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Xq28 (MECP2) microdeletions are common in
mutation-negative females with Rett syndrome
and cause mild subtypes of the disease
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Abstract

Background: Rett syndrome (RTT) is an X-linked neurodevelopmental disease affecting predominantly females
caused by MECP2 mutations. Although RTT is classically considered a monogenic disease, a stable proportion of
patients, who do not exhibit MECP2 sequence variations, does exist. Here, we have attempted at uncovering genetic
causes underlying the disorder in mutation-negative cases by whole genome analysis using array comparative
genomic hybridization (CGH) and a bioinformatic approach.

Results: Using BAC and oligonucleotide array CGH, 39 patients from RTT Russian cohort (in total, 354 RTT patients),
who did not bear intragenic MECP2 mutations, were studied. Among the individuals studied, 12 patients were
those with classic RTT and 27 were those with atypical RTT. We have detected five 99.4 kb deletions in
chromosome Xq28 affecting MECP2 associated with mild manifestations of classic RTT and five deletions
encompassing MECP2 spanning 502.428 kb (three cases), 539.545 kb (one case) and 877.444 kb (one case)
associated with mild atypical RTT. A case has demonstrated somatic mosaicism. Regardless of RTT type and deletion
size, all the cases exhibited mild phenotypes.

Conclusions: Our data indicate for the first time that no fewer than 25% of RTT cases without detectable MECP2
mutations are caused by Xq28 microdeletions. Furthermore, Xq28 (MECP2) deletions are likely to cause mild
subtypes of the disease, which can manifest as both classical and atypical RTT.

Keywords: Array CGH, Autistic spectrum disorder, Chromosome X, Female, MECP2, Rett syndrome,
Xq28 microdeletion
Background
Rett syndrome (RTT // MIM 312750) is an X-linked neu-
rodevelopmental disorder caused by MECP2 mutations
that affects almost exclusively girls. Clinically, the disease
presents with developmental regression accompanied by
the loss of hand skills, mobility and speech. In addition,
RTT is phenotypically characterized by stereotypic hand
movements, respiratory abnormalities, scoliosis, growth
deficits, hypotonia, microcephaly and seizures. Intragenic
MECP2 mutations are the main cause of RTT. However,
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there does exist a proportion of RTT females (5-10%)
without detectableMECP2mutations [1-6]. To date, genetic
causes in these RTTcases remain largely unknown.
Recently, it has been shown that Xq28 microdeletions

can affect MECP2 leading to RTT-like phenotype [7,8].
Since these submicroscopic genome variations were
commonly detected in children with presumably idiopathic
intellectual disability, autism, epilepsy and/or congenital
anomalies [7], it is probable that submicroscopic Xq28
deletions are not rare and can be associated with RTT.
In this context, one can suggest Xq28 deletions span-
ning the MECP2 gene to be a potential cause of the dis-
ease in affected females without mutations detectable by
Sanger sequencing. Surprisingly, to the best our know-
ledge, there was no systematic whole genome analysis of
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Figure 1 Flow chart illustrating the diagnostic workup for
genetic evaluation in Russian RTT cohort.
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MEPC2-mutation negative RTT patients. In the available
literature, we have only found studies describing whole
genome analysis of RTT females by array comparative
genomic hybridization (CGH), which was performed for
testing whether copy number variants (CNVs) are able to
modulate the phenotype in mutation-positive RTT cases
[9,10]. Thus, we decided to share our data on the evaluation
of MEPC2-mutation negative females from Russian RTT
cohort addressed by BAC and oligonucleotide array CGH
with bioinformatic analysis.

Results
In the present study, we have selected MECP2-mutation-
negative patients from the Russian RTT cohort (354 RTT
girls). The cohort includes 262 classic and 92 atypical RTT
females according to revised diagnostic criteria [11], who
have been previously found to bear a MECP2 mutation
in 95.4% and 70.7% of cases, respectively [12-15]. The
remaining RTT girls were classified as follows: classic
RTT — 12 cases out of 262 patients (4.6%) and atypical
RTT — 27 cases, among them 17 girls with “forme fruste”;
6 with a late regression; 4 girls with early-onset seizures.
All the selected patients (n = 39) have been evaluated
by BAC and oligonucleotide array CGH (Human BAC
Array-System, Perkin Elmer and NimbleGen 135 K whole
genome tiling array) using a specific bioinformatic protocol
for data analysis. Five classic RTT cases and five atypical
RTT cases were found to be associated with Xq28 deletions
(Figure 1). The occurrence of Xq28 deletions in RTT
females without MECP2 mutations detectable by Sanger
sequencing was estimated at about 26%. These cases were
all found to exhibit RTT-specific epigenetic phenomena
(unusual replication pattern or type C undetectable in ge-
neral population) observed at cytogenetic (cytological) level.
Firstly, the deletions were detected in girls with atypical

RTT by BAC array CGH. Oligonucleotide array CGH
was then used to confirm the deletions and to narrow
the breakpoints given according to hg19 assembly
(Feb. 2009 Genome Reference Consortium GRCh37).
Among them, three patients exhibited exactly the same
(recurrent) deletions encompassing genomic loci in Xq28:
arr Xq28(153,145,800-153,648,227)×1 (Additional file 1:
Figure S1). The size of these three deletions was estimated
as 502,428 bp. Another RTT patient has demonstrated
an Xq28 deletion with the same distal breakpoint (arr
Xq28(153,108,683-153,648,227)×1), the size of which is
539,545 bp (Additional file 2: Figure S2). The largest
Xq28 deletion detected in this study spans 877,444 bp
(arr Xq28(152,731,931-153,609,374)×1) and is featured by
an unexpectedly mild RTT phenotype (Additional file 3:
Figure S3). All the deletions detected in atypical RTT cases
were found to encompass the MECP2 gene (Figure 2). De-
letions were confirmed by fluorescence in situ hybridization
(FISH). Molecular data (size and breakpoint locations) and
clinical parameters (additional phenotypic features) of these
deletions are summarized in Table 1.
Secondly, oligonucleotide array CGH has indentified

another five deletions in nearly classic RTT patients.
All these deletions have the same breakpoints (same size)
(Table 1, Additional file 4: Figure S4): about 99.4 kb
(arr Xq28(153,213,483-153,312,854) ×1). One case was
found to be associated with mosaic deletion (Table 1),
which was confirmed by FISH through studying 100 meta-
phase plates and 1000 interphase nuclei (unfortunately,
other tissues were not available for analysis due to parents’
lack of further cooperation). According to molecular
analysis, two MECP2 exons were affected (Figure 2,
Additional file 4: Figure S4). However, taking into account
the probe distribution on the NimbleGen 135 K whole
genome tiling array, complete MECP2 deletion on one
chromosome X homologue cannot be excluded. It is intri-
guing to note that further molecular cytogenetic confirm-
ation analysis demonstrated a discrepancy between array
CGH and FISH, which mainly concerned the mosaic case
hallmarked by an apparent difference between proportions
of cells affected by MECP2 deletion (Figure 3). Apart
from Xq28 deletions, other CNVs were also detected. These



Figure 2 Schematic overview of detected Xq28 deletions depicted using UCSC Genome Browser (Human Feb. 2009 (GRCh37/hg19)
Assembly) (see also Table 1 for details).
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were losses within 3p13, 3q27.1, 11p13, 15q11.2, Xp22.13
and gains within 1q21, 11p14.3, 15q14, 22q11.21. We
recognize that their intrinsic pathogenic value can be
appreciable and requires to be addressed by further
bioinformatics and molecular analyses (more detailed
data will be presented elsewhere).
An attempt at correlation between genotype and pheno-

type in reported cases and cases with MECP2 mutations
has shown that Xq28 (MECP2) microdeletions are likely to
cause specific subtypes of RTT, which are clinically milder
than the phenotype resulted from intragenic MECP2
sequence variations. Deletions were featured by late
Table 1 Clinical and molecular overview of Xq28 microdeletio

Age (months) Additional clinical features

Atypical RTT

118 Multiple hematomas, teeth anomalies

132 Prenatal hypotrophy, facial dysmorphisms

58 Prenatal hypotrophy, facial dysmorphisms, clinodactyly, den
cerebellar vermis hypoplasia, epidural cystic changes in the

48 Prenatal hypotrophy, facial dysmorphisms, verrucous pat
patent foramen ovale

22 Facial dysmorphisms

Classic RTT

204 Prenatal hypotrophy, facial dysmorphisms

74 Hydronephrosis, polycystic kidney disease

49 Prenatal hypotrophy, facial dysmorphisms

101** —

98 Prenatal hypotrophy

* — according to assembly: hg19 Feb. 2009 Genome Reference Consortium GRCh3
** — somatic mosaicism and discrepancy between array CGH and FISH data.
regression age, intact ability to walk, mild dyspraxia of
hand movements, and microcephaly absence. Although
some cases fulfil both canonical and more recent diagnostic
criteria for classic RTT [11,16], we did observe that almost
all the RTT symptoms (addressed by a scale developed
specifically for the evaluation of RTT symptoms severity
[8,14,15]) in cases of Xq28 deletions are comparably
milder than those caused by intragenic MECP2 muta-
tions. Additional clinical signs featuring this RTT subtype
are low birth weight in ~2/3 of cases, malformations
(vascular dorsal skin hemangiomatosis, verrucous patches
resembling incontinentia pigmenti phenotype, cerebellar
ns detected in MECP2-mutaiton-negative RTT females

Size (kb) Breakpoints*

Proximal Distal

502.428 153,145,800 153,648,227

502.428 153,145,800 153,648,227

tinogenesis imperfecta,
thoracic spine

502.428 153,145,800 153,648,227

ches on the trunk, 539.545 153,108,683 153,648,227

877.444 152,731,931 153,609,374

99.371 153,213,483 153,312,854

99.371 153,213,483 153,312,854

99.371 153,213,483 153,312,854

99.371 153,213,483 153,312,854

99.371 153,213,483 153,312,854

7;



Figure 3 FISH demonstrating mosaic MECP2 deletion. (A) interphase FISH: two signals correspond to two MECP2 copies in a nucleus without
deletion and a single signal is observed in a nucleus lacking one MECP2 copy; (B) percentages of abnormal cells detected by array CGH and FISH.
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vermis hypoplasia, polycystic kidney disease, patent
foramen ovale) and facial dysmorphisms.

Discussion
RTT is a common monogenic cause of neurodevelopmen-
tal abnormalities in females [1-6]. Although it has been re-
peatedly noted that the phenotype of affected girls depends
on the presence or absence of MECP2 mutation, the latter
have not been ever considered as an exclusive criterion
for RTT [11,16,17]. Apparently, non-striking phenotypic
differences between a significant proportion of mutation-
positive and mutation-negative cases [17] indicate that the
same genetic defect causes the disease in mutation-negative
cases. Currently, there have been reported several genomic
abnormalities (i.e. 14q12 microdeletions) associated with
RTT [5-7,18,19]. However, these genomic rearrangements
are unlikely to cover all the mutation-negative RTT cases.
Here, we report on the commonest cause of RTT in cases
without detectable MECP2 mutations. To our knowledge,
this is the first systematic report describing Xq28 genomic
abnormities (Xq28 deletions affecting MECP2) in RTT.
Large intragenic MECP2 deletions have been consistently

reported in the available literature [20-24]. Moreover,
a RTT case was associated with a deletion detected by
FISH [20]. Nevertheless, the existence of Xq28 deletions
causing RTT has long remained a matter of conjecture.
It seems that the high mutation detection rate and clinical
heterogeneity in mutation-negative cases has resulted in the
lack of studies dedicated to whole genome analysis among
RTT females without detectable MECP2 mutations. On the
other hand, MECP2 loss modulates RTT phenotypes in
mice [25,26] suggesting that similar genomic abnormality
might cause RTT in humans. Xq28 (MECP2) deletions
found in RTT girls has confirmed this expectation. Fur-
thermore, studying functional consequences of MECP2
mutations [27-29] evidences that MECP2 loss has func-
tional implications in females.
As detected by array CGH and FISH, one deletion

causing classic RTT was mosaic. Somatic mosaicism for a
structural chromosome abnormality or CNVs is common
in genomic disorders or single-gene disease [30,31]. It
is also detected in cohorts of individuals with autistic
spectrum disorders (in its widest sense) including girls
suffering from RTT [12,18,32-35]. This makes it attractive
to analyze molecular and clinical aspects of Xq28 (MECP2)
deletions in the light of increasing interest in biomedical
studies of autism, especially considering the positive
experience in modelling neurodevelopmental abnorma-
lities according to data on RTT pathogenesis [36,37]. To
explain differences between cell proportions uncovered by
array CGH and FISH (Figure 3), one can compare molecu-
lar cytogenetic techniques in context of detecting somatic
mosaicism [38-40]. In this instance, we have concluded that
FISH results are more accurate. Similarly, FISH questioned
in some detail the size of the recurrent deletion causing
classic RTT. Since oligonucleotide probes cover a part of
MECP2 sequence whereas the deletion was detectable by
FISH with a probe for MECP2, we have speculated that
genomic loss within Xq28 is a bit larger than shown by
the array CGH. Likewise, sequence variations specifically
generating Xq28 subchromosomal rearrangements are
co-localized with the breakpoints outside of MECP2 loci
[41,42]. So far, it appears to be also valid for reported
deletions. To determine the intrinsic nature and causes
of Xq28 (MECP2) deletions leading to classic RTT, further
studies are indisputably required.
The specific replication patterns in RTT or type C

(observed in about 90% of affected children in contrast
to unaffected females [12,43]) have been detected in
females with Xq28 microdeletions. The type C replication
pattern represents a disturbance in the sequence of rep-
lication in an inactive chromosome X apparently caused
by MECP2 mutations [12,15]. These data allowed specula-
tions that RTT in mutation-negative females is likely to be
associated with genetic defects affecting the MECP2 gene
[15]. Array CGH analysis of RTT girls, highlighting Xq28
(MECP2) deletion as a new cause of the disease, confirms
this assumption.
Although RTT phenotype is characterized by recognizable

patterns of malformation and distinct neurodevelopmental
abnormalities, there does exist a clinical variability among
females suffering from this severe disorder [3-6,11,14,16,17].
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Xq28 deletions causing atypical RTT have shown to exhibit
additional phenotypic features (Table 1). This can be easily
explained, because all deletions have spanned significantly
larger regions than the MECP2 locus, involving other
Xq28 genes, as well (Figure 2). Conversely, Xq28 losses
(MECP2 plus some additional genes) should naturally
lead to the presence of phenotypic manifestations usually
unseen in RTT. Interestingly, RTT females with large Xq28
deletions have demonstrated less severe disease manifesta-
tions as compared to their counterparts with intragenic
MECP2 mutations of known functional consequences.
This is likely to result from X chromosome inactivation
skewing probably arisen from selective disadvantages of
cells with an active deleted chromosome X. In the same
way, MECP2 deletions causing classic RTT are likely to
lead to less severe RTT manifestations through the skewed
X chromosome inactivation patterns. Thus, epigenetic
phenotype modulators determine the outcome of sub-
chromosomal deletions involving MECP2. This has led
us to the conclusion that, regardless of specific phenotypic
appearance, the Xq28 deletion phenotype is not different
enough from RTT due to intragenic MECP2 mutations
to define it as an independent clinical entity or a micro-
deletion syndrome. Summarizing the clinical data on
girls found to demonstrate Xq28 (MECP2) microdeletions,
we have concluded that these genomic rearrangements
cause at least two distinct RTT subtypes. The first subtype
is caused by deletions spanning from 0.5 to 1 Mb and
is characterized by less severe RTT manifestations as
well as additional clinical signs. The second subtype is
caused by deletions spanning about 100 kb leading to a
loss of MECP2 per se and is simply a less severe classic
RTT. Finally, both types can be arbitrarily designated
as microdeletion RTT subtype.
To this end, it is to mention that submicroscopic

genomic variations and CNVs are likely to be among
the commonest causes of congenital malformations,
idiopathic intellectual disability, autism, epilepsy, neuro-
psychiatric disorders [18,36,44]. Seemingly, these gen-
ome variations are likely to be important elements of
pathogenetic cascades in complex disease mediating
genetic-environmental interactions [45]. The present
study evidences that submicroscopic deletions or CNVs
cause single-gene disorders in an appreciable propor-
tion of cases.

Conclusions
Using two array CGH platforms (BAC and oligonucleotide
array CGH) and FISH, the existence of Xq28 deletions
causing RTT was shown. To date, such genomic deletions
were not actually recognized as a cause of RTT, a disease
considered to be almost exclusively monogenic. We show
that Xq28 (MECP2) deletions are common in RTT girls
without detectable MECP2 sequence variations by Sanger
sequencing affecting no fewer than 25% of mutation-
negative females. Therefore, the efficiency of molecular
diagnosis can be significantly increased through applying
whole genome scan to mutation-negative RTT cases. Our
data evidence that there exist at least two types of Xq28
microdeletions affecting MECP2: small deletions spanning
about 100 kb and larger deletions spanning >100 kb
(0.5-1 Mb). The former is likely to cause mild classic
RTT, whereas the latter seems to result in mild atypical
RTT forms. Finally, we conclude that Xq28 (MECP2)
deletions are common in mutation-negative RTT girls
and cause mild subtypes of the disease.

Methods
Patients
Thirty nine MECP2-mutation-negative females were
recruited for molecular cytogenetic analysis according
to molecular genetic data from the Russian RTT cohort
(354 patients). All the girls fulfill clinical criteria for
RTT either classic or atypical form. The information
about Russian RTT cohort was provided previously
[8,12,14,15] and is partially given in Figure 1. The
DNA samples studied were isolated from peripheral
blood leukocytes following standard techniques. Written
informed consent was obtained from the patients’ parents.
The research was approved by the ethical committee at
the Mental Health Research Center (Russian Academy
of Medical Sciences) and by Russian Rett Syndrome
Association.

Sequencing
The performance and results (partially) of Sanger se-
quencing was previously described [14,15,46]. The lack
of a sequence variation in MECP2 known to be associated
with RTT or to have a functional consequence was a
criterion for entry into the study.

Array CGH
BAC-array CGH was performed using customized
Constitutional Chip®4.0 (Human BAC Array-System, Perkin
Elmer, USA) as described earlier [7,47]. The resolution
of the BAC-array has been estimated as 0.3 Mb for scanning
chromosome X.
Oligonucleotide array CGH was performed using

NimbleGen 135 K whole genome tiling array (described in
parts by Duker et al. [48]). The calculated functional
resolution was estimated 10–20 kb (95% confidence).
Sample and reference DNA was labeled using Cy3-dUTP
and Cy5-dUTP, respectively, and hybridized according
to the manufacturer’s protocols (NimbleGen Arrays
User’s Guide CGH and CGH/LOH Arrays v9.1, Roche
NimbleGen, Madison, WI, USA). Scanning and image
acquisition has been processed in the same way as for
BAC-Perkin Elmer Array [7,47].
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FISH
FISH (probe labeling, hybridization and detection) was
performed according to previously described protocols
[12,13,35,49]. The DNA probe was a YAC (yeast artificial
chromosome) containing almost exactly MECP2 sequence
and was kindly provided by Dr. Maurizio D’Esposito
(Naples, Italy). The probe (localization and DNA sequence)
was described previously [50].

Cytogenetic/cytological analysis of epigenetic phenomena
Unusual replication pattern or type C (detectable in nearly
90% of RTT children and unobserved in females without
RTT [12,43,49]) i.e. disturbances in the replication sequence
of an inactive chromosome X, was assessed by replication
staining of metaphase chromosomes obtained from cul-
tivated peripheral blood lymphocytes in the presence of
5-bromo-20-deoxyuridine as described in detail earlier
[12,43]. The presence of type C was evaluated by analyzing
50–100 metaphase plates.

Data analysis (bioinformatics)
The raw array CGH data (log 2 intensity ratios) were
processed for CNV detection as proposed earlier [51,52].
The protocol was modified to achieve comprehensive
data on CNVs according to intensity ratios values for 4
oligonucleotide and 2 interchangeable BAC probes. Using
different threshold schemes and background correction, the
intensity ratios corresponding to CNVs spanning MECP2
were established empirically. Localization of probes in
the oligonucleotide array CGH assay corresponding to
MECP2 sequence was as follows: 153,299,881; 153,306,195;
153,308,602; 153,312,854. In BAC array CGH assay,
there were 3 BAC probes for the X chromosome sequence
encompassing the MECP2 gene. It is to note, that deletions
have spanned larger regions than those covered by the
probes strictly corresponding to MECP2 loci. The estab-
lished threshold allowed the detection of non-mosaic
and mosaic CNVs through the comparison of mean values
of chromosome-specific intensity ratios and mean values
of a locus of interest in Xq28.
Additional files

Additional file 1: Figure S1. The deleted Xq28 region spanning
502.428 kb displayed using UCSC Genome Browser on Human Feb. 2009
(GRCh37/hg19) Assembly (http://genome-euro.ucsc.edu/index.html).

Additional file 2: Figure S2. The deleted Xq28 region spanning
539.545 kb displayed using UCSC Genome Browser on Human Feb. 2009
(GRCh37/hg19) Assembly (http://genome-euro.ucsc.edu/index.html).

Additional file 3: Figure S3. The deleted Xq28 region spanning
877.444 kb displayed using UCSC Genome Browser on Human Feb. 2009
(GRCh37/hg19) Assembly (http://genome-euro.ucsc.edu/index.html).

Additional file 4: Figure S4. The deleted Xq28 region spanning
99.371 kb displayed using UCSC Genome Browser on Human Feb. 2009
(GRCh37/hg19) Assembly (http://genome-euro.ucsc.edu/index.html).
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