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Abstract

Background: Characterization of disease-associated balanced translocations has led to the
discovery of genes responsible for many disorders, including syndromes that include various forms
of diabetes mellitus. We studied a man with unexplained maturity onset diabetes of the young
(MODY)-like diabetes and an apparently balanced translocation [46,XY,t(7;10)(q22;p12)] and
sought to identify a novel diabetes locus by characterizing the translocation breakpoints.

Results: Mutations in coding exons and splice sites of known MODY genes were first ruled out
by PCR amplification and DNA sequencing. Fluorescent in situ hybridization (FISH) studies
demonstrated that the translocation did not disrupt two known diabetes-related genes on [0pl2.
The translocation breakpoints were further mapped to high resolution using FISH and somatic cell
hybrids and the junctions PCR-amplified and sequenced. The translocation did not disrupt any
annotated transcription unit. However, the chromosome 10 breakpoint was 220 kilobases 5' to the
Membrane Protein, Palmitoylated 7 (MPP7) gene, which encodes a protein required for proper cell
polarity. This biological function is shared by HNF4A, a known MODY gene. Databases show MPP7
is highly expressed in mouse pancreas and is expressed in human islets. The translocation did not
appear to alter lymphoblastoid expression of MPP7 or other genes near the breakpoints.

Conclusion: The balanced translocation and MODY-like diabetes in the proband could be
coincidental. Alternatively, the translocation may cause islet cell dysfunction by altering MPP7
expression in a subtle or tissue-specific fashion. The potential roles of MPP7 mutations in diabetes
and perturbed islet cell polarity in insulin secretion warrant further study.
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Background

Although common diabetes mellitus is polygenic, there
are also rare Mendelian forms of the disease. Maturity-
onset diabetes of the young (MODY) is a collection of
uncommon monogenic insulin-secretion pathologies. It
was first described in 1960 in young lean patients who
had only mild diabetes, with little progression after years
of follow up [1]. Clinical criteria for MODY include auto-
somal dominant inheritance, onset before age 30, correc-
tion of fasting hyperglycemia without insulin for at least
two years post-diagnosis, and absence of ketosis. The esti-
mated contribution to the total diabetic population
ranges from 2-5% [2].

It was hypothesized that the genes that cause MODY also
contribute to the genetic susceptibility towards common
type 1 and 2 diabetes. However, multiple studies have
failed to demonstrate such a connection conclusively
beyond a few individual examples, and large-scale non-
biased genome-wide linkage and association studies have
identified several alternate candidate genes for type 1 and
2 diabetes not implicated in MODY [3,4]. However, the
identification of MODY genes has provided important
insights into molecular mechanisms of glucose homeosta-
sis. There are six well-established MODY genes: Hepato-
cyte Nuclear Factor 4 alpha (HNF4A), Glucokinase
(GCK), Hepatocyte Nuclear Factor 1 alpha gene (HNF1A),
Insulin Promoter Factor 1 (IPF1), Hepatocyte nuclear fac-
tor 1 beta (HNF1B), and Neurogenic Differentiation 1
(NEUROD1). In each case the mechanism of dominance
is thought to be haploinsufficiency [5,6]. There is also a
population of MODY patients who have no identifiable
mutations in any of the known causative genes; they are
sometimes called MODY-X and may harbor mutations in
yet-to-be described MODY genes. The proportion of
MODY patients with MODY-X is variable among ethnici-
ties, ranging from 20% of Caucasians to 80% of Japanese

[5]-

Balanced translocations have been used to localize genes
responsible for a variety of conditions. Translocations are
likely to mediate disease processes by disrupting expres-
sion of genes in the vicinity of the breakpoints. The first
disease whose genetic cause was identified by mapping of
a balanced chromosomal translocation breakpoint was
chronic granulomatous disease [7]. Subsequently, genes
responsible for a variety of conditions, such as obesity,
cleft palate, blepharophimosis syndrome, DiGeorge syn-
drome, Duchene muscular dystrophy, and congenital cat-
aracts, have been identified using this strategy [8-13].

A number of translocations have been associated with dia-
betes. In one family a balanced translocation between
chromosomes 3 and 20, involving the promoter of
HNF4A, co-segregated with MODY [14]. In another inter-
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esting case, a patient presented with an unbalanced trans-
location resulted in monosomy of part of Xq and trisomy
of a portion of 10p. She demonstrated a MODY-like phe-
notype and primary amenorrhea at age 16. The authors
suggest that the Xq monosomy is responsible for the dia-
betic phenotype since other patients with X chromosome
deletions have demonstrated an increased incidence of
diabetes [15]. In another family with a balanced translo-
cation and type 2 diabetes, the candidate gene inositol hex-
aphosphate kinase 1 (IHPK1) was identified by mapping
the translocation breakpoints [16]. However, the authors
were unable to find any IHPK1 mutations in 405 other
diabetic patients screened. Mutations in the ALMSI gene
responsible for Alstrom syndrome, a recessive disease
characterized by blindness, sensorineural hearing loss,
early onset, and type 2 diabetes mellitus, were identified
from study of a subject who was a compound heterozy-
gote for an intragenic mutation and a balanced transloca-
tion that disrupted the gene [17]. Recently a woman with
intrauterine growth retardation, short stature, lactation
failure, and insulin resistance with altered fat distribution
was found to have a balanced translocation that disrupted
the paternally-derived Insulin-like Growth Factor 2 (IGF2)
gene [18]. Her daughter inherited the translocation but
was clinically unaffected, consistent with known IGF2
maternal imprinting.

We report a subject with MODY-like diabetes and an
apparently balanced translocation
[46,XY,t(7;10)(q22;p12)]. We hypothesized that the
translocation disrupted a diabetes gene. To test this
hypothesis, we mapped both translocation breakpoints to
nucleotide resolution and studied the expression of candi-
date genes near the breakpoints. We identified a novel
candidate diabetes gene, MPP7, near the breakpoint on
chromosome 10.

Methods

Clinical report

This study was approved by the Institutional Review
Board at UT Southwestern Medical School. Informed con-
sent was obtained from participants. The proband was an
Italian man found at age 32 to have incidental hyperglyc-
emia (serum glucose 220 mg/dL) during an evaluation for
a minor gastrointestinal ailment. After workup for hyper-
glycemia, he was given a diagnosis of probable MODY
because of his relatively low body mass index (BMI) (26.8
kg/m?2), lack of Glutamic Acid Decarboxylase 65 (GAD65)
antibodies, and clinical evidence of defective glucose-
stimulated insulin secretion and normal insulin sensitiv-
ity. Over the subsequent eight years he was treated with
diet alone, and based on homeostatic model assessment
[19,20] calculated with the updated computerized model

http://www.dtu.ox.ac.uk/, his estimated beta cell insulin

secretory function secretion decreased by only 8%. His
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family history is notable for type 2 diabetes mellitus in his
mother, associated with obesity (BMI 30.8 kg/m?), hyper-
tension, hypertriglyceridemia, and macrovascular compli-
cations. Her beta cell insulin secretory function decreased
by 50% over the nine years since her diagnosis at 55 years
of age. The proband's birth weight was not available.

The proband's apparently balanced translocation was dis-
covered after a prenatal karyotype for advanced maternal
age showed that his daughter carries the same transloca-
tion, 46,XY,t(7;10)(q22;p12) (Fig. 1). The proband's
mother had a normal karyotype, and his deceased father's
chromosomal status is unknown. At the time of the study
the daughter was six years old and in good health, with no
significant past medical history. Her birth weight was not
available, and her parents did not permit her to undergo
any clinical or research testing.

Genomic sequencing

Genomic DNA was purified from peripheral blood leuko-
cytes by standard methods [21]. Primers were designed to
PCR-amplify coding exons of HNF4A, GCK, HNF1A, IPF1,
and NEUROD1 using Primer3 [22]. Products were treated
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with ExoSAP (USB Corp, Cleveland, OH) and sequenced
with the same primers used for PCR. Sequencing data
were analyzed using Seqman (DNAStar, Madison, WI).

Oligonucleotide Array Comparitive Genomic
Hybridization (CGH)

Lymphoblastoid cells were immortalized by standard
techniques. Genomic DNA was purified as described
above and submitted to Nimblegen Systems Inc. (Madi-
son, WI) for whole genome array CGH using an array con-
taining ~385,000 probes (Cat. No. B4366-00-01), with
pooled normal human male reference DNA (Promega,
Madison, WI). CGH segmentation data were compared
with the Database of Genomic Variants [23] to determine
if there were any copy number changes not previously
described in normal individuals.

Fluorescence in situ hybridization (FISH)

Metaphase chromosomes from either PHA-stimulated
whole blood lymphocytes or immortalized lymphoblasts
were used for fluorescent in situ hybridization. Bacterial
artificial chromosome (BAC) clones (BACPAC Resources,
Oakland, CA) were cultured, and BAC DNA was isolated

B

46,XX 2 4

L4

10 der(10)

A. Pedigree of proband with MODY-like diabetes and a balanced 7;10 translocation. B. Partial G-banded karyotype
of proband showing normal and derivative chromosomes 7 and 10. Arrows indicate breakpoints.

Page 3 of 9

(page number not for citation purposes)



Molecular Cytogenetics 2009, 2:5

using the BACMAX DNA isolation kit (Epicentre, Madi-
son, WI). DNA was labeled with Spectrum Orange (Vysis,
Downers Grove, IL) according to the manufacturer's
instructions, precipitated, resuspended in hybridization
buffer (Vysis), and hybridized to slides overnight at 37°C.
Washed and dehydrated slides were mounted and coun-
terstained with DAPI/antifade solution (Vysis) and visual-
ized with an Olympus BX-61 fluorescent microscope
equipped with a charge coupled device camera and Cyto-
vision digital image acquisition system (Applied Imaging,
San Jose, CA).

Somatic cell hybrids

The proband's lymphoblasts were fused with thymidylate
kinase-deficient RJK hamster cells and hybrid clones
selected as described [13]. Colonies were selected in the
presence of hypoxanthine-aminopterin-thymidine. After
> 10 serial passages, DNA was extracted from clones and
tested by PCR for chromosome 7 and 10. Positive clones
were screened with distal 7p, 7q, 10p, and 10q microsat-
ellite markers heterozygous in the proband, and a clone
with the derivative 10 chromosome but not the derivative
7 chromosome or normal chromosome 7 or 10 was iden-
tified. Breakpoints were mapped by testing this hybrid
clone for the presence or absence of chromosome 7 and
10 sequence tagged sites designed iteratively from the
human genome sequence.

Allelic expression

Intronic sequences were PCR amplified using primers
CATTGCACGCTACGGAGTAA and TGCITCACACACCT-
GCATCT (MPP7), TCCAAATCATTGITTCTCAAACC and
AATATTAGTTGGGCGTCGTG (WAC), and CCCACAACT-
GGCCTGITAAA and CGAGGCCGGAAGITAGTCIT
(MTERF). PCR products from the proband's genomic
DNA were sequenced and a heterozygous base identified
in each gene. Heterogeneous nuclear RNA was isolated
from the patient's transformed lymphoblasts by repeated
treatments with NP-40 lysis buffer (10 mM Tris pH 4.0, 10
mM NaCl, 3 mM MgCl,, 0.5% NP40) followed by centrif-
ugation. The nuclear pellet was resuspended in Tripure
(Roche, Indianapolis, Indiana), and the iScript cDNA syn-
thesis kit (BioRad, Hercules, California) was used to make
cDNA. Reverse transcriptase PCR (RT-PCR) products were
amplified from DNAse-treated cDNA isolated from lym-
phoblastoid cells carrying the balanced translocation and
sequenced as described above. Control reactions omitting
reverse transcriptase were performed to rule out amplifica-
tion of contaminating genomic DNA. Electropherograms
of genomic versus cDNA sequences were compared to
determine whether both alleles of MPP7, WAC, and
MTERF were expressed.

http://www.molecularcytogenetics.org/content/2/1/5

Results

Coding sequences of the genes causing MODY1-4 and
MODY6 (GCK, HNF1A, IPF1, NEUROD1, and HNF4A)
were sequenced in the proband to rule out known causes
of MODY with compatible clinical presentations. No
mutations were found in any of these genes. The HNF1B
gene causing MODY5 was not sequenced because of the
distinct clinical presentation of this form of MODY. Two
candidate genes in the cytogenetic vicinity of the 10p12
translocation breakpoint, PTF1IA and GAD2 (GADG5),
were also investigated by FISH. Neither gene was deleted
or disrupted by the translocation (data not shown). High
resolution oligonucleotide array CGH did not reveal any
cryptic duplications or deletions near the translocation
breakpoints or any pathologic copy number variation
elsewhere in the genome (data not shown).

We performed additional FISH studies using BAC clones
from chromosomes 7 and 10 to narrow the location of the
breakpoints. Concurrently, we generated somatic cell
hybrids of the proband's lymphocytes and hamster cells.
We obtained one hybrid clone containing the derivative
10 chromosome but not the normal chromosome 10 or
the derivative 7 chromosome. We then used this hybrid
clone to map the breakpoints by sequence tagged site con-
tent mapping, using sequences near the FISH-delineated
breakpoints. Ultimately we identified sequences suffi-
ciently close to both breakpoints to design PCRs that
amplified both junction fragments. Alignment of the
junction sequences to the reference human genome
sequence revealed that the breakpoints were at
chr10:28,832,302 with a four nucleotide deletion
(chr10:28,832,303-28,832,306) on the derivative 7 chro-
mosome and at chr7:90,883,582 with a ten nucleotide
insertion of TAGATCTGTA on the derivative 10 chromo-
some (Fig. 2A).

To confirm these breakpoints we performed FISH on the
subject's immortalized lymphoblasts using BAC clones
RP11-114106 (chromosome 10) and a combination of
RP11-243L13 and RP11-1039P22 (chromosome 7 break-
point) (Fig. 2B). Both hybridizations showed three sig-
nals, as expected (Fig. 2C). Although RP11-243L13 was
predicted to cross the chromosome 7 breakpoint deter-
mined by PCR, this BAC clone gave only two signals,
probably because of the abundance on one side of the
breakpoint of repetitive sequences whose hybridization
was suppressed by Cotl DNA. G-banded karyotyping con-
firmed that the metaphase cells used for FISH had the
same karyotype as the proband's peripheral blood cells.

Neither breakpoint directly disrupted any known protein
coding gene, microRNA, or other annotated functional
genomic element (Fig. 2B). We therefore investigated
genes neighboring the breakpoints that could be subject
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Figure 2
A. Sequences of PCR products from junctions aligned to reference human genome sequence. Upper case, chro-

mosome 10 sequences. Lower case, chromosome 7 sequences. Upper case italics, origin unknown. B. UCSC Genome Browser
tracks showing genes flanking the translocation breakpoints (arrows) and BAC clones used for FISH. C. FISH showing three
signals for chromosome 7 (left) and chromosome 10 (right) BAC probes shown in B. D. Cartoon illustrating orientation of
flanking genes and relative distances from translocation breakpoints.
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to position effects. No genes within 1 megabase (Mb)
were known to play a role in pancreatic islet cell function.
To examine whether the translocation affected expression
of nearby genes, we attempted to identify expressed poly-
morphisms in the four genes closest to the breakpoints
(Fig. 2D). We sequenced exons but did not find any heter-
ozygous variations in either coding or untranslated
regions in these genes. We then identified heterozygous
intronic SNPs in MPP7, WAC, and MTERF that could be
used to examine allelic expression in heterogeneous
nuclear RNA, as described [24]. FZD1 is intronless and
thus could not be assayed in this fashion. MPP7, WAC,
and MTERF all showed biallelic transcription, with
approximately equal abundance of the two alleles (Fig. 3).
Thus there did not appear to be any major position effects
on expression of genes flanking the translocation break-
points in lymphoblastoid cells.

Discussion

MODY is a monogenic form of diabetes mellitus. We
hypothesized that MODY-like diabetes in the proband
resulted from disruption of a gene by his balanced trans-
location. Our proband did not meet the strict diagnostic
criteria for MODY. His age at diagnosis was 32 years, and
there was no clear pattern of autosomal dominant inher-
itance. The lack of inheritance would be expected if the
translocation caused MODY and occurred de novo. The
mother was diabetic, but the clinical features and course
of her disease were consistent with type 2 diabetes rather
than MODY. Since our patient has an insulin secretion
defect, no evidence of insulin resistance, and an indolent
disease course, we speculate that he and his mother have
distinct etiologies of their diabetes. The daughter who car-
ries the translocation was not diabetic at the time of this
study, but it is possible she will develop diabetes later in
life.

One cytogenetic breakpoint was in band 10p12. At least
two genes in this region have been implicated in pancre-
atic development and physiology. PTF1A has previously
been shown to play arole in islet cell development. GAD2
(also called GADG5) encodes glutamate decarboxylase 2,
is a target for islet cell antibodies in type I diabetes [25].
FISH studies showed that neither gene was disrupted or
deleted by the translocation. We were ultimately able to
show that the chromosome 10 breakpoint was at least 5
Mb away from either gene's coding sequence, with multi-
ple intervening genes. This distance is much greater than
the maximum distance (~1 Mb) over which position
effects have been described for other diseases due to bal-
anced translocations [26]. No other genes in the immedi-
ate vicinity of the translocation breakpoints have been
implicated as diabetes candidate genes in genome-wide
association studies [3,27,28].

http://www.molecularcytogenetics.org/content/2/1/5

Sequencing the junctions revealed that the translocation
was for all intents and purposes molecularly balanced,
with ten nucleotides inserted at the derivative 10 junction
and four nucleotides deleted from chromosome 7. Nei-
ther breakpoint lay in any apparent repeated sequence
motif, and the origin of the ten nucleotide sequence
inserted at the derivative 10 junction is unknown. Neither
breakpoint disrupted any annotated gene, and there were
no genes previously implicated in pancreatic islet cell
function within 1 Mb of either breakpoint. We examined
the allelic expression of genes flanking the breakpoints in
lymphoblastoid cells. While we found no evidence of
abnormal expression in these cells, we cannot exclude tis-
sue-specific effects on gene expression and/or fusion tran-
scripts. For instance, campomelic dysplasia is clearly the
result of mutations or balanced translocations altering
expression of the SOX9 gene, but in one case resulting
from a balanced translocation, there was no difference in
transcription level between the two SOX9 alleles in lym-
phoblasts [29].

One gene 221 kilobases downstream from the 10p break-
point, Palmitoylated Membrane Protein 7 (MPP7), merits
further consideration as a candidate diabetes gene.
According to the Novartis Gene Expression Atlas [30],
mouse Mpp7 is expressed broadly but most highly in pan-
creas. In this same database, human MPP7 is expressed in
pancreatic islets. MPP7 encodes a member of the mem-
brane-associated guanylate kinase (MAGUK) family [31].
MAGUK proteins are found at areas of cell-cell contact,
where they are essential for multi-protein complex assem-
bly. MPP7 forms a tripartite complex with Discs Large
1(DLG1) and Lin7, and is necessary for maintenance of
cell polarity [32,33]. Interestingly, HNF4A, the gene
responsible for MODY1, has also been shown to be
important in formation of tight junctions [34]. HNF4A
overexpression in embryonal carcinoma cells causes the
formation of tight junctions in a dose-dependent manner
[34,35]. Tight junction-associated proteins are upregu-
lated in islets during maturation and may be necessary in
mature beta cells for proper glucose-stimulated insulin
secretion [36-38]. Furthermore, glucose upregulates tight
junctions in a dose-dependent manner in cultured rat
islets [39]. It has been theorized that tight junctions are
essential to separate the high concentrations of glucagon,
insulin, and somatostatin in the apical surface from their
receptors on the basal surface, which could pathologically
inhibit secretion via autoregulation [40-42]. Thus altered
expression of MPP7 in islets might affect cell polarity and
impair glucose-stimulated insulin secretion, resulting in
diabetes.

Conclusion
We mapped the breakpoints of an apparently balanced
7,10 translocation associated with MODY-like diabetes to
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nucleotide resolution. The translocation and diabetes in
the proband could be coincidental: apparently balanced
non-Robertsonian translocations have been found in
about 1 in 1400 consecutive newborns [43]. No gene was
obviously disrupted by the translocation, but the chromo-
some 10 breakpoint was near MPP7, a plausible biological
candidate gene for diabetes by virtue of its function in cell
polarity. Screening of additional diabetic subjects for
MPP7 mutations and generation of Mpp7 knockout mice
are needed to test the hypothesis that this gene, and by
inference abnormal islet cell polarity, play a role in
impaired glucose-stimulated insulin secretion in MODY
or other forms of diabetes mellitus.
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