over time was different
between carboplatin and control treated cells. Statistical
significance for this model was set at 0.01 at a false discov-
ery rate of 0.15.

b. Pathway Analysis

Pathway analysis was performed using the gene set com-
parison tool of BRB-ArrayTools Version 3.6 (Biometrics
Research Branch, National Cancer Institute). We analyzed
all predefined Biocarta pathways (obtained through the
NCI public database) for differential expression between
the carboplatin-treated and the vehicle-treated cells. Bio-
carta' is a trademark of Biocarta Inc. (San Diego, CA).

The statistical significance for differential expression of
each pathway was estimated using the functional class
scoring method [20]. In brief, a p value was computed for
each gene in each pathway and then the set of p-values for
each pathway was summarized by the LS score (mean neg-
ative natural logarithm of the p-values of the respective
single gene univariate test) and the Kolmogorov-Smirnov
(KS) score [20]. For each pathway, significance was
assessed by testing the null hypothesis that the list of dif-
ferentially expressed genes from each pathway was a ran-
dom selection from the entire project gene list. N genes
(equal to the number of genes of the pathway) were ran-
domly selected from the project gene list, and the LS and
KS statistics and their random distribution were com-
puted (100,000 random selections). The LS (KS) permu-
tation p-value was defined as the proportion of random
simulations for which the LS (KS) statistic was larger than
the LS (KS) statistic computed for the pathway with the
original gene list. Statistical significance was set at 0.005.

¢. Hierarchical Clustering

Publicly available gene expression data from the ovarian
cancer cell line A2780 and the non-small cell lung cancer
(NSCLC) cell line A549 were used for unsupervised hier-
archical clustering with the average linkage method as
implemented in the BRB Array Tools Version 3.6. All
genes were median-centered across the experiments.

The gene signatures used for hierarchical clustering were
mapped across different platforms (from U133 Plus 2.0 to
U95Av2 platforms and from U133 Plus 2.0 to U133A
platforms) using the Affymetrix 'best match' tool. Mapped
time-course and pathway signatures were used without
additional filtering for unsupervised hierarchical cluster-
ing.

d. Survival Analysis
In order to evaluate whether the gene expression signa-
tures associated with carboplatin exposure provided clin-
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ically relevant information, we used two independent,
clinically annotated, publicly available microarray data-
sets previously published by our group and others (http:/

[www.bidmcgenomics.org/OvarianCancer and http://
data.cgt.duke.edu/oncogene.php/, respectively) [21,22].

In regard to our dataset, the study protocol for collection
of tissue and clinical information was approved by the
institutional review board at our institution and patients
provided written informed consent authorizing the collec-
tion and use of the tissue for study purposes.

We tested whether these signatures would predict disease
free survival (DFS) and overall survival (OS) using the
Survival Risk Prediction Algorithm as implemented in
BRB-ArrayTools Version 3.6. We used the DFS and OS def-
initions exactly as used in these previously published
studies. Gene signatures were mapped from U133 Plus 2.0
to U95Av2 platforms and from U133 Plus 2.0 to U133A
platforms using the Affymetrix 'best match' tool.

The methodological principles of the Survival Risk Predic-
tion Algorithm have been previously described [23]. In
brief, a high and a low-risk survival groups were defined
based on a multivariate model of the expression level of
the genes contained in each gene signature and the Cox
regression coefficient for each gene (supervised principal
component method). This multivariate model was used
in a leave-one-out cross validation process to assign risk-
group membership for clinical samples. Kaplan-Meier
DFS and OS curves were plotted for two risk groups, with
higher or lower than median risk of death or recurrence.
Statistical significance of the survival splits was assessed
by the log-rank test and a permutation statistic was calcu-
lated by randomly reassigning the survival data among
cases, repeating the entire survival risk prediction 100
times and estimating how many times the log-rank statis-
tic is lower than the log-rank statistic for the real data. This
represented the permutation significance level for testing
the null hypothesis that there is no relation between the
expression data and survival.

Results

Time-course analysis of gene expression after carboplatin
exposure

36M2 cells were treated with carboplatin 100 uM or vehi-
cle-control for 24 hrs, and RNA was isolated in duplicate
at selected time points (as described in Material and Meth-
ods) from initiation of exposure until early apoptotic
changes became apparent. Using time-series analysis to
assess the interaction between time and class (carboplatin
versus vehicle-treated cells), we identified 317 genes that
exhibited differential, time-dependent expression
between carboplatin and vehicle treated cells. These 317
genes represented several different biological processes
(as defined by Gene Ontology, Table 1) including
"response to external stimulus,” "surface receptor signal

Page 3 of 12

(page number not for citation purposes)


http://www.bidmcgenomics.org/OvarianCancer
http://www.bidmcgenomics.org/OvarianCancer
http://data.cgt.duke.edu/oncogene.php/
http://data.cgt.duke.edu/oncogene.php/

BMC Medical Genomics 2008, 1:59

transduction," "cell proliferation," "cell-cycle regulation,"
and "cell adhesion." The 10 most upregulated genes after
carboplatin exposure are shown in Table 2. In order to
support the validation of these carboplatin related genes
we investigated the expression of the 10 most upregulated
genes identified in our analysis in another dataset that
included gene expression data (Affymetrix U95Av2 plat-
form) from A2780 ovarian cancer cells treated either with
cisplatin or control [24]. Despite the different experiment
design, and the different cell line, and after mapping
probesets from U133 to U95, 7 genes (GDF15,
GADDA45A, ATF3, IL8, IL6, MAFF and TNFAIP3), were
also upregulated in cisplatin treated cells versus control.

Several of these genes belong to previously described sig-
naling pathways, namely the TNFR2 signaling pathway
(TNFAIP3), the ATM signaling pathway (GADD45A), the
NF-kB signaling pathway (TNFAIP3), the cytokine and
inflammatory response pathway (IL6 and IL8) and the
oxidative stress response via NRF2 pathway (MAFF). As an
example of the expression changes induced by carboplatin
exposure, Figure 1 illustrates the over time fold expression
changes of selected genes of two of these pathways
(TNFR2 and cytokine and inflammatory response path-
ways). A complete list of all 317 genes (designated as
"time-course signature") is included in Additional File 4.

Furthermore, we identified the deregulated genes between
carboplatin and vehicle-treated cells for each time point
(Figure 2). Specifically 24, 30 and 36 hours after carbopl-
atin exposure 210, 800 and 1664 genes (see Additional
File 5) were differentially expressed between carboplatin
and vehicle-treated cells respectively (108 out of 210, 601
out of 800 and 1015 out of 1664 were upregulated in car-
boplatin treated cells). Of note 88% of the genes (281 out
of 317 genes) in the time course signature were among the
genes deregulated between treatment and control.

Dynamic assessment of signaling pathways induced by
carboplatin exposure

We hypothesized that individual genes that are differen-
tially regulated after carboplatin exposure (Table 2) might

Table I: Selected biological processes represented in the time-
course signature.

Gene Ontology Biological Processes Genes
| Response to external stimulus 6
2 Cell-cell signaling 7
3 Cell surface receptor linked signal transduction I
4 Cell proliferation 10
5 Defense response 10
6 Cell cycle arrest 6
7 Regulation of cell proliferation 6
8 Signal transduction 20
9 Negative regulation of progression through cell cycle 7
10 Cell adhesion 6
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be surrogates for carboplatin-induced changes in their
corresponding pathways. Conversely, we considered the
possibility that pathways may also be differentially regu-
lated following carboplatin exposure, which might not be
captured by the behavior of individual genes. Accordingly,
we performed pathway analysis as previously described
[20] and identified a total of 40 pathways that were differ-
entially expressed between carboplatin-treated and vehi-
cle-treated cells at a significance level of p = 0.005. This 40
pathway list (Table 3) includes diverse signaling pathways
associated with apoptosis, response to DNA damage,
cytokine signaling, DNA repair, mitogenesis and antioxi-
dant response. The 270 genes comprising all 40 signaling
pathways (designated as 'pathway signature') are pro-
vided in Additional File 6.

External validation of time course and pathway signatures
In order to demonstrate the reproducibility of the time-
course and pathway signatures we utilized two previously
published microarray datasets from different laboratories.
The first dataset included gene expression data (Affyme-
trix U95Av2 platform) from A2780 ovarian cancer cells
[24] treated either with cisplatin or control. Despite the
change in microarray platform, both time-course and
pathway signatures successfully distinguished between
cisplatin and vehicle-treated A2780 cells (see Additional
File 7).

The second dataset included gene expression data
(Affymetrix U133A platform) from the A549 NSCLC cell
line that was treated for 24 hr with vehicle control, or car-
boplatin [25]. Again, both signatures successfully sepa-
rated the carboplatin- and vehicle-treated A549 samples
(see Additional File 8) indicating that the time-course and
pathway signatures are reproducible, even in a non-ovar-
ian cancer cell line.

Clinical relevance of time course and pathway signatures
We have shown that exposure to carboplatin in wvitro
induced a characteristic change in the expression of sev-
eral genes and their corresponding pathways. In order to
determine whether this observation has clinical relevance,
we investigated whether the time course or pathway anal-
ysis correlated with disease free survival (DFS) and overall
survival (OS) using two separate, clinically annotated
ovarian cancer microarray datasets. The first dataset
(Dataset 1, run on Affymetrix U95Av2 arrays, previously
published work by our group [8]) included 66 ovarian
cancers and the second dataset (Dataset 2, run on Affyme-
trix U133A arrays) included 133 ovarian cancers [21]. DFS
and OS data were available for Dataset 1, while only OS
data were available for Dataset 2.

We used the U95Av2-mapped subset of the time-course
signature (obtained through the Affymetrix 'best match'
algorithm) for survival risk prediction on Clinical Dataset
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Table 2: The 10 most upregulated genes after at 36 hours after carboplatin exposure compared to baseline.

GENE NAME GENE SYMBOL FOLD CHANGE
Activating transcription factor 3 ATF3 17.2
Interleukin 8 IL8 13.4
Interleukin 6 (interferon, beta 2) IL6 85
Growth differentiation factor |5 GDFI15 7
Chromosome | open reading frame 79 Clorf79 6.3
Pentraxin-related gene, rapidly induced by IL-1 beta PTX3 6.3
v-maf musculoaponeurotic fibrosarcoma oncogene homolog F (avian) MAFF 6
Claudin | CLDNI 5.9
Growth arrest and DNA-damage-inducible, alpha GADDA45A 5.7
Tumor necrosis factor, alpha-induced protein 3 TNFAIP3 4.9

CYTOKINE PATHWAY TNFR2 PATHWAY
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Figure |

Over time fold expression changes (compared to baseline-0 hours) of selected genes in the TNFR2 and
cytokine pathways in carboplatin-treated 36 M2 cells. Only treated cells are included and fold change values are in ref-
erence to baseline-0 hours. Blue, green, brown, and violet bars denote fold expression changes at 0, 24, 30, 36 hours, respec-
tively. All changes shown are statistically significant (p < 0.001, F-test for comparison between time points).
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il 210 Deregulated Genes
108 Upregulated in carboplatin treated cells
102 Downregulated in carboplatin treated cells

800 Deregulated Genes
601 Upregulated in carboplatin treated cells
199 Downregulated in carboplatin treated cells

1664 Deregulated Genes
1015 Upregulated in carboplatin treated cells
649 Downregulated in carboplatin treated cells

Scatterplots showing differentially-expressed genes between carboplatin and vehicle-treated cells at 24, 30 and
36 hours. Outlier lines show 1.5 fold differences between carboplatin and vehicle-treated cells.

1. Despite the change in platform, survival risk prediction
using the U95Av2-mapped subset of the time-course sig-
nature distinguished between a high and a low-risk group
for DFS (median 9 versus 18 months, log-rank p = 0.005,
permutation p = 0.04, Figure 3A) and OS (median 41
months versus not yet reached, log rank p = 0.04, permu-
tation p = 0.11, Figure 3B). Similarly, the U133A-mapped
subset of the time-course signature discriminated between
a low-risk and a high-risk group in Dataset 2 (median OS
33 versus 118 months, log-rank p = 0.001, permutation p
= 0.02, see Additional File 9, panel A).

As with the time-course signature, survival risk prediction
using the U95A2-mapped subset of the pathway signature
distinguished between patients with unfavorable and
favorable DFS in Dataset 1, (median DFS 11 versus 17
months, log-rank p = 0.01, permutation p = 0.08, Figure
3C), and OS (median OS 34 months versus not yet
reached, log-rank p = 0.002, permutation p = 0.05, Figure
3D). Similarly, the U133A-mapped subset of the pathway
signature distinguished between patients with unfavora-
ble and favorable OS in Dataset 2 (median OS 31 vs 112
months, log-rank p < 0.001, permutation p = 0.04, see
Additional File 9, panel B).
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Table 3: Pathways deregulated after carboplatin exposure.

http://www.biomedcentral.com/1755-8794/1/59

Pathway description Genes P-Value *
| Oxidative Stress Induced Gene Expression Via Nrf2 29 < 0.0001
2 ATM Signaling Pathway 23 < 0.0001
3 Role of EGF Receptor Transactivation by GPCRs in Cardiac Hypertrophy 16 < 0.0001
4 Pertussis toxin-insensitive CCR5 Signaling in Macrophage 12 < 0.0001
5 Cadmium induces DNA synthesis and proliferation in macrophages 14 < 0.0001
6 Cytokine Network 5 < 0.0001
7 Adhesion and Diapedesis of Granulocytes 6 < 0.0001
8 IL12 and Stat4 Dependent Signaling Pathway in Thl Development 7 < 0.0001
9 Signal transduction through ILIR 27 < 0.0001
10 Cells and Molecules involved in local acute inflammatory response 12 < 0.0001
I Adhesion and Diapedesis of Lymphocytes 10 <0.0001
12 Bone Remodelling 12 < 0.0001
13 Regulation of hematopoiesis by cytokines 5 < 0.0001
14 Cytokines and Inflammatory Response 9 < 0.0001
15 IL 17 Signaling Pathway 8 < 0.0001
16 METS affect on Macrophage Differentiation 20 < 0.0001
17 NF-kB Signaling Pathway 22 < 0.0001
18 The 4-1BB-dependent immune response 16 0.000124
19 Inhibition of Cellular Proliferation by Gleevec 24 0.000125
20 Mechanism of Gene Regulation by Peroxisome Proliferators via PPARa 47 0.000132
21 TNFR2 Signaling Pathway 16 0.00031
22 Activation of PKC through G protein coupled receptor 7 0.000423
23 TPO Signaling Pathway 30 0.000472
24 Eukaryotic protein translation 17 0.000796
25 Erythropoietin mediated neuroprotection through NF-kB 9 0.001252
26 NFkB activation by Nontypeable Hemophilus influenzae 29 0.001499
27 IFN alpha signaling pathway 12 0.00188
28 The information-processing pathway at the IFN-beta enhancer 15 0.002252
29 Hypoxia-Inducible Factor in the Cardiovascular System 22 0.002535
30 Free Radical Induced Apoptosis 10 0.002556
31 FAS signaling pathway (CD95) 45 0.002569
32 Keratinocyte Differentiation 39 0.002711
33 Neuropeptides VIP and PACAP inhibit the apoptosis of activated T cells 14 0.00285
34 Repression of Pain Sensation by the Transcriptional Regulator DREAM 13 0.002997
35 CDA40L Signaling Pathway 17 0.003313
36 Nitric Oxide Signaling Pathway 6 0.0017
37 Induction of apoptosis through DR3 and DR4/5 Death Receptors 34 0.0046
38 SREBP control of lipid synthesis 7 0.0049
39 Regulation of transcriptional activity by PML 18 0.0029843
40 Double Stranded RNA Induced Gene Expression 10 0.0015

* By Functional Class Scoring Method

Importantly, both pathway and time-course signatures
were independently associated with DFS and OS when
tested in multivariate analysis that included known prog-
nostic factors of ovarian cancer including age and debulk-
ing status. Specifically, multivariate analysis showed that
pathway signature was associated with DFS (adjusted
Hazard Ratio: 2.04, 95% C.I. 1.1-3.78) and OS (adjusted
Hazard Ratio: 2.2, 95% C.I. 1.05-4.57), while time-course
signature was associated with DFS (adjusted Hazard
Ratio: 2.52, 95% C.I. 1.36-4.67) and OS (adjusted Haz-
ard Ratio: 1.96, 95% C.I. 0.92-4.2). There were no pub-
licly available data regarding age and debulking status for
Dataset 2.

NRF2, NF-kB, and cytokine network genes are upregulated
at baseline in tumors from patients with unfavorable
outcome

Given the observation that carboplatin induced changes
in gene expression had prognostic significance when
applied to baseline, pre-chemotherapy tumor samples, we
sought to identify which gene networks were upregulated
in patients with poor outcome compared to those with
good outcome, hypothesizing that they might be relevant
to the development of chemoresistance. We analyzed the
baseline expression levels of the 10 most upregulated
genes after carboplatin exposure shown in Table 1, and
their 5 corresponding pathways (TNFR2, ATM, NF-kB,
NRF2 and cytokine and inflammatory response path-
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Association between in vitro signatures and clinical outcome (Dataset |). (A): Association between time course sig-
nature and DFS: Median DFS: 9 versus |8 months for the unfavorable and favorable groups respectively (p = 0.005, log-rank
test), Hazard Ratio 2.3 (95% C.I. 1.3 —4.2). (B): Association between time course signature and OS: Median OS: 4] months
versus not yet reached for the unfavorable versus favorable group (p = 0.043, log-rank test), Hazard Ratio 2.1 (95% C.I. | —
4.5). (C): Association between pathway signature and DFS: Median DFS: | | versus 17 months for the unfavorable versus favo-
rable group, (p = 0.01 1, log-rank test), Hazard Ratio 2.1 (95% C.I. 1.2 — 4). (D): Association between pathway signature and
OS: Median OS: 34 months versus not yet reached for the unfavorable versus favorable group (p = 0.002, log-rank test), Haz-

ard Ratio 3.1 (95% C.I. 1.5 - 6.6).

ways), in tumors from patients with favorable and unfa-
vorable DFS and OS as identified by the time course
signature. Four of these genes (PTX3, GADD45A, IL-6, IL-
8 and MAFF) were statistically significantly upregulated in
patients with unfavorable DFS compared to those with
favorable DFS. Furthermore, pathway analysis showed
that 3 of the 5 pathways ("oxidative stress response via
NRF2", "NF-kB signaling," and "cytokine and inflamma-
tory response" pathways) were differentially expressed
between unfavorable and favorable prognosis tumors
(Table 4). Importantly, the same genes of these 3 path-
ways that were upregulated in unfavorable outcome
tumors (Table 4), had already been shown to be upregu-
lated after carboplatin exposure (Table 1, Figure 1).

Finally, since these genes were upregulated at baseline in
poor outcome tumors we analyzed whether they con-
tained prognostic information. The combined expression
levels of these genes were not associated with OS or DFS
in either datasets. This strengthens the value of our
approach to use dynamic gene expression as a mean to
capture prognostic information.

Discussion

In this study, we used time-course and pathway analysis to
obtain a dynamic assessment of gene expression after car-
boplatin exposure in vitro. Time-course analysis formally
assesses the statistical interaction between time (as a con-
tinuous variable) and class (in this case carboplatin versus
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vehicle-treated cells), while pathway analysis combines
measurements across multiple gene members of each
pathway to identify networks deregulated after carbopla-
tin exposure that are typically missed in the single gene
approach. Our analyses identified two gene expression
signatures - designated time-course and pathway signa-
tures, respectively — that are induced after carboplatin
exposure (Tables 1 and 3). In order to assess the clinical
relevance of these signatures, we investigated whether the
expression of their genes in tumor specimens obtained at
the time of surgery (prior to chemotherapy administra-
tion) was associated with clinical outcome. Interestingly,
despite the different microarray platforms used, baseline,
pre-chemotherapy expression of time-course and pathway
signature genes distinguished between a high- and low-
risk group of patients with unfavorable and favorable OS
and DEFS respectively, in two previously published inde-
pendent clinically annotated microarray datasets. Given
the dynamic nature of these signatures, their prognostic
value when assessed in a static, pre-chemotherapy tumor
sample obtained at diagnosis was unanticipated.

In order to further investigate this observation, we com-
pared the baseline, pre-chemotherapy expression of the
10 most upregulated genes (Table 2) and their corre-
sponding pathways, between tumors from patients with
favorable and unfavorable DFS. Interestingly, 4 of the 10
genes (MAFF, IL-6, IL-8 and PTX3) and 3 of 5 pathways
(NRF2 oxidative stress response, NF-kB signaling and
cytokine and inflammatory response pathways) were sta-
tistically significantly upregulated in patients with unfa-
vorable DFS or OS compared to those with favorable DFS
or OS. The finding that some of the genes and pathways
that are upregulated after carboplatin exposure in vitro, are
also upregulated at baseline in tumors from patients with
unfavorable DFS, suggests that they may be involved in
mediating chemoresistance.

http://www.biomedcentral.com/1755-8794/1/59

While the role of the NF-kB signaling pathway in plati-
num resistance has been extensively studied [26], emerg-
ing data indicate that the NRF2 signaling pathway may
also be involved in this process (Table 4). Electrophilic
xenobiotics, such as platinum analogs, induce dissocia-
tion of the transcription factor NRF2 from its cytoplasmic
inhibitor Keapl [27]. NRF2 then translocates to the
nucleus, where it heterodimerizes with members of the
small MAF family of proteins (including MAFF, among
the 10 most upregulated genes in Table 2) to activate the
transcription of antioxidant, xenobiotic detoxification
and drug efflux pump genes that confer cytoprotection
against drugs [28,29]. Members of the cytokine and
inflammatory response pathway have also been associ-
ated with chemotherapy resistance, albeit not yet with
platinum resistance. Specifically, IL-6, (again among the
most 10 upregulated genes in Table 2) is reportedly upreg-
ulated after paclitaxel exposure in vitro and has been asso-
ciated with paclitaxel resistance by inducing multidrug
resistance gene-1 transcription with subsequent P-glyco-
protein overexpression [30,31].

Importantly, we performed in silico validation of our in
vitro time-course and pathway signatures using published
microarray data from a different ovarian cancer cell line
and a NSCLC cell line exposed to platinum in different
laboratories. Despite the differences in microarray plat-
forms in both cases, our signatures successfully distin-
guished between carboplatin and vehicle-treated cells
confirming their association with carboplatin exposure
irrespective of cell line selection. Additionally, the obser-
vation that both signatures discriminated between carbo-
platin and vehicle-treated lung cancer cells suggests that
the gene networks involved in the transcriptional
response to carboplatin may be shared by cancer cells,
regardless of tissue of origin.

Table 4: Selected genes of the NRF2, cytokine response and NF-kB signaling pathways upregulated in patients with unfavorable DFS

and OS
PATHWAY PATHWAY P VALUE * GENE GENE P VALUE**
Oxidative stress response via Nrf2 < 0.0001 MAFF < 0.0001
NRF2 (NFE2L2) < 0.0001
CRYZ <0.001
CREBI 0.015
Cytokine and Inflammatory Response < 0.0001 IL-6 0.005
IL-8 0.013
IL-15 0.0005
NF-kB signaling pathway 0.0002 NF-kBI < 0.0001
ILI-RI 0.003
CHUK 0.002
RELA 0.005
* By Functional Class Scoring Method
** By t-test
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Further mechanistic insights may also be derived from
examining the full content of the time-course and path-
way signatures. Several pathways mediating apoptosis,
DNA damage response, cytokine signaling, DNA repair,
and mitogenesis were involved in cellular transcriptional
response to carboplatin. Some of these pathways are
known to be deregulated after platinum exposure includ-
ing the ATM, FAS and epidermal growth factor receptor
(EGFR) pathways [32-34]. However, other pathways not
previously linked to platinum exposure were also identi-
fied by our pathway analysis, for example, the death
receptor DR3, DR4/5 apoptotic pathway and the IL1R, IL-
17, and tumor necrosis factor (TNFR2) pathways among
others.

It is revealing that some of the 40 pathways identified by
pathway analysis were not captured by time-course analy-
sis. For instance, while none of the gene members of the
PKC-GPCR (G-protein coupled receptor) pathway were
included in the time course signature, pathway analysis
indicated that this pathway is nonetheless involved in the
cellular response to carboplatin, consistent with previous
studies demonstrating its activation after platinum expo-
sure and potential association with platinum resistance in
vitro [35-37]. Conversely, not all genes identified by time
course analysis were captured by pathway analysis, for
example two genes among those with the highest fold
change in the time-course signature, ATF3 (activating
transcription factor 3) and claudin 1 (Table 2). These find-
ings indicate that complementary insights into chemore-
sponse might be gained by analyzing the results of
microarray time course experiments not only from the
perspective of individual genes, but by considering gene
families as defined by pathway analysis. Further studies
will be necessary to define the precise role of these genes
and pathways in promoting chemoresistance or chemo-
sensitivity, and to evaluate their potential as novel drug
targets in patients with EOC.

Conclusion

In conclusion, this work demonstrates for the first time
that systematic dynamic assessment of gene expression
changes following carboplatin exposure in vitro, using
formal time course and pathway statistical approaches,
can identify genes and pathways associated with clinical
outcome in ovarian cancer. Pathways highly induced in
vitro, such as the NRF2, NF-kB, and cytokine and inflam-
matory response pathway, were shown for the first time to
be upregulated in poor prognosis tumors in a statistically
robust manner. This study provides proof of principle that
comprehensive transcriptional assessment following
exposure to chemotherapeutic agents in vitro provides
information that can be translated to the clinical setting,
as well as potential useful mechanistic insights into chem-
oresistance.

http://www.biomedcentral.com/1755-8794/1/59
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