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Abstract

Transposition

Background: With the aim to increase the knowledge on the evolution of coleopteran genomes, we investigated
through cytogenetics and nucleotide sequence analysis Mariner transposons in three Scarabaeinae species
(Coprophanaeus cyanescens, C. ensifer and Diabroctis mimas).

Results: The cytogenetic mapping revealed an accumulation of Mariner transposon in the pericentromeric
repetitive regions characterized as rich in heterochromatin and Cyt-1 DNA fraction (DNA enriched with high and
moderately repeated sequences). Nucleotide sequence analysis of Mariner revealed the presence of two major
groups of Mariner copies in the three investigated coleoptera species.

Conclusions: The Mariner is accumulated in the centromeric area of the coleopteran chromosomes probably as a
consequence of the absence of recombination in the heterochromatic regions. Our analysis detected high
diversification of Mariner sequences during the evolutionary history of the group. Furthermore, comparisons
between the coleopterans sequences with other insects and mammals, suggest that the horizontal transfer (HT)
could have acted in the spreading of the Mariner in diverse non-related animal groups.
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Background

The repetitive DNAs represent a significant fraction of
eukaryotic genomes and are primarily enriched in the
heterochromatic regions, although some of them were
observed in euchromatic regions [1-4]. Among the re-
peated DNAs, the transposable elements (TEs) are DNA
sequences capable of changing their location in the gen-
ome, moving from one site to another, which seems to
benefit only the elements and, for a long time, they have
been considered as a “parasitic” and/or “selfish” elements.
However, TEs represent an evolutionary force that pro-
vides the potential conditions for the emergence of new
genes, modify gene expression, and adaptation to new en-
vironmental challenges [5-7]. In this way, TEs have a
major role shaping and influencing the structure and func-
tion of the genomes [8].
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Among several groups of TEs, Mariner-like elements
(MLEs) are a superfamily of DNA transposons that con-
sists in a single gene without introns flanked by two ter-
minal inverted repeat (TIR) of about 30 bp, performing
a total length of approximately 1.300 bp. Each terminal
repeat is flanked by a TA dinucleotide, resulted from du-
plication of the target site duplication (TSD) [9,10]. The
Mariner transposase gene encodes a protein of 330-360
amino acids, which recognizes the TIRs and cuts both
strands at each end, being responsible for transposition
by excising, exchanging, and fusing DNAs in a coordi-
nated manner [11,12].

The Mariner superfamily is probably the most wide-
spread and diverse group of TEs found in animals, per-
sisting in the genomes through evolutionary time [13].
The MLE history started with their discovery in insects
(being observed in several orders), and now their distri-
bution has been reported in multiple invertebrate and
vertebrate genomes [9,14-16]. The high similarity be-
tween sequences from distantly related organisms, the
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incongruence between TE and phylogeny, and the un-
equal distribution of some Mariner subfamilies among
closely related taxa indicate that the horizontal transfer
(HT) contributed to this widespread distribution [17-20].

The combination of molecular and cytogenetic ana-
lyses has established that several transposable elements
are associated with chromosomal rearrangements such
as deletions, duplications, inversions, the formation of
acentric fragments and dicentric chromosomes, recom-
bination and translocations of host genomes. In Dros-
ophila, species in which there are a variety of studies,
two kinds of elements, P and hobo, are especially prone
to induce chromosome rearrangements. However, other
transposons also appear to mediate chromosome rear-
rangements; these include the elements BEL, HeT-A,
Mariner, roo, Tango and TART [21-23].

The cytogenetic mapping of repetitive DNAs has
improved the knowledge of genome organization and
chromosomal differentiation during the evolutionary
history of the species. On the other hand, the genome
organization of repetitive DNAs has been poorly investi-
gated in Coleoptera, with only one study involving the
cytogenetic mapping of TEs [24]. With the aim to contrib-
ute to the knowledge of coleopteran genomes evolution at
molecular and chromosomal level, we investigated the
repetitive DNA fraction of three Scarabaeinae species
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(Coprophanaeus cyanescens, C. ensifer and Diabroctis
mimas), cytogenetically characterized by the presence of
large blocks of heterochromatin [19,25]. The subfamily
Scarabaeinae comprises a diverse and cosmopolitan group
of Coleoptera that play an important role in the conserva-
tion of ecosystems as seed dispersers, pollinators, and re-
cyclers of organic matter [26]. The overall chromosomal
distribution of repetitive DNAs was investigated through
the chromosomal hybridization of Cyt-1 DNA fraction
(DNA enriched with high and moderately repeated se-
quences), and the genomic features of Mariner TEs were
addressed through nucleotide sequencing and chromo-
somal mapping. The knowledge of the repetitive portion
of Scarabainae genomes brings the opportunity to advance
in studies of genome organization, species evolution, and
chromosome evolution in coleopterans.

Results

Cytogenetic mapping of Cyt-1 DNA and Mariner

The Cyt-1 DNA fraction was isolated from each genome
of C. cyanescens, C. ensifer and D. mimas, and hybridized
to their own chromosomes (Figure 1A-C). This Cyt-1
DNA revealed positive hybridization in the long arms of
all autosomes and X chromosome of the two Copropha-
naeus species, and in the long arm of the Y chromosome
of C. ensifer (Figure 1A, B). The Cyt-1 DNA fraction

Figure 1 Metaphases | of Coprophanaeus species submitted to FISH. The metaphases of C. cyanescens (A,D), C. ensifer (B,E) and Diabroctis mimas
(C,F) were probed with Cot-1 DNA (A-C) and Mariner transposable element (D-F). The arrows indicate the chromosome Y (A,D). Bar =5 pm.
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hybridization in D. mimas evidenced large pericentro-
meric blocks in all autosomal pairs and in the sex chromo-
somes, extending to the short arms of some autosomal
chromosomes (never to the long arm), including the
terminal region, and in the terminal region of one auto-
somal pair (Figure 1C). Cross-species hybridization of Cyt-1
DNA fraction showed positive hybridization only among
species of the same genus, showing the same pattern ob-
served for hybridization of probe originated from the same
genome (as shown in Additional file 1: Figure S1). These
patterns of Cyt-1 DNA hybridization were similar to the
data previously generated by C-banding on the three
species [25,27]. However, it was not observed Cyt-1
DNA hybridization in the C-positive banded centromeric
region of the Y chromosome of C. cyanescens, as well as
in the interstitial blocks of the short arms of three auto-
somal pairs and in the telomeric block in a small auto-
somal pair observed in C. ensifer [27]. Otherwise, Cyt-1
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DNA blocks observed in the terminal region of an auto-
somal pair and in the centromeric region of the Y chromo-
some of D. mimas were not observed by C-banding
(Figure 2, [25]).

The FISH using probes of Mariner sequences in C.
cyanescens labeled the X and Y sex chromosomes and
four autosomal pairs with large pericentromeric blocks
and three large autosomal pairs with pericentromeric la-
beling that also cover the long arm (Figure 1D). In C.
ensifer the mapping of Mariner revealed small pericen-
tromeric blocks in the X and in all autosomal chromo-
somes (Figure 1E). In D. mimas the pattern was similar
to the obtained by Cypt-1 DNA hybridization, however,
the blocks observed were smaller (Figure 1F). A sche-
matic ideogram showing the distribution of heterochro-
matic regions revealed by C-banding, and fluorescent in
situ hybridization with Cyt-1 DNA and Mariner se-
quences probes is presented in Figure 2.
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Figure 2 Schematic ideogram showing the hybridization patterns described for Coprophanaeus cyanescens (A), C. ensifer (B) and D.
mimas (C). Black represents the distribution of heterochromatin revealed by C-banding according to previous works [25,27] and Cyt-1 DNA. Blue
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Analysis of Mariner sequences

Nucleotide transposase (partial DDE domain — region
with three conserved aminoacid: Asparagine-Asparagine-
Glutamine) sequences of approximately 230 bp were
obtained for C. cyanescens (eight sequences), C. ensifer (six
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sequences) and D. mimas (nine sequences) (Additional
file 2: Dataset S1). The comparative analysis of Mariner to
several vertebrates and invertebrates showed that the
Mariner sequences are organized into two major groups (I
and II), and the group I is subdivided into 3 branches
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Figure 3 Alignment guide tree of Mariner families. The sequences obtained for beetles in this work are indicated in green. Except individual
sequences with accession numbers provided, all other sequences are represented by consensus sequences deposited in Repbase, with their
Repbase ID. The sequences are indicated in different colors considering if they are derived from mammals (red), planaria (pink), beetles (green)
and other insects (blue). Species are Cc (Coprophanaeus cyanesces), Ce (C. ensifer), Dm (Diabroctis mimas), Ac (Atta cephalotes), Ae (Acromyrmex
echinatior), Af (Apis florea), Am (Apis mellifera), Bte (Bombus terrestris), Bt (Bos taurus), Ca (Chymomyza amoena), Cf (Camponotus floridanus), Del
(Drosophila elegans), Der (Drosophila erecta), Df (Drosophila ficusphila), Ee (Erinaceus europeus), Fa (Forficula auricularia), Hs (Harpegnathos saltator),
Lh (Linepithema humile), Mr (Megachile rotundata), Pb (Pogonomyrmex barbatus), Si (Solenopsis invicta), Sm (Schmidtea mediterranea) and Tb
(Tupaia belangeri). The sequences Cc_4 to Cc_7 are smaller than 200 bp and do not have GenBank accession numbers. The Mariner sequences
are organized into two major groups (I and I, as indicated), and the groups are subdivided into branches (colored blocks). The branch support
values are indicated on the nodes. The scale bar indicates the genetic distance.
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(Figure 3, Additional file 3: Figure S2). In the first branch,
there is only the distribution of insect sequences, repre-
sented by flies (Drosophila ficusphila), ants (Harpegnathos
saltator), bees (Apis florea, Apis mellifera), earwig (Forfi-
cula auricularia) and beetles (C. cyanescens, C. ensifer, D.
mimas). In the second branch, it is observed the distribu-
tion of mammal sequences (Erinaceus europeus, Tupaia
belangeri), planaria (Schmidtea mediterranea), and insects,
represented by ants (Atta cephalotes, Harpegnathos salta-
tor, Linepithema humile, Solenopsis invicta), bees (Mega-
chile rotundata) and beetles (C. ensifer, D. mimas). In the
third branch, it is observed only one sequence from the fly
(Chymomyza amoena). The sequences of the group II are
organized in one major branch and contain data of mam-
mal (Bos taurus), and insects represented by flies (Dros-
ophila elegans, Drosophila erecta) and ants (Acromyrmex
echinatior, Atta cephalotes, Camponotus floridanus, Har-
pegnathos saltator, Solenopsis invicta).

In the first branch (group I sequences), the sequences
of beetles showed similarity with other insect sequences,
although they form a separated branch with high branch
support value (0.87). In the second branch, the insect se-
quences are related to Marinerl_Tbel family from mam-
mals. Even including the beetle sequences, it is clear the
high similarity of sequences of the mammalians Erina-
ceus europeus and Tupaia belangeri with the genome of
ants Pogonomyrmex barbatus and Harpegnathos saltator
(higher than 92% compared with Erinaceus europeus,
and higher than 98% compared with Tupaia belangeri)
(Additional file 4: Dataset S2). The genetic distance
within Marinerl_Tbel sequences between mammals and
insects (including beetles) species were relatively low
(0.017-0.359%) (Additional file 4: Dataset S2). In turn, the
genetic distances observed within Mariner-1_BT sequences
among insect species were 0.258-0.525% (Additional file 4:
Dataset S2).

The Mariner sequences of beetles branched out in two
into two groups (seen in the first and second branches
of group I, Figure 3). Within the first branch, were ob-
tained sequences from C. cyanescens, C. ensifer and D.
mimas. However, within the second branch there were
only obtained sequences from species C. ensifer and D.
mimas. The genetic distance between this two beetle
groups was relatively high (0.338-0.518).

Discussion

General aspects of heterochromatin and repeated DNAs
organization

The presence of large blocks of heterochromatin and Cyt-1
DNA fraction in the studied species suggests the occur-
rence of amplification of repetitive DNAs and/or hetero-
chromatin transfer between the chromosomes during the
karyotype differentiation of species as previously observed
in other animals [28-31]. This statement is supported by

Page 5 of 9

the common pattern of heterochromatic blocks mainly
located in pericentromeric areas in relates species, in-
cluding coleopterans [32-34]. Most information con-
cerning heterochromatin in coleopterans is focused on
the description of chromosomal distribution with few
data regarding its molecular content. The Cyt-1 DNA
fraction hybridization showed a general pattern coinciding
with the data generated by C-banding [25,27], indicating
that the heterochromatin is enriched in highly repetitive
DNA. The presence of large blocks of Cpt-1 suggests
an abundance of repetitive sequences, and cross-species
hybridization analysis among Phanaeini species evidences
high conservation between the fractions of repetitive
DNA within genera and divergence between the two dif-
ferent studied genera. However, the use of Cyt-1 DNA
fractions as probes in Dichotomius species (Coleoptera,
Scarabaeidae) allowed the observation of heterochromatin
distribution patterns highly conserved in the terminal/
sub-terminal region and an extensive variation in rela-
tion to the pericentromeric heterochromatin [35]; which
contrasts with the Phanaeini species studied. These data
reinforce the intense evolutionary dynamics of the re-
peated DNA fraction by mutation, gene conversion, un-
equal crossing-over, circular replication and slippage
replication [36-38] generating high divergence among
taxa above the genus level.

Chromosomal organization of Mariner transposable
elements

It is a common observation that some transposable ele-
ments may be overabundant in specific regions of chro-
mosomes, and the results obtained with the mapping of
Mariner shows that these sequences are not randomly
distributed and have accumulated in the heterochro-
matic areas. However, the accumulation of this element
in euchromatic areas was recently reported in Eyprepoc-
nemis plorans [4]. The accumulation of a large amount
of copies in the heterochromatic regions can indicates a
selection against insertions of TEs in euchromatin based
on ectopic exchanges. Different major forces can affect
TEs in heterochromatin and euchromatin regions of the
genome, being that accumulation in heterochromatin re-
gions explained by the absence of selection against inser-
tional mutations in genetically inert regions, and stochastic
accumulation of deleterious elements in regions with no
recombination [1,2,39].

Possibly the absence of labeling in three autosomal
pairs of C. cyanescens indicates that the evolutionary his-
tory of these sequences within the genome of the species
follows a distinct pattern; possibly including suppression
of recombination between these chromosomes with the
other autosomes.

The accumulation of Mariner sequences in the peri-
centromeric regions is possibly due to the low rate of
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recombination characteristic of these regions, and could
indicates that this element is enriched in regions where
the damage of its insertion is reduced [22,40]. Although it
is not possible to predict the possible role of these elements
in Coleoptera they may be involved with the chromosomal
rearrangements, as the occurrence of pericentromeric in-
version observed in D. mimas. This species presents meta-
submetacentric (pairs 1, 2, 3 and 7) and acrocentric (pairs
5, 6, 8 and 9) autosomal chromosomes [25], while C. cya-
nescens and C. ensifer have meta-submetacentric morph-
ology for all autosomal chromosomes [27]. In D. mimas the
presence of four acrocentric autosomal pairs indicates the
occurrence of pericentromeric inversions unlike the stand-
ard meta-submetacentric karyotype described for the family
Scarabaeidae [41]. Chromosomal rearrangements, as that
observed in D. mimas, are possible a consequence of trans-
posable elements, that were reported to be involved with
various types of rearrangements by transposition and re-
combination [42-44].

Another approach to the accumulation of transposable
elements is that the Mariner transposon could have been
maintained in the pericentromeric region by presenting
any functional role in the maintenance of this region
[45]. For example, during the evolution of the genome,
heterochromatic transposable elements may lose the ability
to transpose and accumulate mutations and structural re-
arrangements, acquiring new functions [46,47]. Feschotte
[6] proposed that the movement and accumulation of TEs,
as well their derived proteins, have played an important
role in the evolution of the genome. The association of
TEs and the structure and/or function of centromeres
seems to be an usual occurrence, and have been observed
in diverse species [47,48].

The mapping of Mariner in the sex chromosomes of
the three species could be related to the common spread-
ing of the TEs in most heterochromatic areas of the gen-
ome, or the sex chromosomes can act as a refuge for
transposable elements as previously reported [49-51]. Sev-
eral genetic processes can cause an accumulation of TEs in
genomic regions where crossing over is reduced or absent
[36]. In some cases, for example, the sex chromosomes
show the tendency of non-recombining in the genomic
regions to accumulate transposable elements [52,53]. An-
other possibility is that, the recombination suppression it-
self could inhibit recombination in nearby regions of the
sex chromosomes [53].

The transposition/selection model establishes that the
distribution and abundance of TEs are indicative of their
evolutionary history [36,54]. This process involves three
stages: (i) invasion of the host genome, (ii) rapid spread
by replicative transposition, and (iii) vertical inactivation
and accumulation in the heterochromatin. Considering
that hypothesis, the Mariner present in C. cyanescens, C.
ensifer and D. mimas could be considered ancient because
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active and recently acquired elements are expected to be
preferentially located in euchromatin. TEs are expected to
be overabundant in the heterochromatin where recombin-
ation is strongly reduced, and because the TEs cannot be
easily removed from heterochromatin once they have been
inserted [55,56].

Besides the accumulation in the heterochromatin, the
Mariner sequences hybridization patterns are quite dif-
ferent between the three species. This suggests that the
chromosomes do not share a general pool of Mariner
sequences, and could indicate a different evolutionary
path after the emergence within each species.

Mariner transposable elements in Scarabaeinae
coleopterans
The Mariner sequences of Scarabaeinae coleopterans
branched out into two groups, showing a relatively high
genetic distance between them, indicating an early diver-
gence from an ancestral element. This is consistent with
previous studies, proposing that members of the Tci1/
Mariner are probably monophyletic in origin, and diver-
sified in various groups by accumulation of modifica-
tions and/or horizontal transfer mechanisms [9,57,58].
Probably, each TE copy of beetles has evolved inde-
pendently of each other, according to the pattern of mo-
lecular evolution related for Mariner transposon. When
divergent elements do exist, they display, as observed, a
low percentage of similarity to the full-length sequences.
This suggests that TEs are highly active within the gen-
ome, and that the highly divergent copies reflect relics of
ancient mobilizations, as described to Drosophila mela-
nogaster [53].

Mariner horizontal transfer

Mariner transposable elements have been described in
many arthropods, possibly spread by HT [17,20,59]. In
general, the phylogenies based on Mariner sequences are
not always congruent with the phylogenies of the taxa,
suggesting the occurrence of HT [14,60].

The high sequence similarity between sequences from
distantly related organisms, the incongruence between
TE distribution and phylogeny, and the unequal distribu-
tion of some Mariner subfamilies among closely related
taxa indicate that the HT contributed to this widespread
distribution [18,20,61]. Several TEs have been introduced
into mammal lineages through HT [62-65], including
Mariner [19,66,67]). Comparative analyses of mammalian
genomes show the presence of high amount of TEs, but
their content could vary among the different lineages
[18,68]. The genetic distance within Marinerl_Tbel se-
quences between mammals and insects species were rela-
tively low, consistent with the phylogenetic distances
between them and reinforces the occurrence of HT in the
spread of these elements to different taxa [19].
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Considering the Mariner tree topology clearly indicates
the involvement of HT during the evolutionary history of
insects and mammals, although it is not possible to show
in which evolutionary moment this transfer occurred.
Multiple mechanisms may be related to the spread of TE
by horizontal transfer, using different types of vectors (ex-
ternal parasites, infectious agents, intracellular parasites
and symbionts, DNA viruses, RNA viruses, retroviruses)
[13,69,70]. Thus, for each described case of a proposed HT,
could be implemented a model of transfer. Our results are
consistent with the criteria of HT, and reveal interesting
patterns of patchy distribution among animals, suggesting
a repeated invasion of Mariner from insects to mammals.

Conclusions

The relatively high genetic distances observed between
the two classes of Mariner sequences of beetles, and
their distribution in other animals indicate that these
two classes had a early origin in the base of insect diver-
sification, or considering the highest similarity for each
group with other insect sequences (particularly ants),
and also similarity to mammals in one of the groups,
there is an evidence that the sequences may have origi-
nated by horizontal transfer.

Methods

Animals and DNA samples

Adult male samples of Coprophanaeus cyanescens, C.
ensifer and Diabroctis mimas were collected in Caruaru,
Igarassu, Paudalho and Salod, Pernambuco State, Brazil.
The animals were collected in the wild according to
Brazilian laws for environmental protection (wild collec-
tion permit, MMA/IBAMA/SISBIO n. 2376-1). The ex-
perimental research on animals was approved by the ethics
committee of Sao Paulo State University (Protocol no. 35/
08 — CEEA/IBB/UNESP). The testes were fixed in Carnoy
solution (3:1 ethanol: acetic acid) and then stored in freezer
at —20°C. The DNA samples were obtained from living
specimens immediately frozen in the freezer at ~20°C. The
procedure for extraction of genomic DNA followed,
with minor modifications, the protocol described by
Sambrook and Russel [71]. The quality and quantity of
purified DNA were analyzed under electrophoresis and
spectrophotometry.

Cot-1 DNA preparation

Cot-1 DNA fractions were obtained from C. cyanescens,
C. ensifer and D. mimas based on reassociation kinetics
proposed by Zwick et al. [72] and the modifications
described by Ferreira and Martins [73]. The Cyt-1 DNA
fractions obtained were labeled and used directly as
probes for chromosome hybridization, being performed
hybridizations within the same species and between dif-
ferent species.
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Isolation and characterization of Mariner TEs

The Mariner transposable elements were isolated thought
polymerase chain reaction (PCR) with the set of primers
MAR-188 F (5" ATC TGR AGC TAT AAA TCA CT) and
MAR-251R (5" CAA AGA TGT CCT TGG GTG TG), de-
signed based on conserved regions of the amino acid se-
quence of the putative transposase gene of the Mariner
element [74]. The PCR products were cloned using pGEM-
T kit (Promega, Madison, WI, USA) according to manufac-
turer’s recommendations. The recombinant plasmids were
submitted to nucleotide sequencing using a sequencer
model 3500 Genetic Analyzer (Applied Biosystems, Foster
City, CA, USA).

The DNA sequences obtained were used as an initial
query to searches against a database of repetitive DNA
elements (Repbase database) (http://www.girinst.org/
repbase/), which contains repetitive DNA sequences of
various eukaryotic species [75]. Additionally, the obtained
sequences were analyzed against the nucleotide collection
of The National Center for Biotechnology (NCBI) (http://
www.ncbinlm.nih.gov) using the Blast search tool. Family
consensus sequences were constructed whenever possible.
The analysis of DNA sequences were performed with web
site LIRMM (Laboratoire Le d'Informatique, Robotique et
de Microélectronique of Montpellier), available online at
http://www.phylogeny.fr/ [68,76,77]. The multiple align-
ments were performed using MUSCLE, while the align-
ment curation used Gblocks program to eliminate poorly
aligned positions and divergent regions. Phylogenetic trees
were built with neighbor joining (NJ) and confirmed as
consistent with trees built by PhyML [78]. The Mariner
protein coding sequences were searched against the
Pfam database (http://pfam.sanger.ac.uk). For comparison,
was also prepared a phylogenetics analysis using the
Maximum Likehood, measuring the consistency by boot-
strap using the program MEGAS5 — Molecular Evolution-
ary Genetics Analysis (http://www.megasoftware.net/).

Chromosome preparation and Fluorescence in situ
hybridization (FISH)
Meiotic chromosomes for FISH were obtained from testes
of Coprophanaeus cyanescens, C. ensifer and Diabroctis
mimas according to the classic technique of squashing of
testicular follicles using a drop of 45% acetic acid, and
then dipped in liquid nitrogen to remove the coverslip.
The PCR products containing a pool of Mariner se-
quences, and the Cyt-1 DNA fraction were labeled with
biotin-11-dATP by nick translation using the Bionick La-
beling System kit (Invitrogen, San Diego, CA, USA). The
FISH protocol followed the adaptations described by
Cabral-de-Mello et al. [79]. The probes were labeled with
biotin-14-dATP and detected by avidin-FITC (fluorescein
isothiocynate) conjugated (Sigma-Aldrich, St. Louis, MO,
USA). The chromosomes were counterstained with 4,6-


http://www.girinst.org/repbase/
http://www.girinst.org/repbase/
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.phylogeny.fr/
http://www.pfam.sanger.ac.uk
http://www.megasoftware.net/

Oliveira et al. Molecular Cytogenetics 2013, 6:54
http://www.molecularcytogenetics.org/content/6/1/54

diamidino-2-phenylindole (DAPI) and the slides mounted
with Vectashield (Vector, Burlingame, CA, USA). The im-
ages were captured using Olympus DP71 digital camera
coupled to a BX61 Olympus microscope and DP Control
program, and processed through Corel Photo-Paint 12
and Adobe Photoshop CS2.

Additional files

Additional file 1: Figure S1. Cross-species hybridization of Cpt-1 DNA
fraction in metaphases | of Coprophanaeus species. Probe of C. ensifer
hybridized in C. cyanescens (a) and probe of Coprophanaeus cyanescens
hybridized in C. ensifer (b). Bar = 5 um.

Additional file 2: Dataset S1. Sequence alignment of related Mariner
families of diverse organisms retrieved from public databases and
sequences obtained in the present work. The abbreviations correspond
to the species names and IDs, as shown in the caption of Figure 3.
Dashes represent indels.

Additional file 3: Figure S2. Alignment guide tree of Mariner families
based on Maximum Likehood. The taxa are the same as described in
Figure 3. The bootstrap support values are indicated on the nodes. The
scale bar indicates the genetic distance.

Additional file 4: Dataset S2. Alignments pairwise similarity matrix of
related Mariner families. The abbreviations correspond to the species
names and IDs, as shown in Figure 3.
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