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Abstract
Background: A recent study has shown high concordance of several breast-cancer gene
signatures in predicting disease recurrence despite minimal overlap of the gene lists. It raises the
question if there are common themes underlying such prediction concordance that are not
apparent on the individual gene-level. We therefore studied the similarity of these gene-signatures
on the basis of their functional annotations.

Results: We found the signatures did not identify the same set of genes but converged on the
activation of a similar set of oncogenic and clinically-relevant pathways. A clear and consistent
pattern across the four breast cancer signatures is the activation of the estrogen-signaling pathway.
Other common features include BRCA1-regulated pathway, reck pathways, and insulin signaling
associated with the ER-positive disease signatures, all providing possible explanations for the
prediction concordance.

Conclusion: This work explains why independent breast cancer signatures that appear to perform
equally well at predicting patient prognosis show minimal overlap in gene membership.

Background
Many studies have demonstrated the ability of using gene-
expression "signatures" derived from DNA microarray
data to define cancer subtypes, predict disease recurrence,
and guide treatment decisions. In breast cancer, van't Veer
et al. [1] derived a 70-gene profile to predict a patient's risk
of developing distant metastases. Perou et al. [2] and Sor-
lie et al. [3] developed an intrinsic-subtype signature that
classifies breast tumors into molecular subtypes showing
distinct differences in prognosis. From a cancer biology
perspective, Chang et al. [4] studied the links between the
wound healing process and cancer progression. Based on
the expression pattern of a wound-response signature of

512 genes, they classify a tumor to have either activated or
quiescent response and found this to be a significant prog-
nostic predictor of tumor metastasis. These are promising
results and a few of these signatures have begun to be
assessed in clinical settings. Two questions have often
been asked: (1) are these signatures identifying the same
set of genes and (2) will they generate similar prediction
performance when tested in new data sets?

The answer to the first question has been discouraging.
Any pair of these signatures share only a few common
genes. Possible reasons have been suggested including the
differences in patient cohort characteristics (such as the
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distribution of age or stage of the disease), lack of compa-
rability and reproducibility of the data generated using
different microarray platforms, and varying statistical pro-
cedures used to generate the gene list. Nevertheless, Ein-
Dor et al. [5] showed that the inconsistency still exists
when eliminating all three differences. In particular, the
authors repeated the same analysis in a single data set and
identified many lists of genes equally predictive of the
outcome. Any two of these gene lists share only a small
number of genes. In another study by Son et al. [6], the
authors reported that any randomly selected subgroup of
around 100 differentially expressed genes generates simi-
lar hierarchical clustering results in the same data set.

Ein-Dor et al. [7] further suggested perhaps the main
source of the problem lies in the small sample size and
large number of genes the signatures were derived from.
For several published breast cancer data sets, the authors
estimated that several thousands of samples would be
needed to achieve a typical gene overlap of 50%. On the
other hand, the problem is compounded by analyzing
and interpreting genes in isolation. A common approach
to gene selection involves selecting a handful of top-rank-
ing genes that best differentiate sample classes (such as
tumor vs. normal tissue) or are most predictive of clinical
outcome. The univariate selection procedure ignores cor-
relation between genes. The biological and statistical
validity of such assumption seems tenuous. As a result,
gene-set based approaches have emerged in recent years to
identify sets of biologically related genes that are deregu-
lated as a group. Examples of gene-set analysis include the
Gene Set Enrichment Analysis (GSEA) [8], Significance
Analysis of Function and Expression (SAFE) [9], and the
globaltest package [10] These methods focus on groups of
genes that share common biological functions such as cell
cycle regulation; metabolic or signaling pathways defined
by Gene Ontology (GO); online databases such as Bio-
Carta, KEGG and signaling data base; or a literature-
defined gene set subject to experimental perturbations
such as a drug treatment or an oncogene-activation. In
addition, Rhodes et al. [11] introduced a Molecular Con-
cepts Map (MCM) providing an expanded analytic frame-
work to explore the network of relationships among
biologically related gene sets.

The motivation of this study came from a recent paper by
Fan et al. [12], which addresses the second question
described above. The authors demonstrated a high degree
of prediction concordance of five breast cancer gene-sig-
natures despite minimal gene-wise overlap. In an inde-
pendent data set of 295 tumors, the authors showed that
the intrinsic subtypes [3] of basal-like, HER2+/ER-, and
luminal B were consistently classified as poor 70-gene
profile [13] prognosis, activated wound response [4] and
high recurrence score [14]. It raises the question that per-

haps the gene-overlap is not the most relevant measure of
robustness and reproducibility of the gene-signatures.
There may be common themes shared across these signa-
tures that are not apparent on the individual gene level. As
an example, the cell cycle gene Cyclin E1 (CCNE1) was
included in the 70-gene profile while Cyclin E2 (CCNE2)
in the intrinsic subtype signature. The two signatures
apparently share commonality in the activation of the
Cyclin family genes. For another example, ERBB2 and
EGFR are both receptor tyrosine kinase involved in estro-
gen pathway. Inclusion of one or the other in two differ-
ent signatures apparently converges at the pathway level
both indicating the activation of the estrogen-signaling
pathway.

In this study, we assess the potential functional conver-
gence of these gene-signatures on the basis of activated
oncogenic pathways. This involves first annotating each
gene-signature to identify significantly enriched func-
tional modules (e.g., cell growth, response to estrogen,
myb-regulated pathways, etc.). Definition of the modules
can be based on Gene Ontology (GO) terms, online path-
way databases such as BioCarta and KEGG, or literature-
defined concepts. In the next step, the overlapping func-
tional modules are obtained by intersecting the annotated
sets. We investigated six breast cancer signatures (four of
which were compared in Fan et al. [12]) that share high
prediction concordance. We found eighteen common
modules including estrogen-signaling, responses to
tamoxifen treatment, and BRCA1 expression. The degree
of the functional overlap across the six BR-signatures is
highly significant (P = 0.0002) under a bootstrapped null
distribution.

Results and Discussion
Prediction concordance across five breast-cancer gene-
signatures
In a similar fashion as in [12], we cross-tabulated the pre-
diction results of the gene-signatures listed in Table 1 in
the 295 breast cancer patients in the van de Vijver study
[15]. In Table 2, all the signatures consistently classified
the basal-like and HER2/ER- subtype tumors as having
high risk of recurrence outcome. The 70-gene profile and
wound-response signatures both classify luminal B sub-
type to be a low risk group, while the meta-signature clas-
sifies the luminal A and the normal-like subtypes as low
risk groups. Overall, the signatures showed a certain
degree of prediction concordance. The kappa coefficient
measuring the classification agreement across the signa-
tures is estimated to be 0.67.

Common "oncogenic" sets underpinning breast cancer 
outcome prediction
For pairs of the six signatures, there is a fair amount of
overlapping literature concepts (MCMs). Many of the
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overlaps are highly significant (Figure 1A). For example,
there is a set of 142 enriched MCM modules shared
between the 70-gene profile and the wound-response sig-
nature (P < 0.00001) while only two genes were identified
by both. Furthermore, signatures 1–3 showed marginal
significance in metabolic and signaling pathway overlaps
(Figure 1B).

We found 18 common MCMs (P = 0.0002) and 5 com-
mon metabolic and signaling pathways (P = 0.04) across
signatures 1–4. Table 3 and 4 list these common sets
ordered by the overall significance of enrichment (sum-
marized hypergeometric test P-value adjusted for multiple
testing). Among the top are deregulated genes in andro-
gen-sensitive prostate cancer cell lines in response to MSA
(MCM 258), Myb-regulated transcriptional changes in the
estrogen-dependent human breast cancer cell line MCF7
(MCM 458), several MCMs comprising responsive genes
upon antiestrogen hormonal treatment (MCM 691, 379,
375, 673). Clearly a dominant common characteristic
underpinning the four breast-cancer signatures is closely
related to the estrogen-receptor status of the tumor which
is a main prognostic factor in breast cancer. Another com-
mon prognostic set of interest is response to BRCA1
expression (MCM513), which many studies have shown a
characteristic of sporadic basal-like cancers.

Table 4 listed the five common metabolic and signaling
pathways using the functional subset of the MsigDB anno-
tation data. All of the signatures apparently enlisted genes
customized on a commercial array platform that represent
the breast cancer estrogen signaling pathway [see Addi-
tional File 1].

For the gene signatures listed in Table 1, it should be
pointed out that they were constructed using different
types of endpoints, along with differing supervised learn-
ing algorithms. In attempting to combine results across
the signatures, we make the assumption that there exists
an underlying tumorigenetic mechanism that manifests
itself in terms of the endpoints used by the different
authors. One such mechanism might be tumor metastasis.

ER-positive relapse signatures
Both ER+ relapse-signatures showed evidence of E2F acti-
vation, response to Interleukin-6 (IL6), and activation of
insulin-signaling pathways, some of which have been
reported in the literature to be specific to ER+ disease [see
Additional Files 2 and 3]. For example, studies have
shown in estrogen-sensitive breast cancer cell lines, the
widely used antiestrogen tamoxifen treatment inhibits
insulin-signaling. The degree of such inhibition can reflect
the effectiveness of the tamoxifen treatment and thus cor-
relate with a patient's risk of recurrence [16,17].

Table 1: Breast cancer gene-signatures.

Gene-signature Number of genes number of samples Experiment summary

1. 70-gene profile [1] 70 78 Inkjet oligonucleotide array on 25,000 genes
2. Wound-response [4] 512 50 cDNA microarrays profiled over 36,000 genes
3. Intrinsic subtype [2,3] 427 78 cDNA microarrays on a core set of 8,102 genes
4. meta-90 [11] 90 305 Integrative analysis of 4 microarray studies on a set of 2,555 genes

ER+ signature
5. Recurrence score [14] 21 2892 RT-PCR on 250 genes selected from the literature
6. Wang ER+ profile [18] 60 80 Affymetrix GeneChips on 22,000 transcripts

Table 2: Classification concordance of the breast cancer gene signatures (Kappa coefficient = 0.67)

Intrinsic Subtype No. of Patients 70-Gene Profile Wound Response Meta90

Patients Classification No. of Patients Classification No. of Patients Classification No. of Patients

Basal-like 36 Good 0 Quiescent 0 Low 0
Poor 36 Activated 36 High 36

Luminal A 91 Good 69 Quiescent 34 Low 89
Poor 22 Activated 57 High 2

Luminal B 41 Good 5 Quiescent 1 Low 16
Poor 36 Activated 40 High 25

HER2+ and ER- 28 Good 3 Quiescent 0 Low 8
Poor 25 Activated 28 High 20

Normal-like 23 Good 12 Quiescent 12 Low 22
Poor 11 Activated 11 High 1
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Conclusion
Cancer gene-expression signatures derived from microar-
ray experiments are beginning to be tested in clinical tri-
als, while the exact biology that enables these gene-
signatures to accurately predict tumor metastasis and
patient survival is unclear. Microarray experiments are
often limited in power by the small number of samples
used to derive a panel of prognostic genes relative to the
large number of features on the array. In addition, sets of
biologically-related genes are often co-regulated while
many feature selection procedures are univariate in

nature. As a result, gene-signatures developed by different
studies typically share very few common components. A
recent study showed high prediction concordance of sev-
eral breast cancer gene-signatures despite minimal over-
lap in gene identity. It gave main motivation to investigate
common oncogenic themes that may not be apparent at
the individual gene level. This study explored this hypoth-
esis by evaluating the functional overlap of the signatures
on the basis of annotated gene sets. When the gene signa-
tures are mapped to the deregulated pathway space, two
things become clear. First, there is a significant degree of

Pair-wise functional overlap of the six breast cancer gene-signaturesFigure 1
Pair-wise functional overlap of the six breast cancer gene-signatures. 1. 70-gene profile 2. Wound response 3. Intrin-
sic subtype 4. Meta90 5. Recurrence score 6. Wang ER+ profile. A. The number of overlapping literature-defined oncogenic 
concepts (MCM) and the corresponding P-value heatmap indicating the significance of the overlap under bootstrapped null dis-
tribution. B. The number of overlapping pathway sets (MsigDB) and the corresponding P-value heatmap.
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Table 4: Five common pathway sets (MsigDB) across the four breast cancer gene signatures (significance of overlap, P = 0.04).

70 Gene Wound Response Intrinsic Subtype Meta90

Common GeneSet No. of mapped genes (Enrichment p-value**) Description

breast cancer estrogen signaling 1 (0.07) 11 (0.001) 11 (0.22) 4 (0.11) GEArray
EMT DOWN 1 (0.02) 2 (0.19) 4 (0.29) 1 (0.21) Jechlinger et al 2003
CR DNA MET AND MOD 1 (0.01) 1 (0.24) 3 (0.24) 1 (0.12) PNAS 2007
SA REG CASCADE OF CYCLIN EXPR 1 (0.006) 1 (0.12) 2 (0.23) 1 (0.07) SigmaAldrich
reckPathway 1 (0.005) 1 (0.09) 1 (0.28) 1 (0.09) BioCarta

** Hypergeometic test enrichment P-value adjusted for multiple testing.
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functional overlap in oncogenic and prognostic pathways.
Second, many of these common pathways provide plausi-
ble explanations of tumor biology through which these
signatures predict patient outcome. There are several con-
clusions to be gleaned from this study. First, this work
explains why independent signatures that appear to per-
form equally well at predicting patient prognosis show
minimal overlap in gene membership. This is because
such genes are different members of pathways and proc-
esses that are relevant to prognosis. Thus, the lack of gene
overlap found between the various signatures listed in
Table 1 should not be considered problematic. The impli-
cation of our study is that most of these signatures will do
well in clinical trials given that they seem to be picking up
the same pathway signals. We can thus be assured that the
gene lists found by different investigators are consistent,
even if they do not contain the same genes.

Second, the results have suggested that the interpretability
and delineation of how diverse cancer gene expression sig-
natures work are more likely attainable at the pathway
level rather than the individual gene level. On the other
hand, as many studies have already suggested so, feature
selection methods need to be based on biologically
related gene sets that are deregulated as a group [8-11].
However, it is not a straightforward task to construct a
prognostic signature based on pathways that are com-
posed of overlapping sets of genes. New statistical meth-
ods need to be established in this area. This is beyond the
scope of the study and is currently under investigation.

Methods
Table 1 lists the six BR-signatures that are compared in this
study. Fan et al. [10] showed high prediction concordance
of signature 1–3 and signature 5. In addition, a 90-gene
meta-signature [13] is included. This signature was
derived in a meta-analysis framework by integrating four
microarray data sets, which included the van't Veer data
set and the Sorlie data set. Another signature included
here is the subset of 60-gene profile from Wang et al. [18]
that was derived in tumors with estrogen receptor (ER)
positive status. The recurrence-score signature [14] is also
an ER+ disease signature that has been shown in a clinical
trial to be able to identify patients with very low risk of
recurrence on hormone therapy using tamoxifen alone,
and do not require adjuvant chemotherapy.

Annotation
The set of signature genes were annotated using two differ-
ent annotation sources:

Literature-defined module
A collection of 661 literature-defined modules from the
Molecular Concept (MCM) database MCM that focuses
on human cancer studies. These include gene sets from

peer-reviewed publications using microarrays to study
gene expression changes subject to experimental perturba-
tion such as drug treatment or candidate gene activation.

Pathway module
The functional subsets from the molecular signature data-
base or MSigDB GSEA, including modules representing
metabolic and signaling pathways imported from online
pathway databases such as BioCarta [19], signalling path-
way database [20] and the Kyoto Encyclopedia of Genes
and Genomes (KEGG) [21].

Enrichment analysis was performed using hypergeometric
tests. In particular, the procedure tests the significance of
the proportion of module genes (e.g., estrogen pathway)
in the signature being greater than the "population"-pro-
portion of the module genes in the experimental set from
which the signature was selected. Multiple testing was
adjusted by using the Benjamini-Hochberg procedure
[22].

Notation and methods

For a set of K gene-signatures, let ni be the number of genes

in signature i and Ni be the total number of genes in the

experimental set from which the signature genes were
selected. Furthermore, let J = 661 or 552 denote the
number of literature-defined concepts and the number of
metabolic and signaling pathways in the two annotation
database MCM and MsigDB respectively. For a gene signa-
ture, we first perform a module enrichment analysis using
a hypergeometric test. As mentioned earlier, the basic idea
is to test whether the proportion of the module genes in
the signature of size ni is significantly larger than the "pop-

ulation"-fraction of the module genes in the experimental
set of size Ni. The jth module is enriched in the ith signa-

ture if the hypergeometric test p-value is less than 0.3.
Across the K signatures under comparison, this threshold
correspond to a p-value of less than 0.05 under a conven-
tional meta-analysis of combining the hypergeometric p-

values  across the four signatures based on a

chi-square distribution with 2K degrees of freedom. Let Xij

be the indicator variable where Xij = 1 if the jth module is

enriched in the ith (i = 1, ..., K) signature and Xij = 0 oth-

erwise. As a result,

−
=
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1
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is the total number of enriched modules in signature i.
Then for the set of K signatures, the amount of functional

overlap is .

The significance of overlap is defined as P (Y > yobs) under
a bootstrapped null distribution. The bootstrap procedure
is described elsewhere [see Additional File 4].

We used B = 100,000 in the procedure. The bootstrapped
null distribution of Y preserves 1) potential correlation of
the signature size ni and the number of enriched modules
mi, and 2) the module-module dependence due to the
one-to-many mapping of a gene to the annotation data.
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List of modules genes involved in A. estrogen signaling and B. response to 
MSA in androgen-dependent prostate cell lines.
Click here for file
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Table 3: Eighteen common literature-defined oncogenic concepts (MCM) across the four breast cancer gene signatures (significance of 
overlap, P = 0.0002)

70-gene 
profile

Wound 
Response

Intrinsic 
Subtype

Meta-90

Common GeneSet No. of mapped genes (Enrichment p-value**) MCM size Description

MCM258 7 (3e-04) 25 (2e-04) 19 (0.21) 6 (0.09) 350 Downregulated genes in prostate cancer cells in 
response to MSA (full list)

MCM458 2 (0.16) 24 (1e-04) 34 (0.005) 6 (0.24) 322 Differentially expressed genes in MCF7 cells 
expressing Myb

MCM396 10 (0.13) 89 (2e-04) 117 (0.005) 20 (0.21) 2265 Upregulated genes in U937 cells expressing the PLZF/
RAR fusion protein

MCM691 1 (0.1) 6 (0.06) 19 (6e-04) 3 (0.16) 101 Up-regulated genes in untreated or permanently 
tamoxifen-treated MaCa 3366/TAM compared with 
MaCa 3366

MCM513 2 (0.22) 24 (6e-04) 29 (0.13) 12 (0.04) 375 Differentially expressed genes in EcR-293 cells in 
response to BRCA1 expression

MCM277 1 (0.01) 3 (0.02) 5 (0.05) 1 (0.16) 22 Upregulated genes in NCCIT cells in response to 
Wnt-3A

MCM30 1 (0.01) 4 (0.004) 3 (0.25) 1 (0.15) 24 Upregulated genes in colorectal cancer cells
MCM673 2 (0.01) 7 (0.008) 7 (0.28) 3 (0.15) 79 Androgen
MCM6209872 2 (0.003) 2 (0.13) 5 (0.09) 1 (0.16) 34 Skin
MCM349 1 (0.01) 2 (0.05) 2 (0.25) 2 (0.04) 23 Downregulated genes in hSNF5/INI1-deficient 

malignant rhabdoid tumor cell line upon hSNF5/INI1 
expression

MCM12 2 (0.008) 2 (0.25) 7 (0.09) 2 (0.14) 56 Aniogenic and Non-angiogenic tumours Signature
MCM363 5 (0.13) 37 (0.007) 46 (0.28) 14 (0.15) 808 Upregulated genes in monocytes in response to IL-10 

stimulation for 1 and 4 hours
MCM574 4 (0.04) 22 (0.03) 23 (0.27) 6 (0.13) 497 Upregulated genes in advanced papillary serous tumor 

specimens
MCM683 1 (0.1) 6 (0.06) 11 (0.06) 2 (0.17) 111 Downregulated genes wrt 3,5-diaryl-1,2,4-oxadiazole 

(MX-126374)
MCM379 1 (0.13) 7 (0.07) 12 (0.12) 2 (0.29) 129 Unique genes regulated by tamoxifen, but not 

estradiol in osteosarcoma cells
MCM1067 1 (0.05) 3 (0.15) 5 (0.27) 1 (0.21) 64 Upregulated genes in immmortilized epithelial cells in 

respense to Ad5-GFP infection
MCM375 1 (0.13) 6 (0.12) 10 (0.14) 2 (0.27) 127 Unique genes regulated by estradiol, but not 

raloxifene in osteosarcoma cells
MCM402 1 (0.11) 4 (0.25) 8 (0.28) 3 (0.14) 116 Downregulated genes in HepG2 T1 treated cells 

resulting from MIZ depletion

**Hypergeometic test enrichment P-value adjusted for multiple testing.
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