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Abstract

Background: The 15g11-q13 region contains many low copy repeats and is well known for its genomic instability.
Several syndromes are associated with genomic imbalance or copy-number-neutral uniparental disomy. We report
on two patients: Patient 1 is a boy with developmental delay and autism; and Patient 2 is a girl with developmental
delay, hypotonia and dysmorphism. We performed analyses to delineate their dosage in the 15q region, determine
whether the patients’ dosage correlates with phenotypic severity, and whether genes in the amplified regions are
significantly associated with identified functional networks.

Results: For the proximal region of 15g, molecular cytogenetic analysis with Agilent oligonucleotide array showed
a copy number of 3 for Patient 1 and a copy number of 4 for Patient 2. Fluorescent in situ hybridization analysis of
Patient 2 showed two different populations of cells with different marker chromosomes. Methylation analysis of the
amplified region showed that the extra copies of small nuclear ribonucleoprotein polypeptide N gene were of
maternal origin. Phenotypic severity did not correlate with the size and dosage of 15q, or whether the amplification

disorder, neurological disease and hereditary disease.

is interstitial or in the form of a supernumerary marker. Pathway analysis showed that in Patient 2, the main
functional networks that are affected by the genes from the duplicated/triplicated regions are developmental

Conclusions: The 15g11-q13 gains that were found in both patients could explain their phenotypic presentations.
This report expands the cohort of patients for which 15q11-q13 duplications are molecularly characterized.

Keywords: 15q duplication syndrome, Array comparative genomic hybridization (aCGH), Copy number gain,
Autism, Developmental delay, Fluorescence in situ hybridization (FISH), Marker chromosome

Background

The 15q11-q13 region is a hotspot for recombination.
Several breakpoint (BP) regions have clusters that contain
low copy repeats and segmental duplications [1]. Chias-
mata frequency in the region is known to be higher than
in other chromosomal regions [2]. As a consequence, the
region is prone to having deletions, duplications and rear-
rangements. In addition to frequent genomic rearrange-
ments, this chromosomal region is also highly regulated
by methylation, and the allele that is expressed for specific
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genes is based on the parental origin of the chromosome.
The presence of imprinted genes in this region means that
there may be phenotypic consequences even if the rear-
rangements are copy number neutral and results in no
genomic imbalance.

Genomic disorders mapped to this region include
Angelman syndrome (Online Mendelian Inheritance in
Man (OMIM) #105830) and Prader-Willi syndrome
(OMIM #176270). In the majority of cases, both of the
syndromes are due to either deletion or uniparental di-
somy. Of the remaining cases of Angelman syndrome,
approximately 10-15% are due to UBE3A mutations and
2-4% are due to imprinting centre defect. Less than 1%
of the remaining Prader-Willi syndrome cases are due to
imprinting centre defect [3]. Cytogenetically visible dupli-
cations (OMIM #608636) and marker chromosomes from
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derivatives of this region are also common. The high fre-
quency of such cases gave rise to a clinically recognizable
disorder called 15q duplication syndrome, with some
common neurobehavioural phenotypes [4]. Copy num-
bers of three, four, five and six have all been reported
for this region [5-7].

Most copy number gains in this region are due to trans-
locations, inversions and supernumerary marker chromo-
somes (sSMC). Interstitial duplications/triplications and
balanced translocations (which do not result in copy num-
ber changes) are more infrequent [8]. To add to the clin-
ical phenotype of 15q duplication cases, we present two
patients —a Malay boy with partial trisomy 15q and a
Chinese girl with mosaic partial tetrasomy 15q. We con-
ducted analyses to delineate their amplification in the 15q
region, analyze the region at the gene level, and determine
whether genes within the amplified regions are signifi-
cantly associated with identified functional networks.

Presentation of cases

The two patients described in this study were participants
in a study to identify genomic imbalance in patients with
developmental delay/multiple congenital anomalies. They
were recruited from the genetics outpatient clinics of the
KK Women’s and Children’s Hospital, Singapore. The
study was approved by the SingHealth Institutional Re-
view Board, which oversees all research studies in the
hospital. The patients were recruited with the written in-
formed consent of their parents.

Patient 1 is the 6™ child of healthy, unrelated parents
of Malay ancestry. His mother was 33 years old at the
time of his birth. He has an older brother with autism
spectrum disorder, but four other siblings are phenotyp-
ically normal. He was delivered at full term with a birth
weight of 2950 g and there were no perinatal issues. He
first presented at 5 years and 8 months of age with severe
language delay, hyperactivity and a preoccupation with
water. His verbal language was limited to the repetition of
a few words and pointing for needs. His teachers reported
that it was difficult to engage him in his pre-school activ-
ities. He was diagnosed with autism spectrum disorder
and intellectual impairment. Clinical examination revealed
a well thrived child with no dysmorphic features. Fragile X
testing result was normal.

The second patient was a girl of Chinese descent born
at 39 weeks gestation with a birth weight of 3234 g,
length of 45.5 cm and head circumference of 32 cm. Her
Apgar scores at 1 and 5 minutes were both 9. She is the
third child of a non-consanguineous marriage with no
family history of autism or learning impairment. Her
mother was 28 years old and her father 29 years old at the
time of her birth. She was first noted to have gross motor
delay at 9 months of age. The initial investigations, includ-
ing a thyroid function test and metabolic screen, were
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normal. On further review, she continued to have signifi-
cant developmental delay. At two years of age, she was
able to walk with support and she spoke no clear words.
Assessment using the Age and States Questionnaire,
Third Edition, showed normal scores for fine motor and
personal-social skills, and a borderline score in commu-
nication skills. The patient had significant delays in
gross motor and problem-solving skills.

On physical examination, her height and weight were
at the 90" percentile and her head circumference was at
the 97" percentile. She had truncal hypotonia and pigmen-
tation, irregular pigmentation on her lower limbs, protrud-
ing tongue and hypertelorism, but no other dysmorphic
features. Chromosome culture revealed an abnormal fe-
male karyotype, with two cell lines that showed a different
additional marker chromosome in each cell line.

Results

Karyotype analysis

Karyotype information on Patient 1 was unavailable. For
Patient 2, karyotype is reported as 47,XX,+mar.ish del
(15)(q12)(SNRPN+,D15Z1+)[14]/47,XX,+mar.ish psu dic
(15;15)(SNRPN++,D15Z1++) [4]. Two different markers
were identified. The larger marker chromosome was
found in 14 out of 18 metaphases analyzed. Fluorescent
in situ hybridization (FISH) analysis showed two centro-
meric 15 signals (D15Z1) and two signals localized to
SNRPN on this marker chromosome (Figure 1A). A smaller
marker chromosome was found in the other 4 metaphases.
FISH analysis on this smaller marker chromosome showed
one centromeric 15 signal and one signal localized to
SNRPN (Figure 1B). Hence, cytogenetic and FISH analysis
showed that this patient is mosaic for the two marker chro-
mosomes, with 14 out of 18 cells harboring the marker
chromosome with two copies of proximal 15q and the
remaining 4 cells harboring the marker chromosome with
one copy of proximal 15q, corresponding to partial tetras-
omy and partial trisomy 15q.

Array-based copy number analysis

For Patient 1, analysis showed a gain in copy number from
21,213,950 to 26,208,646, involving 710 probes with a
mean log, ratio of 0.5585 for the proximal region of the
long arm of chromosome 15 (Figure 2A). For Patient 2,
the gain was from 18,362,555 to 26,208,646, involving 865
probes with mean log, ratio of 1.0239 (Figure 2B). From
the position of the probes, the estimated minimum size of
the gain for Patient 1 was 4,994,696 basepairs (bp) while
the maximum size was 6,045,492 bp. For Patient 2, the
minimum size for the gain was 7,846,091 bp. The max-
imum size could not be determined as the gain started
from the first probe for the chromosome. The list of
known genes in the amplified region is shown in Table 1.
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Figure 1 FISH analysis of patient 2. (A) 2 green and 2 red hybridization signals were seen on the larger marker corresponding to centromeric
15 (D15Z1) and SNRPN respectively (B) 1 green and 1 red hybridization signals were seen on the smaller marker corresponding to centromeric 15
(D15Z1) and SNRPN respectively (Abbreviations: FISH: Fluorescent in situ hybridization, SNRPN: Small nuclear ribonucleoprotein polypeptide N).

Quantitative polymerase chain reaction analysis

Gene copy number was also investigated using relative
quantitative real-time polymerase chain reaction (qRT-
PCR) with SYBR Green dye and SNRPN as the target for
quantifying copy number. Analysis showed copy number
of 1.604 for SNRPN relative to the reference gene for
Patient 1 and 2.098 for Patient 2 when compared against

a phenotypically normal control. This corresponds to 3
copies and 4 copies, respectively (Figure 3A).

Methylation analysis

Sodium bisulfite treatment followed by qRT-PCR showed
that both the methylated and unmethylated SNRPN alleles
were present. Patient 1 had two methylated alleles and

N
: i < ol I I
pfl2 LAl qt11 q11.2 q12 q13.1 q132 q133 q14.0
Patient 1
------------------------------- Patient 2
4
4 A =
2
1
0
-1
2
3
4 =
4
3 B
2 :
! e, . .
1 ':.". E% *-'
0 . E -t
-1
2
3
-4
[ = - o o = o ® )
= = = = ol 2 9 = I
o o T T T = T & o
87 Mb 13 Mb 18 Mb 22/Mb 27 Mb 32Mb 36 Mb
Figure 2 Screenshot of analysis with Genomic Workbench Lite for Array-CGH results. Chart shows the gain in copy number from 15q11 to
15013 for (A) Patient 1 and (B) Patient 2. The regions with the copy number gain corresponding to the CGH results were indicated by the solid
lines below the ideogram. (Abbreviations: CGH; Comparative genomic hybridization; Mb: million base-pairs).
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Table 1 List of genes for the duplicated region for patient 2
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Symbol Gene name HI(D)' HI(1)? Ts(1)® Imprinting®
POTEB POTE ankyrin domain family, member B - - - -
OR4M2 Olfactory receptor, family 4, subfamily M, member 2 937 - - -
OR4N4 Olfactory receptor, family 4, subfamily N, member 4 783 - - -
GOLGA6LT Golgin A6 family-like 1 - - - -
TUBGCPS Tubulin-gamma complex-associated protein 5 - - - -
CYFIP1 Cytoplasmic FMRP interacting protein 1 533 - - -
NIPA2 Not imprinted in Prader-Willi syndrome/Angelman syndrome 2 529 0 0 -
NIPAT* Not imprinted in Prader-Willi syndrome/Angelman syndrome 1 253 0 0 -
GOLGA6L2 Golgin A6 family-like 2 - - - -
MKRN3 Makorin ring finger protein 3 98.7 0 0 p
MAGEL2 MAGE-like 2 - - - P
NDN* Necdin, melanoma antigen (MAGE) family member 36.2 - -

NPAPT* Nuclear pore associated protein 1 936 - - -
SNRPN* Small nuclear ribonucleoprotein polypeptide N 113 - - P
SNURF SNRPN upstream reading frame 64.6 - - P
UBE3A*A Ubiquitin protein ligase E3A 232 3 0 M
ATPT0A* ATPase, class V, type 10A 74.0 0 0 M
GABRB3* Gamma-aminobutyric acid (GABA) A receptor, beta-3 52 0 0 -
GABRAS Gamma-aminobutyric acid (GABA) A receptor, alpha-5 255 - - -
GABRG3 Gamma-aminobutyric acid (GABA) A receptor, gamma-3 83.8 - - -
OCA2* Pink-eye dilution, murine, homolog of (oculocutaneous albinism 1) 715 0 0 -
HERC2* HECT domain and RCC1-like domain 2 42.7 - - -

Notes: Gene list and names according to Decipher (https://decipher.sanger.ac.uk/). The list for Patient #1 is from MKRN3 to HERC2.

*OMIM morbid genes.

AAssociated with developmental disorders according to the Developmental Disorders Genotype-Phenotype Database (DDG2P).

HI(D) Haploinsufficiency scores from Decipher: values from 0-100%. Low values (0-10%) indicate more likely to exhibit Haploinsufficiency.

2HI(l) ISCA Haploinsufficiency Score (0= no evidence available, 1 = Little evidence, 2 = Some evidence, 3 = Sufficient evidence for dosage pathogenicity).
3TS(I) ISCA Triplosensitivity Score (0 = no evidence available, 1= Little evidence, 2 = Some evidence, 3 = Sufficient evidence for dosage

pathogenicity) (http://www.ncbi.nlm.nih.gov/projects/dbvar/ISCA/).

“For last column: M = expressed from maternal allele, P = expressed from paternal allele.
Abbreviations: FMRP; Fragile X mental retardation protein; HECT: Homologous to the E6-AP carboxyl terminus; SNRPN; small nuclear ribonucleoprotein

polypeptide N.

one unmethylated allele. For patient 2, the copy number
of the methylated allele was three times the unmethylated
one when compared with the control sample (Figure 3B).

Pathway analysis

Ingenuity Pathway Analysis (IPA) using genes from the
duplicated/triplicated region for Patient 2 identified de-
velopmental disorder, neurological disease and heredi-
tary disease as the main networks affected. The broad
categories of the pathways with their statistically signifi-
cant p-values are presented in Table 2. Enrichment ana-
lysis for diseases and biological functions was performed
on the constructed networks. Those with at least five
molecules in the network are presented in Table 3.

Discussion
Although duplications that involve the proximal region
of 15q are one of the most common rearrangements in

pediatric patients with congenital disorders, only a few
megabase cases have been mapped by molecular karyo-
typing or analyzed at the gene level. Of the duplications
identified by molecular methods, the sizes ranged from
about 1 million base-pairs (Mb) in a multiplex ligation-
dependent probe amplification study [9] to 17.7 Mb using
CGH arrays with 244 K oligonucleotide probes [10]. A
few large studies have found recurrent microdeletions or
duplications in the 15q11-q13 region for idiopathic epilep-
sies, autism, and combined schizophrenia and epilepsy
[11-16]. There is another relevant region for psychiatric
disorders that is more distal, with CHRNA?7 (cholinergic
receptor, nicotinic subunit alpha 7) within the BP4 - BP5
region as the top candidate gene [17-19].

In a large study using published data sets, the frequency
of 15q duplications is reported to be 1:494 for autism co-
horts and 1:508 for clinical cohorts with intellectual
disability, ASD, or multiple congenital anomalies [20]. The


https://decipher.sanger.ac.uk/
http://www.ncbi.nlm.nih.gov/projects/dbvar/ISCA/

Tan et al. Molecular Cytogenetics 2014, 7:32
http://www.molecularcytogenetics.org/content/7/1/32

A B

3.50 3.50

3.25 3.25 {

3.00 3.00

275 275

2.50 2.50

225 2.25 <I|>

2.00 { 2,00
2175 2175

1.50 E 1.50

1.25 1.25

1.00 1.00

0.75 0.75

0.50 0.50

0.25 0.25

0.00 0.00

&8 & g
R ] < <

Figure 3 Confirmation and quantitation of copy number using
qRT-PCR. (A) untreated genomic DNA. (B) bisulfite-treated DNA.
(Abbreviations: gRT-PCR: quantitative real-time polymerase chain
reaction; RQ: Relative quantification).

two patients with 15q duplication/triplication in this re-
port were from 350 cases with developmental delay and/
or multiple congenital anomalies who were prospectively
recruited into our array-CGH study. The gains in the two
patients had different proximal breakpoints. They ap-
peared to share the same distal breakpoint, which is
within a segmental duplication that corresponds to the
BP3 region, ending after the last three exons of the
HERC2 (HECT domain and RCC1-like domain 2) which
are duplicated.

No karyotype data was available for Patient 1, who has
Class II duplication [21]. The duplication is likely to be
an interstitial microduplication with the proximal break-
point located within BP2. The first duplicated sequence
with potential function is microRNA 4508 (gain of one
copy). At least 14 genes are in the duplicated region (13
OMIM genes and 8 OMIM morbid genes). The first gene
duplicated is MKRN3 (Makorin ring finger protein 3).

The triplication in Patient 2 is in the form of an sSMC.
We could not ascertain the start of the copy number
gain as there was no array-CGH probe for 15p and the
gain started before the recognized BP1 region and the
first known gene (CHEK2P2), which is a pseudogene on
15q. If it was interstitial and the start was near the first
array CGH probe, it would be a Class I duplication [21]
with the proximal and distal breakpoints within BP1 and
BP3, respectively. Alternatively, it could involve the whole
p arm. Array-CGH did not detect any other genomic
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imbalance for this patient. The gain involves at least 22
genes out of which 18 are OMIM genes and 9 are OMIM
morbid genes (Table 1). At least three genes within this re-
gion (NIPA1, NIPA2, CYFIPI) are implicated in the devel-
opment of the central nervous system while a fourth gene,
TUBGCPS, is a member of the cytoskeleton tubulin com-
plex in cells and is evolutionarily conserved [22].

Although parental samples were not available for both
patients, qRT-PCR analysis using primers which are
specific for methylation states showed that the extra
chromosomal material for both patients had methylation
pattern that implied gains of maternal origin. This is
consistent with the maternal origin of such duplications
being more common, and with such duplications being
more likely to have pathogenic consequences. Gain in
copy number of maternally-derived SNRPN has been asso-
ciated with autism [22], but Patient 2 had not presented
with such features. One notable feature is that her physical
dimensions were above the 90™ percentile. Overgrowth
has been reported in patients with an increased dosage of
distal 15q [23], but this patient’s copy number gain does
not involve the distal 15q region.

For the two patients in this report, phenotypic severity
did not correlate with the size and dosage of the distal
breakpoint on 15q, and whether the duplication is inter-
stitial or in the form of an sSMC. This lack of correl-
ation could be due to additional factors such as presence
of mosaicism in Patient 2, genetic background, epigen-
etic modifications, and gender. Aside from the increase
in gene dosage and the parental origin of the duplicated
genes, additional alterations at the epigenetic level could
influence gene expression, which could lead to phenotypic
variability for patients who carry duplications of the same
size and dosage [21,24]. Hogart et al. provided some sup-
porting evidence when they measured the level of 10 tran-
scripts within the 15q11-13 region in two postmortem
brains and found that the expression pattern correlated
with parental gene dosage in the male patient. In the
female brain, there was decreased expression of SNRPN,
NDN, small nuclear RNAs (snoRNAs) and gamma-
aminobutyric acide (GABA),4 despite an increased dos-
age of genes of maternal origin [25]. In the case of
SNRPN, the decreased expression was consistent with
the finding of increased methylation found at the im-
printing control region.

Mosaicism is common in 15q duplications that involve
supernumerary derivative chromosome 15. Such duplica-
tions tend to take the form of pseudodicentric derivative
chromosomes rather than intrachromosomal. The pseu-
dodicentric marker chromosome, psu dic(15;15), is usually
formed by a homologous recombination between two
chromosomes 15 [26]. The smaller marker chromosome
in Patient 2 is likely to be the result of a break in the psu
dic(15;15), before the inactivation of one centromere
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Table 2 List of systems/processes associated with genes in the amplified region as identified by IPA

Category p-values Molecules encoded from duplicated region
Auditory and Vestibular System Development and Function 2.20E-03 GABRA5,GABRB3

Auditory Disease 2.20E-03 —841E-03 GABRA5,GABRB3

Behaviour 1.36E-03 GABRB3

Cancer 1.07E-02 — 442E-04 ATP10AMKRN3,SNRPN,UBE3A

Cardiac Arteriopathy 433E-03 GABRA5,GABRB3,GABRG1,GABRG3

Cardiovascular Disease
Cell cycle
Cell Death and Survival

Cell Morphology

Cell-To-Cell Signalling and Interaction 1.57E-01 — 8.12E-03 NDN, UBE3A

Cellular Assembly and Organization 1.02E-02 — 7.54E-03 SNURF

Cellular Compromise 3.36E-05 — 1.72E-03 GABRA5,GABRB3

Cellular Development 8.05E-03 — 3.36E-05 NDN, UBE3A

Cellular Growth and Proliferation 8.05E-03 — 5.96E-04 NDN, UBE3A

Cellular Movement 2.68E-04 — 1.51E-04 GABRAS5,GABRB3,NDN
Connective Tissue Development and Function 1.57E-01 NDN

Connective Tissue Disorders 1.40E-03 — 1.40E-08 GABRA5,GABRB3,GABRG3

Developmental Disorder

DNA Replication, Recombination, and Repair 1.15E-02 SNRPN

Endocrine System Disorders 8.57E-03 MKRN3

Gene Expression 1.15E-02 — 6.35E-05 NDN,SNRPN,UBE3A

Hair and Skin Development and Function 4.97E-03 OCA2

Hematological Disease 5.83E-03 UBE3A

Hepatic System Development and Function 1.57E-01 NDN

Hereditary Disorder 1.17E-02 — 4.69E-10 GABRAS5,GABRB3,GABRG3,MAGEL2,MKRN3,NDN,SNRPN, UBE3A
Infectious Disease 468E-05 GABRA5,GABRB3,GABRG3

Kidney Failure 245E-01 GABRB3

Liver Fibrosis 1.57E-01 NDN

Nervous System Development and Function
Neurological Disease
Nutritional Disease

Organ Morphology

4.33E-03 - 4.44E-08
1.02E-02 — 442E-04
3.03E-03 - 1.17E-03
2.68E-04 — 1.08E-02

1.17E-02 — 4.69E-10

8.12E-03 - 1.51E-04
1.178-02 — 5.59E-09
1.82E-03 — 3.03E-06
5.87E-03 — 2.20E-03

GABRA5,GABRB3,GABRG1T,GABRG3

HERC2, UBE3A
GABRA5,GABRB3

OCA2, GABRA5,GABRB3,NDN

GABRB3,GABRG3 MAGEL2, MKRN3,NDN,SNRPN,UBE3A

GABRAS5,GABRB3,NDN, UBE3A
GABRAS5,GABRB3,GABRG3,UBE3A
GABRA5,GABRB3,GABRG3
GABRA5,GABRB3, UBE3A

Organismal Functions 5.87E-03 NDN

Organismal Injury and Abnormalities 245E-01 — 3.74E-06 GABRA5,GABRB3,GABRG3
Protein Degradation 1.33E-03 UBE3A

Protein Synthesis 1.33E-03 UBE3A

Psychological Disorders 5.57E-04 — 1.34E-06 GABRA5,GABRB3,GABRG3,NDN
Renal and Urological Disease 245E-01 GABRB3

Reproductive System Development 4.07E-03 UBE3A

Reproductive System Disease
Respiratory Disease
Skeletal and Muscular Disorders

Tissue Morphology

8.57E-03 — 5.87E-03
1.07E-02 — 5.97E-04
8.12E-03 — 1.40E-08
5.26E-06 — 8.57E-03

MKRN3, UBE3A

GABRAS5,GABRB3,GABRG3, MKRN3, SNRPN
GABRA5,GABRB3,GABRG3
GABRAS5,GABRB3,UBE3A

Abbreviation: IPA ingenuity pathway analysis.
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Table 3 Diseases or functions associated with the networks constructed from genes in the amplified region

Diseases or functions annotation p-values Molecules # molecules
Prader-Willi syndrome 469E-10 GABRG3,MAGEL2,MKRN3,NDN,SNRPN 5
Absence seizure 5.59E-09 GABRA5,GABRB3, GABRG1* GABRG3,UBE3A 5
Tonic-clonic seizure 2.07E-07 GABRAS5,GABRB3, GABRGT* GABRG3,UBE3A 5
Multiple congenital anomalies 432E-06 GABRB3,GABRG3,MAGEL2,MKRN3,NDN,PEX10* SNRPN,UBE3A 8
Stroke 3.14E-05 GABRAS5,GABRB3,GABRG1* GABRG3,TP53* 5
Epileptic seizure 5.60E-05 GABRAS5,GABRB3,GABRG1* GABRG3,UBC* 5
Major depression 1.52E-04 GABRAS5,GABRB3, GABRG1* GABRG3,IBTK* 5
Amyotrophic lateral sclerosis 3.77E-04 GABRAS5,GABRB3, GABRG1* GABRG3,TP53* 5
Schizophrenia 4.37E-04 AP1G1* GABRAS,GABRB3, GABRG1* GABRG3,NDN, TP53* 7
Parkinson's disease 5.57E-04 GABRAS5,GABRB3, GABRG1* GABRG3, TP53* 5
Seizures 6.96E-04 GABRAS5,GABRB3, GABRG1* GABRG3,UBC* UBE3A 6
Congenital anomaly of skeletal bone 1.40E-03 GABRAS5,GABRB3, GABRG1*,GABRG3, TP53* 5
Weight gain 1.82E-03 AP1G1* GABRA5,GABRB3, GABRG1*GABRG3 5
Bleeding 9.51E-03 GABRAS5,GABRB3, GABRG1* GABRG3,TP53* 5

Notes: Table includes networks with at least five molecules.
*Molecules encoded by genes mapped to regions outside 15q11 —13.

which occurred during the anaphase stage of mitosis. The
break would also have resulted in the loss of one of the
two duplicated regions in some cells, giving rise to the
mosaicism observed. As karyotype analysis was only done
for cells from peripheral blood culture, the ratio of the
two marker chromosomes in other tissues is not known.
At the time of the blood sampling for genetic investiga-
tion, the patient was only 9 months old. Due to the young
age when the chromosomal studies were done and the
lack of data on the mosaicism level in other tissues, it is
difficult to predict the course of disease manifestation and
make genotype-phenotype correlation [27].

Genetic analysis determined that the genes within the
regions that were duplicated in one or both of the patients
are significantly associated with identified functional net-
works. The top three functional networks based on levels
of statistical significance are developmental disorder, her-
editary disorder, and neurological disease. The important
genes that are involved in developmental and neurological
disorders are GABRAS, GABRA3, GABRG3, MAGEL?2,
MKRN3, NDN, SNRPN and UBE3A. Three of the genes
encode subunits of the GABA receptors, a family of
ligand-gated chloride channels which mediate the major
inhibitory neurotransmitter GABA in the brain. They have
been found to be highly expressed in the cerebral cortex
of postmortem brain samples [28]. One study found that
duplications that involve this GABA gene cluster are
highly enriched in an autism cohort, while another study
found no difference from controls [16,29]. The imprinted
gene UBE3A functions as a transcriptional co-activator
and also as a ligase in the ubiquitin proteasome pathway.
SNRPN also has dual functions. It is involved in RNA pro-
cessing and is also spliced into several regulatory RNAs.

The remaining three genes are causative of Prader-Willi
syndrome if a deletion or mutation is of paternal origin.
All are intronless, transcribed only from paternal alleles
and are involved in growth regulation or transcription.
In addition, there are a number of C/D box snoRNAs
which occur in multiple tandem copies [30]. These in-
clude the SNORD 115 (HBII-52), SNORD 116 (HBII-
85) and SNORD 109A (HBII-438A) clusters. They are
involved in directing alternative splicing or site-specific
methylation of substrate RNAs [31,32]. However, it is
unclear whether they are important in cases of maternal
duplications (such as the two cases in this report) as
they were reported to be expressed from the paternal
chromosome only [33].

Conclusions

We report two new cases of trisomy and mosaic tetras-
omy 15q11-q13 of probable maternal origin from the
methylation pattern. The copy number gain of genes in
the region could explain the patients’ phenotypic presen-
tations. Pathway analysis identified multiple networks of
candidate gene interactions. Reports of additional cases
that have overlapping amplifications with different break-
points would be helpful toward delineating the spectrum
of phenotypic features and long-term follow-up for car-
riers of such amplifications, such as the development of
late-onset Lennox-Gastaut syndrome [34] and sudden un-
explained deaths [5].

Consent

Weritten informed consent was obtained from the par-
ents for the laboratory investigations and publication of
the case report.
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Methods

Karyotype analysis

Chromosome analyses were performed on GTG banded
metaphases obtained from cultures of phytohaemagg
lutinin-stimulated lymphocytes using standard methods.
High-resolution chromosomes were obtained by Metho-
trexate cell synchronization [35].

Fluorescence in situ hybridization

Targeted cytogenetic analysis was performed on meta-
phase spreads using bacterial artificial chromosome
probes obtained from The Hospital for Sick Children
(Toronto, Canada). Slides were counterstained with 4,6-dia-
midino-2-phenylindole in Vectashield mounting medium
(Vector Laboratories, Inc, USA) and analyzed using a fluor-
escence microscope Olympus BX51 equipped with a CCD
Progressive Scan Video Camera (Japan Analytical Industry,
Co. Ltd., Japan). Image analysis was carried out with
Cytovision software (version 3.93.2) (Applied Imaging
Corp, USA).

Array-based copy number analysis

Genomic DNA was extracted from peripheral blood using
the Puregene DNA Isolation Kit (Qiagen GmbH, Hilden,
Germany). Human CGH array consisting of 400 K 60-mer
oligonucletode probes from Agilent (Agilent Technologies
Inc., Santa Clara, CA, USA)—and the reference used was
human genomic DNA from Promega matched to the gen-
der of the patient (Promega Corp., Madison, W1, USA).
Test DNA was labeled with Cy5-dUTP and reference
DNA was labeled with Cy3-dUTP (Sigma-Aldrich, St.
Louis, MO, USA) according to Agilent’s protocol for en-
zymatic labeling (Version 6.3). The efficiency of the label-
ing was measured using a Nanodrop Spectrophotometer.
The labeled reference and test DNA samples were hybrid-
ized to the array at 65°C in an Agilent Hybridization Oven
for 40 hours, with the rotator set at 20 rotations per
minute. The array was then processed according to the
manufacturer’s instructions and scanned with an Agilent
G2505C Microarray scanner at 5 micron resolution. Data
were extracted from the scanned image using Agilent Fea-
ture Extraction (Version 10.7.31) and were analyzed for
copy number change using Agilent Genomic Workbench
Lite (Edition 6.0.130.24). Genomic coordinates are based
on genome build 36/hg18.

gRT-PCR analysis

Gene copy number was also investigated by relative
qRT-PCR with SYBR Green dye and SNRPN as the tar-
get for quantifying copy number. Primers were designed
using Primer Express (Version 3.0), and the experiment
was carried out in triplicate. Genomic DNA from the two
patients and a control participant was amplified in the
same experiment using ZNF80 as the internal reference

Page 8 of 10

[36]. Amplification was done using the Applied Biosys-
tems StepOnePlus real time PCR system (Applied
Biosystems Incorporated, Foster City, CA, USA). Re-
sults were analyzed using Applied Biosystems StepOne
software (version 2.1).

Methylation analysis

Methylation status was investigated by treating the
DNA with sodium bisulfite using the EpiTect Bisulfite
Kit (Qiagen GmbH, Hilden, Germany), followed by qRT-
PCR with separate primers targeting methylated and
unmethylated SNRPN according to Kubota et al. [37].

Pathway analysis

The coordinates of the minimum deleted region for Pa-
tient 2 was searched against the Human reference gen-
ome (hgl8) for known genes in the region. The resulting
list of genes was imported into IPA software (Ingenuity
Systems, Inc. Redwood City, CA, USA) using the Entrez
ID mapped to the Ingenuity Pathway Knowledge Base
identifier. The reference set used was Ingenuity Know-
ledge Base (Genes only); relationship to include was both
direct and indirect. The analysis included endogenous
chemicals, and the filter summary was set to consider only
relationships in which confidence = experimentally ob-
served. The statistical significance for the enrichment of
genes of interest in each pathway was evaluated using a
Fisher Exact test under the Core Analysis function of IPA.
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