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Lung epithelial stem cells and their niches: Fgf10
takes center stage
Thomas Volckaert1,2,3 and Stijn De Langhe1,4*
Abstract

Throughout life adult animals crucially depend on stem cell populations to maintain and repair their tissues to
ensure life-long organ function. Stem cells are characterized by their capacity to extensively self-renew and give
rise to one or more differentiated cell types. These powerful stem cell properties are key to meet the changing
demand for tissue replacement during normal lung homeostasis and regeneration after lung injury. Great strides
have been made over the last few years to identify and characterize lung epithelial stem cells as well as their
lineage relationships. Unfortunately, knowledge on what regulates the behavior and fate specification of lung
epithelial stem cells is still limited, but involves communication with their microenvironment or niche, a local tissue
environment that hosts and influences the behaviors or characteristics of stem cells and that comprises other cell
types and extracellular matrix. As such, an intimate and dynamic epithelial-mesenchymal cross-talk, which is also
essential during lung development, is required for normal homeostasis and to mount an appropriate regenerative
response after lung injury. Fibroblast growth factor 10 (Fgf10) signaling in particular seems to be a well-conserved
signaling pathway governing epithelial-mesenchymal interactions during lung development as well as between
different adult lung epithelial stem cells and their niches. On the other hand, disruption of these reciprocal interactions
leads to a dysfunctional epithelial stem cell-niche unit, which may culminate in chronic lung diseases such as chronic
obstructive pulmonary disease (COPD), chronic asthma and idiopathic pulmonary fibrosis (IPF).
Review
Region-specific stem cells maintain and repair the adult
lung epithelium
The adult lung epithelium is replaced over time, albeit
very infrequently in comparison to organs exhibiting
constant cellular turnover such as the skin and intestine.
However, after injury, the lung harbors a remarkable
capacity to regenerate and restore its function. This is
dramatically illustrated after unilateral pneumectomy,
which induces an expansion of stem cell populations
and compensatory growth of the remaining lung to re-
establish respiratory capacity [1]. The composition of the
lung epithelium varies along a proximal-distal axis
(Figure 1A), which is reflected in the diverse physiological
functions of the lung. In the mouse, the pseudostratified
epithelium of the trachea and main stem bronchi consists
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of ciliated cells, club (also known as Clara) cells, a few
mucus/goblet cells, and relatively undifferentiated basal
cells, which express the transcription factor transform-
ation-related protein 63 (Trp63 or p63), cytokeratin (Krt)
5 and/or Krt14. In the smaller intralobar bronchioles, the
pseudostratified epithelium now transitions into a simple
single columnar to cuboidal epithelial layer devoid of basal
cells and containing mostly club and ciliated cells inter-
spersed with single or clustered neuroendocrine (NE) cells
termed NE bodies (NEBs), which are most frequently
located at airway bifurcations. Of note, the basal cell-
containing pseudostratified epithelium in human lungs
extends to the distal bronchioles [2]. In the most distal
regions of the lung, approximately 90% of the alveolar epi-
thelium is composed of flattened alveolar type (AT) I cells,
which are in close apposition to the capillary endothelium,
allowing for rapid and efficient gas exchange, and cuboidal
ATII cells that express surfactant. It is now becoming clear
that these different epithelial regions in the lung are main-
tained and repaired by distinct stem cell populations.
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Figure 1 The composition of the adult mouse lung epithelium during normal homeostasis. (A) The mouse lung is organized into three
anatomical regions. The cartilaginous airways (trachea and main stem bronchi) are lined by a pseudostratified epithelium consisting of secretory
(club and goblet), ciliated, basal and a few scattered neuroendocrine (NE) cells. Submucosal glands (SMGs) are located between cartilage rings
of the proximal trachea and contain a stem cell population in their ducts (1). Label-retaining basal stem cells are often found in the intercartilage
regions (2). The intralobar airway epithelium contains club, ciliated and clusters of NE cells called NE bodies (NEBs), which are often found at
branching points. Naphthalene-resistant (variant) club cells are located adjacent to the NEBs (3) and at the bronchioalveolar duct junctions (BADJs)
(4), and are presumed to be important for epithelial regeneration. The latter most likely represents a heterogeneous population containing
bronchioalveolar stem cells (BASCs) and distal airway club stem cells (DASCs), which are activated after injury. The alveolar epithelium consists
mainly of alveolar type (AT) I and ATII cells. The latter is a long-term self-renewing stem cell population also capable of giving rise to ATI cells.
Lipofibroblasts in the lung interstitium express Fgf10 and are found juxtaposed to ATII stem cells (5). They are therefore an ideal candidate as a
niche that controls the behavior of ATII cells during normal homeostasis and after injury. In addition, the alveoli harbor an alveolar progenitor
cell enriched for α6β4 integrins. (B) Lineage relationships of lung epithelial stem cells and their progeny during normal homeostasis. The lung
epithelium is maintained by three main stem cell populations: basal cells (cartilaginous airways), club cells (cartilaginous airways and bronchioles)
and ATII cells (alveoli). Dashed arrows represent lineage relationships, which are likely to occur but have not yet been definitively established.
For details see main text.
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Maintaining lung epithelium during normal homeostasis
Lineage tracing experiments during normal homeostasis
have identified three main stem cell populations respon-
sible for maintaining the lung epithelium: basal cells, club
cells and ATII cells. Their lineage relationships are
depicted in Figure 1B. Basal cells in the proximal airways
are a bona fide stem cell population that gives rise to club
and ciliated cells [3-6]. Club cells are also able to self-
renew and give rise to ciliated cells and therefore meet the
stem cell criteria as well. They are the predominant cell
population responsible for maintaining the bronchiolar
epithelium. In the trachea however, their contribution to
epithelial self-renewal seems to be minimal, and as a
population, they are replaced over time by new club cells
derived from basal cells [3,7]. NE cells self-renew but
under normal homeostatic conditions do not give rise to
other epithelial cell lineages [8]. The alveolar epithelium is
maintained by ATII stem cells, which can self-renew and
can give rise to ATI cells [9,10].

Stem cell populations contributing to epithelial
regeneration after lung injury
The lung is directly exposed to the outside environment and
must therefore be able to respond quickly and effectively to
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inhaled particles, pathogens and harmful gases. The con-
ducting airway epithelium is therefore designed to be a
crucial primary defense mechanism by mediating muco-
ciliary clearance and forming a protective physical barrier,
which maintains its structural integrity and is vital for nor-
mal lung function. By exposing mouse lungs to different
types of injury it is thought that different stem cell popula-
tions are engaged, depending on the location and extent
of injury. In the trachea, SO2 or naphthalene injury kills
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destroys nearly all epithelial cells (Figure 2A) [11,12]. This
stem cell population is still poorly characterized and its
further study will require more advanced lineage tracing
techniques. Together, these studies have led to the notion
that basal stem cells can be placed at the top of stem cell
hierarchy in the trachea, a concept which has recently
been complicated by the finding that diphtheria toxin-
mediated ablation of basal cells in the trachea results in
the reprogramming of a subset of club stem cells into
basal stem cells effectively restoring the basal stem cell
population of the trachea [13] (Figure 2A,B). Moreover,
very rare club cell-derived basal cells have also been
observed after SO2-mediated tracheal injury [7]. Interest-
ingly, p63, a master regulator required for the develop-
ment of basal cells [14], induces a basal cell phenotype
and squamous metaplasia when ectopically expressed in
club or ATII cells [15].
A widely used model to study epithelial regeneration

of the bronchioles is naphthalene injury. In the bronchi-
oles, naphthalene selectively depletes club cells except
for the few naphthalene-resistant club cells (called vari-
ant club cells in some literature) located near NEBs
[16,17] and at bronchioalveolar duct junctions (BADJs)
[18], which then expand and re-epithelialize the dam-
aged airways (Figure 3A). This led to the hypothesis that
this subpopulation of club cells is responsible for epithe-
lial regeneration after injury. However, after injury, the
majority of surviving club cells, regardless of their loca-
tion, are capable of restoring the damaged lung epithe-
lium [7]. Interestingly, NE cells have been shown to
demonstrate some degree of plasticity and as such are
capable of not only self-renewing but also to give rise to
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Figure 3 Regeneration of the distal airway epithelium after naphthale
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club and club cell-derived ciliated cells after airway epi-
thelial injury [8] (Figure 3). However, elimination of
pulmonary NE cells does not impair airway epithelial re-
generation after naphthalene injury [8], suggesting that
the contribution of NE cells to epithelial restoration is
minimal. Bronchioalveolar stem cells (BASCs) are an-
other population of naphthalene-resistant stem cells
located at the BADJ and can be identified based on
their coexpression of secretory (Scgb1a1) and alveolar
(Sftpc) markers, [19] (Figure 1). BASCs are likely identi-
cal to the variant club stem cells located near BADJs
(described above) and might also be referred to as
distal airway stem cells (DASCs) [20,21]. BASCs can
self-renew and give rise to both bronchiolar and alveolar
cell lineages in vitro and in vivo, the latter only after
catastrophic alveolar epithelial injury [19,22] (Figure 4A,
B). However, lineage tracing of Scgb1a1+ cells during
normal homeostasis or after hyperoxia injury (which
selectively destroys ATI cells) did not reveal any contri-
bution of BASCs to alveolar regeneration [7]. Using
the same Scgb1a1CreER mice however, it was shown
that Scgb1a1+ club cells in the distal airway can give
rise to both ATI and ATII cells following catastro-
phic bleomycin- or H1N1-mediated injury [20,22-25]
(Figure 4A,B). Thus, it seems that the deployment of
BASCs depends on the severity and type of injury. Inter-
estingly, DASCs may dedifferentiate into basal cells after
catastrophic bleomycin- or H1N1-mediated injury prior
to regenerating ATI and ATII cells [20,25] (Figure 4A,B).
However, it remains possible that the observed increase
in basal cells is due to the expansion of a minor basal
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basal cells originating from the proximal airways. Future
experiments combining both lineage tracing and live im-
aging during the repair response will help to address
this. Bronchiolization is often observed as honeycomb
regions in lungs from patients with idiopathic pulmon-
ary fibrosis (IPF). These bronchiolized areas have been
shown to contain basal cells [26], suggesting that in
humans with IPF, regeneration of the fibrotic lung may
also be mediated in part by distal airway club or basal
stem cells.
Importantly, although BASCs/DASCs can contribute
to alveolar regeneration, ATII cells are the main stem cell
population in the lung respiratory epithelium involved in
replenishing ATII cells after their diphtheria toxin-
mediated depletion [9], re-establishing the ATI popula-
tion after hyperoxic injury [7,10] and regenerating both
ATI and ATII cells after bleomycin injury [9,23] (Figure 4).
In addition to ATII cells, an Sftpc− and integrin (Itg)
α6+/β4+ alveolar epithelial stem cell population has re-
cently been characterized, having the potential to give rise
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to both ATII and club cells in vitro and in vivo after injury
[27,28] (Figure 4B). To what extent this cell population
contributes to alveolar repair after injury is not clear and
will require lineage tracing to answer this question.

The niche regulates epithelial stem cell behavior in
the lung
Lung stem cells must give rise to the appropriate num-
ber of differentiated progeny to achieve homeostasis and
to restore the functional organ after injury. Tissue dam-
age can dramatically change the dimensions of an organ,
and after regeneration tissue growth must halt once
the original organ dimensions are restored. Therefore,
checks and balances are in place to prevent unwanted
stem cell responses, which could lead to pathological
changes compromising tissue integrity and lung func-
tion. The behavior of virtually all stem cells, whether
they are pluripotent or lineage-restricted, embryonic or
adult, is controlled by the interplay between intrinsic
transcriptional programs and extrinsic signals [29]. The
extrinsic signals are provided by the niche, a local tissue
environment that hosts and influences the behaviors
or characteristics of stem cells [30] and that comprises
other cell types and extracellular matrix (ECM) (Figure 5).
An intimate association of stem cells with their niche is
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basement membrane (BM), to its receptor Fgfr2b on dis-
tal epithelial progenitor cells [39-42]. However, as the lung
epithelium grows out, more proximally located cells be-
come further displaced from this distal source of Fgf10
and gradually start to differentiate [33,37,38,42,43]. Pre-
cisely regulated Fgf10 expression and presentation via HS
proteoglycans is necessary during early development so
that high levels are achieved distally to promote rapid ex-
pansion of embryonic progenitors. Cell surface-tethered
HS chains play pivotal roles in the local retention of Fgf
ligands and can spread Fgf signaling to adjacent cells
within a short range [44]. Vice versa, Fgf10 suppression
around the developing airway, as well as during late gesta-
tion and postnatal development, is crucial to allow for
proper maturation of the lung epithelium [39-41,43-45].
In addition, ectopic Fgf10 overexpression at later stages of
lung development prevents the alveolar differentiation pro-
gram through the induction of Sox9 expression [43,46,47].
Interestingly, a subset of Fgf10-expressing cells in the distal
mesenchyme during early lung development are progeni-
tors for airway smooth muscle cells (ASMCs) [35,48,49]
(Figure 6) and lipofibroblasts (LIFs) at later stages [50].
Fgf10 is also expressed in between tracheal cartilage

rings during lung development [51-53]. In the trachea,
Fgf10 signaling plays an important role in basal cell
differentiation and maintenance during mouse lung de-
velopment [43]. Fgf10 knockout tracheas show a 50% re-
duction in basal cells compared to wild type tracheas
[43]. In addition, overexpression of Fgf10 during lung
development results in the ectopic differentiation of a
large subset of Sox2+ airway epithelial cells into the basal
cell lineage all along the conducting airway. Interest-
ingly, inhibition of Fgf signaling from E15.5 until E18.5
resulted in a failure to maintain basal cells in the mouse
trachea [43].

Epithelial stem cell niches in the adult lung
Much progress has been made in identifying the differ-
ent stem cell populations involved in the maintenance
and repair of the adult lung epithelium as well as their
lineage relationships. However, much less is known
about the nature of stem cell niches in the lung and how
they influence stem cell behavior.
Cellular and molecular mechanisms important during

development are often reactivated during adult injury
repair and in disease. As such, we have recently identi-
fied ASMCs as a niche for club stem cells [54]. After
naphthalene-mediated airway epithelial injury, surviving
epithelial cells secrete Wnt7b in order to activate
ASMCs by inducing their c-Myc-mediated proliferation
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and Fgf10 expression [54,55], which recapitulates a
progenitor-like state (Figure 3A). Fgf10 secreted by the
niche then acts reciprocally on surviving club stem cells
near NEBs and at the BADJ, imparting stem cell charac-
teristics by inducing a transient epithelial-mesenchymal
transition (EMT). As a result, club stem cells break
quiescence, induce proliferation and initiate epithelial
repair. Short-term Fgf10 overexpression enhances airway
epithelial regeneration, whereas inhibition of Fgf10 sig-
naling reduces regenerative capacity after naphthalene
injury [54,56], underscoring the central role of this sig-
naling pathway in regeneration of the bronchiolar epi-
thelium. Interestingly, this re-expression of Fgf10 by
ASMCs is observed after different types of airway epi-
thelial injury, including ozone and bleomycin injury [54].
In the mouse trachea, label-retaining basal stem cells

preferentially reside in SMG ducts and in intercartilage
regions [57,58], two areas where Fgf10 expression is
the highest [51-53,59]. Whether Fgf10 regulates SMG
duct stem cells in the adult lung [11] remains to be
investigated.
Interestingly, direct cell-cell contact between basal

cells and club stem cells in the tracheal epithelium in-
hibits the reprogramming of club stem cells into basal
stem cells [13]. In this context, basal stem cells them-
selves contribute to the club cell niche in the trachea.
However, it is currently unclear what prevents club cells
from reprogramming into basal cells in the lower mouse
airways where basal cells are absent.
A novel subpopulation of Scgb1a1− club cells, charac-

terized by expression of N1ICD, Scgb3a2, Uroplakin 3a
(Upk3a) and SSEA-1, has been identified juxtaposed to
Ascl1-expressing NEBs and remain largely uncommitted
during development but can give rise to Scgb1a1+ club
and ciliated cells in the adult lung [60,61]. This cell
population is lost in Ascl1−/−mice suggesting that the in-
duction and/or maintenance of these club-like precursor
cells is highly dependent on the presence of NEBs in the
developing bronchi [60,61]. These findings together with
the observation that a naphthalene-resistant subpopula-
tion of club cells is associated with NEBs [16,62] led to
the hypothesis that pulmonary NEBs form a stem cell
niche essential for club cell regeneration during lung in-
jury. However, lungs lacking NE cells regenerate normally
after naphthalene injury [8]. Therefore, further studies are
needed to establish whether NEBs indeed provide signals
to keep the adjacent naphthalene-resistant club cell popu-
lation in a more progenitor-like state.
A similar cross-talk between epithelial stem cells and

their niche is essential to maintain and regenerate the
distal respiratory epithelium [63-65]. In the adult lung
parenchyma, LIFs are found juxtaposed to ATII cells
and are thought to contribute to the ATII stem cell
niche, maintaining their stemness [9]. LIFs assist in the
production of pulmonary surfactant by assimilating neu-
tral lipids and transferring triglycerides to ATII cells for
final processing of the surfactant [66-71]. In addition,
LIFs also express Fgf10 [50,54], which has been shown
to act directly on ATII cells via Fgfr2b to drive the ex-
pression of Sftpc [43,54,56,72,73]. As such, Fgf10 acts as a
protective and therapeutic agent against bleomycin-induced
pulmonary fibrosis [56]. Similarly, clonal expansion of the
Sftpc− alveolar stem cells enriched for α6/β4 integrins relies
on co-culture with Sca1+ mesenchymal cells, which can be
substituted by exogenous Fgf10 [28]. An additional popula-
tion of CD166− and Fgf10+ adult lung mesenchymal stro-
mal cells (MSC) exists, which functions as a progenitor for
LIFs and can support lung epithelial stem cell growth
in vitro due to its Fgf10 expression. As during lung develop-
ment, Fgf10 expression in these cells can be inhibited by
Tgfβ signaling [34,74,75].
Bmp4 secreted by BASCs after bleomycin injury acts

on endothelial cells via Bmpr1a to trigger calcineurin/
NFATc1-dependent expression of thrombospondin-1
(Tsp1). This endothelial-derived Tsp1 then drives the dif-
ferentiation of BASCs into the alveolar lineage via a
feedback loop [22]. Interestingly, after naphthalene in-
jury, Bmp4 and Tsp1 expression is downregulated, which
was shown to favor the differentiation of BASCs into the
club cell lineage [22]. Considering that Bmp4 is a main
target gene of Fgf10 signaling [73,76-78], it is currently
unclear how Fgf10 might be involved in this process
since Fgf10 expression is upregulated in ASMCs and
Fgf10 signaling in BASCs is activated after both naph-
thalene and bleomycin injury [54] (Figure 4C).
Lastly, a recent study provides insight in how the hu-

man Lgr6+ alveolar epithelial stem cell niche is formed
and maintained to effectively ensure stem cell self-renewal
capacity [79]. The authors identified a paracrine circuitry
in which basal levels of SDF-1 secreted by Lgr6+ stem cells
recruit and prime fibroblasts to release TNFα. This TNFα
then leads to the activation of a TGFβ/p38α-mediated
autocrine loop in Lgr6+ stem cells, which further enhances
SDF-1 production. These high SDF-1 levels then stimulate
fibroblasts to produce angiogenic factors to promote
angiogenesis [79].

The role of cell-matrix and cell-cell adhesion in the
epithelial stem cell niche
As described above, crosstalk between stem cells and
their niche crucially depends on paracrine and autocrine
signaling molecules. However, the behavior of epithelial
stem cells depends on the integration with several other
signals as well, including direct contact with the under-
lying ECM as well as with neighboring epithelial cells
(Figure 5).
Components of the ECM, including fibronectin, pro-

teoglycans and collagens, anchor stem cells in their
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niche and provides them with mechanical signals, based
in part on substrate rigidity [80,81]. This allows stem
cells to respond to physical stimuli such as mechanical
stress. In addition, the ECM acts as a growth factor res-
ervoir by its ability to bind locally secreted growth fac-
tors (for example, Fgf10 and Tgfβ) and other stem cell
regulatory molecules (Figure 5), which can be released
by proteases such as heparinase [82]. Integrin-mediated
cell adhesion to the ECM in the niche guides stem cell
fate decisions, including choices between quiescence or
proliferation, self-renewal or differentiation, migration or
retention, and cell death or survival [83]. For example,
loss of contact with the ECM or reduced integrin ex-
pression in adherent cells triggers terminal differenti-
ation of cultured epidermal stem cells [84,85]. The
pulmonary ECM is subjected to a continuous turnover
of more than 10% of the total ECM per day [86]. Thus a
dynamic equilibrium between synthesis and degradation
of the pulmonary ECM maintains a physiological bal-
ance [87]. Alterations in its composition (for example, in
response to injury) lead to changes in cell shape and be-
havior [88], altered binding affinity or cellular distribu-
tion of cell-surface receptors [89], and different cellular
responses to growth factors [90]. The BM, a specialized
form of ECM separating the epithelium from the mesen-
chyme, is a dynamic structure produced by collaboration
between stromal fibroblasts and epithelial cells. Depend-
ing on the composition and physical characteristics of
the BM, different growth factors can have completely
different cellular outcomes, such as cell proliferation,
growth arrest, differentiation or apoptosis [91]. More-
over, tissue engineering experiments suggest that a
decellularized matrix is capable of dictating exogenous
stem cell fate [92], which highlights the importance of
integrin-mediated stem cell-ECM communication in
controlling stem cell behavior. Bidirectional signaling be-
tween epithelial stem cells and the cellular and acellular
components of their niche is essential for normal tissue
homeostasis, and there is clear evidence that stem cell
integrins and BM proteins are involved in this commu-
nication [93].
In contrast to our increasingly extensive knowledge

of pathways that regulate stem cell properties in the
lung during development and regeneration, not much
is known about the molecular mechanisms that keep
lung stem cells largely quiescent during homeostasis
or in check after a regenerative response to prevent
tissue overcrowding and dysplasia. Preservation of the
quiescent state by the niche is an actively regulated
process that maintains the number and function of
stem cells [94]. Epithelial cells form polarized cell
layers that function as barriers capable of inter-
acting with the underlying matrix as well as with
neighboring epithelial cells. Epithelial cell polarity is
maintained through the combined action of three
major regulatory complexes: Crumbs complex, Par
complex and Scribbled complex [95-97]. These com-
plexes are important in organizing cell-cell and cell-
matrix adhesion junctions, which have emerged as
major signaling platforms that mediate the cross-talk
between neighboring epithelial cells and the under-
lying ECM, thereby regulating epithelial cell differenti-
ation and proliferation via the Hippo pathway
[95,96,98-105]. For example, cultured cells arrest pro-
liferation and cell division when the culture becomes
confluent. This contact inhibition mechanism is cru-
cial in vivo to regulate organ size and its loss is a
hallmark of solid tumors [106,107]. An intriguing pic-
ture is emerging in which stem cell progeny are a
critical niche component, providing essential feedback
to their stem cell parents to control stem cell activity
and behavior [30]. However, the exact mechanisms
underlying (integrin-mediated) mechanotransduction
by the ECM and contact inhibition in the lung
remain poorly understood.
Epithelial stem cells and their niches in chronic
lung diseases
Chronic lung disorders, such as IPF, asthma and chronic
obstructive pulmonary disease (COPD), are character-
ized by the progressive remodeling of the airways and/or
parenchyma, which irreversibly leads to lung dysfunc-
tion. In most cases their etiology is not well understood
and current therapeutics are aimed at ameliorating
rather than curing these diseases. Tissue architecture re-
modeling involves pathological changes in the compos-
ition and physiological function of the epithelium.
During normal homeostasis as well as after injury, lung
epithelial stem cells need to give rise to the right amount
of differentiated progeny while maintaining their self-
renewing ability depending on the physiological context.
Disrupting this balance can lead to excessive differenti-
ation and stem cell exhaustion, hypoplasia or squamous
metaplasia. Such abnormal changes in stem cell function
may result from inherent (epi)genetic changes or a dys-
functional stem cell niche. Furthermore, pathological
changes to the lung epithelium may drastically influence
the crosstalk between stem cells and their niche, which
further contributes to disease progression by inducing
abnormal changes in mesenchymal components, such as
ASMC hyperplasia and fibroblast activation leading to
excessive ECM deposition and fibrotic scarring. Chronic
injury and prolonged activation of repair pathways
are thought to result in decreased repair potential by
exhausting the stem cell pool, which leads to defective
repair and progressive airway remodeling by promoting
a fibrotic response [63].
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Asthma
Pathological hallmarks in asthma are an increase in
smooth muscle mass surrounding the airway wall, SMG
hyperplasia and thickening of the basal lamina beneath
the seemingly ‘normal’ BM [108]. The latter is accom-
panied by an increase in the number and activity of sub-
epithelial myofibroblasts with their capacity to lay down
new matrix [109,110]. There is also overwhelming evi-
dence for basal cell hyperplasia [111,112] and goblet cell
metaplasia (GCM) [113] in the asthmatic conducting air-
ways. In asthmatic patients, goblet cells spread down to
the more peripheral airways, where they normally do
not exist [114,115]. GCM is not due to the proliferation
of pre-existing goblet cells but rather to the transdiffer-
entiation of club cells to goblet cells [116-118]. In fact,
goblet cells can actually be regarded as club cells secret-
ing a lot of mucins [119-122].
New paradigms in asthma research point to a central

role for the epithelium and chronic activation of epithe-
lial repair pathways as a major cause of airway remodel-
ing and the development of persistent alterations in
airway function [123]. This is a shift away from the trad-
itional view in which T-helper 2 (Th2)-type inflamma-
tion is considered to be a primary cause in asthma
pathogenesis. At its onset, asthma is associated with
structural changes in the airways often in the relative
absence of airway inflammation [124-126]. A new para-
digm for persistent asthma is emerging of a damaged
epithelium that repairs incompletely and leads to a
chronic wound scenario with the secretion of a range of
growth factors capable of driving structural changes
linked to airway remodeling [127-129]. Thus, asthma
may primarily be an epithelial disorder and its etiology
as well as its clinical manifestations could likely be
caused by altered epithelial physical and functional bar-
rier properties rather than being purely linked to allergic
pathways. In support of this, naphthalene-mediated air-
way epithelial injury has recently been shown to cause
airway hyper-responsiveness [130]. A direct link between
a compromised barrier function and allergy has been
supported by recent findings in atopic dermatitis. Muta-
tions in the epidermal barrier protein filaggrin (encoded
by the Flg gene) lead to a defect in epithelial barrier
function resulting in increased epithelial permeability
and penetration of exogenous substances [131,132]. Dis-
ruption of the columnar epithelium by breaking tight
junctions or not reforming them efficiently enables tis-
sue damaging agents and infectious particles to pene-
trate the airway wall, which facilitates toxic, immune,
and inflammatory responses accompanying tissue dam-
age [133-135]. There is also a link between a compro-
mised epithelial barrier function and the induction of
GCM. Epidermal growth factor (EGF), a key epithelial
cell-derived factor that promotes GCM, is normally
secreted on the basolateral side of the epithelium and se-
questered from its receptor on the apical side through
intact adherens and tight junction barriers between
neighboring epithelial cells [123,136,137]. The recent
conceptual change in asthma pathogenesis raises the in-
teresting possibility that disordered epithelial signaling
pathways not only drive susceptibility to environmental
insults but also the inflammation and remodeling re-
sponses that follow. Similarities between organ morpho-
genesis and wound healing responses have led to a new
concept in which chronic airway inflammation is supported
by the structural components of remodeling through acti-
vation of the epithelial stem cell-niche unit [138].
Interestingly, the Wnt pathway is induced in ASMCs

in a mouse model for asthma [139], whereas epithelial
Fgf10, as well as downstream Notch signaling, has been
shown to be implicated in mucous/goblet cell hyperpla-
sia [37,119]. In addition, both Fgf10 and downstream
Notch signaling are involved in maintaining club stem
cells to prevent them from differentiating into terminally
differentiated ciliated cells [43,119,140]. These findings
suggest that under conditions of chronic injury, the lung
may invoke the same signaling pathways which are acti-
vated in response to acute injury [54]. Unlike human
lungs, mouse lungs only have very few goblet cells in the
upper airways. Fgf10 secreted by ASMCs, possibly by
activating the Notch pathway, can induce club cell to
goblet cell transdifferentiation in the repairing upper air-
way after naphthalene injury in the mouse [54]. Thus,
chronic activation of Wnt-Fgf10 epithelial-mesenchymal
crosstalk is likely involved in ASMC proliferation and
airway remodeling observed in asthma patients. The sus-
tained stimulation of these pathways may eventually lead
to epithelial stem cell depletion and fibrosis. In this re-
gard, it is interesting to note that Snail1 expression is in-
duced downstream of Fgf10 or Notch signaling in club
stem cells during airway epithelial regeneration resulting
in a transient EMT [54]. Interestingly, use of a mouse
model of acute liver fibrosis on a hepatocyte-specific
Snail1 knockout showed that Snail1 plays a crucial
role in the progression of liver fibrosis without driving a
full EMT. Instead, Snail1 was shown to drive the expres-
sion of growth factors, ECM components and pro-
inflammatory mediators [141].

Idiopathic pulmonary fibrosis
IPF is a devastating, age-related lung disease with an un-
known etiology that is refractory to treatment and has a
poor survival rate. Widespread damage to the epithelium
and/or exhaustion of the epithelial stem cell pool, such
as in IPF patients with certain telomerase mutations
[142-149], ultimately leads to epithelial loss. This results
in a denuded basal lamina, serum protein exudation and
remodeling of the underlying ECM, mediated by fibrotic
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scarring [63,64,150]. Similar to asthma, IPF was once
thought to be driven by chronic inflammation. However,
the efficacy of anti-inflammatory or immunosuppressive
drugs is inadequate, which urged reassessing the role of
inflammation in IPF. Indeed, current evidence indicates
that the fibrotic response may primarily be caused by
abnormally activated alveolar epithelial (stem) cells [64].
A main hallmark of IPF is an increase in hyperplastic
and hypertrophic ATII epithelial stem cells despite
widespread epithelial damage and apoptosis. These cells
express mediators such as Tgfβ, which induce the forma-
tion of myofibroblast foci through the proliferation
and transdifferentiation of resident mesenchymal (niche)
cells and the attraction of circulating fibrocytes [23,64].
The myofibroblastic foci secrete excessive amounts of
ECM, mainly collagens and fibronectin (FN), resulting in
fibrotic scarring and progressive remodeling of tissue
architecture reminiscent of abnormal repair. Disruption
of the tissue-specific epithelial stem cell niche by the
fibrotic ECM may further result in aberrant stem cell
activation and/or stem cell loss. This prevents proper
regeneration and leads to permanent and irreversible tis-
sue scarring, which compromises normal lung function.
Abnormal redeployment of developmental epithelial-
mesenchymal interactions between epithelial stem cells
and their niches have been suggested to play a role in
the pathogenic mechanisms that connect IPF with aging
and aberrant ATII cell activation [63-65]. After epithelial
injury, lung epithelial stem cells and their niches will
attempt to restore the damaged epithelium. However, if
effective re-epithelialization fails then a process of de-
structive remodeling and aberrant cellular differentiation
is initiated, which produces a dysfunctional disease
state shared by several parenchymal pulmonary disor-
ders [63]. IPF patients show a significant loss of ATI
cells [64,65]. Moreover, the differentiation of ATII into
ATI cells is perturbed in IPF due to aberrant ECM re-
modeling and changes to the BM structure [64,65]. At
this point it is unclear whether there is a correlation be-
tween the reduction in ATI cells and a fibrotic response
in IPF. However, ATI cells express some important anti-
fibrotic factors such as caveolin-1, which is involved in
FN turnover [151,152], and mice lacking caveolin-1 or
−2 develop spontaneous lung fibrosis [64,151-153].

Chronic obstructive pulmonary disease
COPD is another chronic lung disorder that develops
mainly in smokers and clinically manifests itself through
chronic bronchitis and emphysema. Epithelial remodel-
ing includes basal cell hyperplasia and squamous meta-
plasia with several layers of Krt14+ basal cells, which
are rare in the normal epithelium [2]. In addition, mucus
hyperplasia is also frequently observed in lungs from
COPD patients [2]. Interestingly, Fgf10 haploinsufficiency
is linked to emphysema in COPD in humans, which fur-
ther emphasizes the significance of Fgf10 expression in
adult lung stem cell niches and its role in homeostasis
and regeneration [154].

Conclusions
Stem cells are indispensible during normal homeostasis
and regeneration to restore the form and function of an
organ after injury. Great strides are being made toward
identifying and characterizing stem cell populations in
the adult lung. It is, however, important to keep in mind
that stem cells do not act independently to perform
these functions. Stem cells are subjected to tight regula-
tory processes so that they are activated and give rise to
the right number and type of differentiated progeny at
the appropriate time and place in a given biological con-
text. In that regard, stem cells must be mobilized quickly
in response to injury, but once the tissue has been re-
stored, stem cells must also be able to revert back to
their quiescent state. How exactly this information is
communicated to stem cells is not well understood, but
may involve dynamic feedback mechanisms between
stem cells and their niche. We are now only beginning
to understand the cellular and molecular constituents of
the stem cell niches in the lung and how stem cell be-
havior is influenced by the wide variety of external sig-
nals provided by their niche. In this review, we have
advocated the involvement of Fgf10, which is expressed
in several stem cell niches in the lung, in stem cell main-
tenance and activation after injury. Developmental path-
ways are often recapitulated during lung repair and their
chronic and sustained activation may lead to lung
remodeling observed in chronic diseases such as IPF,
COPD and chronic asthma. As such, determining the
regulatory pathways involved in stem cell-niche interac-
tions during adult lung homeostasis and repair after in-
jury will pave the way for a better understanding of the
molecular mechanisms underlying these devastating dis-
orders for which there are currently few or inefficient
treatments. Moreover, effectively recreating the stem cell
niche in vitro in organoid cultures will be crucial for
long-term expansion of lung stem cells and the develop-
ment of cell replacement therapies. As such, the feasibil-
ity of colon stem cell therapy based on transplantation
of colon organoids in a damaged mouse colon has
recently been demonstrated [155].
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