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Abstract
Chronic kidney diseases share common pathogenic mechanisms that, independently from the initial injury, lead to 
glomerular hyperfiltration, proteinuria, and progressive renal scarring and function loss. Inhibition of the renin 
angiotensin system (RAS) has been consistently found to reduce or halt the progressive deterioration of renal function 
through reduction of blood pressure and proteinuria, the two main determinants of renal function decline. In few 
instances, RAS inhibition may even promote amelioration of the glomerular filtration rate. Animal data suggest that 
chronic therapy with angiotensin-converting enzyme inhibitors or angiotensin II receptor type I blockers promotes 
regression of glomerulosclerosis, even in later phases of the disease. In humans, studies investigating the effect of 
angiotensin II inhibition on renal structural changes have shown inconsistent results, possibly due to small numbers 
and/or short duration of follow-up. Whether regression of glomerulosclerosis relies on a direct regenerative effect of 
RAS inhibition or on spontaneous kidney self-repair after the injury has been removed is still unknown. Improved 
understanding of mechanisms that promote renal regeneration may help in designing specific therapies to prevent 
the development of end-stage renal disease. This is a desirable goal, considering the economic burden of chronic 
kidney diseases and their effect on morbidity and mortality.

Introduction
Chronic kidney disease (CKD) represents a major health
problem worldwide. It has been estimated that approxi-
mately 830,000 deaths every year are linked to renal dis-
eases, but the scale of the problem is probably largely
underestimated [1] Costs for renal replacement therapies
cannot be afforded on a population basis by most devel-
oping countries, and estimates predict that economic
expenses for these treatments are becoming very prob-
lematic for wealthier nations too. Therefore, identifying
mechanisms that sustain renal disease progression and
those that allow recovery of renal function and structural
integrity after injury will be crucial to develop hypothe-
sis-driven therapies able to promote remission or even
regression of CKD. This will be of even higher impor-
tance for global morbidity and mortality because renal
impairment also represents a major risk factor for cardio-
vascular disease [1].

Independently from the initial insult, chronic nephrop-
athies seem to share common pathogenic mechanisms
leading to progressive renal function loss and fibrosis [2].

Targeting blood pressure (BP) and proteinuria can reduce
the rate of kidney function decline and prevent or delay
the need for renal replacement therapy in many patients.
The cornerstone of current treatment is inhibition of the
renin angiotensin system (RAS), which has been consis-
tently described to improve renal function with concomi-
tant regression of kidney structural changes in animal
models. Similar effects have been reported in selected
patients, providing evidence that the kidney has some
regenerative capacity that might be boosted by specific
and targeted treatment [3,4]. In this paper, we first review
the evidence both from experimental studies and from
clinical studies in humans that RAS inhibition can induce
renal structural and functional changes. We then provide
an extensive summary of the possible direct or indirect
mechanisms by which inhibition of the RAS contributes
to kidney repair.

Pathophysiology of renal disease progression
Experimental and clinical research has clearly docu-
mented that, independently from the initial injury, renal
disease progression is sustained by common mechanisms
that, starting from nephron loss, lead to compensatory
glomerular hemodynamic changes. In the experimental
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model of renal mass reduction by five-sixths nephrec-
tomy, resembling advanced phases of CKD, the remnant
glomeruli undergo hypertrophy, and the tone of afferent
arterioles drops more than that of efferent arterioles [5].
This increases glomerular capillary hydraulic pressure,
leading to more filtrate formed per nephron (hyperfiltra-
tion). These changes initially minimize the functional
consequences of nephron loss, but ultimately are detri-
mental, causing progressive injury of the remaining intact
nephrons. Increased intraglomerular capillary pressure
and perfusion pressure result in mechanical damage to
the three major cell types in the glomerulus (the podo-
cytes, endothelial cells and mesangial cells) leading to
impaired selectivity of the glomerular capillary wall and
excessive protein ultrafiltration [5].

A key player in these glomerular hemodynamic
changes, crucial to progressive renal injury, is angiotensin
II [6]. Indeed, glomerular capillary hypertension is often
maintained by angiotensin-dependent mechanisms via
increased systemic BP and vasoconstriction of the effer-
ent arterioles. Beyond causing glomerular hypertension,
angiotensin II has been suggested to promote progressive
renal damage directly through a variety of mechanisms,
including increased extracellular matrix (ECM) deposi-
tion, immune activation and induction of growth factor
release [7]. Moreover, angiotensin II alters the size-selec-
tive properties of the glomerular capillary barrier, which
further increases protein filtration into the urinary space
[8].

Consequences of glomerular permeability dysfunction and 
proteinuria
Podocyte injury secondary to glomerular hypertension
and the direct effects of angiotensin II leads to increased
protein ultrafiltration in the urinary space. When protei-
nuria is highly selective, that is, when albumin represents
its major component, tubulointerstitial damage and renal
function loss is rather infrequent. Conversely, when
larger proteins also pass through the glomerular barrier
into the urinary space, tubulointerstitial damage takes
place and renal function progressively declines [9]. Con-
sistently, longitudinal studies in diabetes mellitus type 1
(T1DM) and type 2 (T2DM) clearly show that the glom-
erular filtration rate (GFR) in general starts to decline
only with the appearance of macroalbuminuria, that is,
when proteins larger than albumin appear in the urinary
space [10-12].

Protein overload in the tubules induces tubular cells to
release cytokines, chemokines, growth factors and vaso-
active substances, which leads to abnormal interstitial
accumulation of inflammatory cells, ECM collagen,
fibronectin and other components that are responsible
for interstitial fibrosis [13]. Notably, glomerular permea-
bility dysfunction results in the passage of complement

factors into Bowman's space and the tubular lumen.
Moreover, tubular cells themselves synthesize comple-
ment factors under stress conditions, causing an abnor-
mally high exposure of epithelial cells to these reactive
proteins [14,15]. Consistently, abnormal C3 and C5b-9
staining in proximal tubular cells and along the brush
border is a well-known feature both in human chronic
proteinuric diseases and experimental models, and com-
plement activation is now known to be a powerful mech-
anism underlying tubular and interstitial injury by
exerting cytotoxic, proinflammatory and fibrogenic
effects [16].

Filtered oxidized lipoproteins can promote lipid accu-
mulation in glomerular, tubular and interstitial cells,
which in turn promotes progressive renal function loss
[17]. Moreover, tissue injury induced by proteinuria pro-
motes the generation of reactive oxygen species and an
endoplasmic reticulum stress response by renal cells [18].
This leads to the oxidative modification of membrane lip-
ids, proteins and DNA, thereby initiating cell-death
responses that result in tissue inflammation and local
recruitment of macrophages and lymphocytes, and so
further fuel the inflammatory process [18,19]. This
altered interstitial milieu promotes epithelial-mesenchy-
mal transition (EMT), a process by which differentiated
epithelial cells undergo a phenotypic conversion into
matrix-producing fibroblasts and myofibroblasts. This
process is increasingly being recognized as an integral
part of tissue fibrogenesis after injury, and could be an
adaptive response of epithelial cells to an unfavorable
microenvironment [20]. Recent studies showed that not
only tubular epithelial cells, but also endothelial cells and
glomerular podocytes may undergo mesenchymal transi-
tion after injury, leading to functional impairment and
glomerulosclerosis [20,21].

The aforementioned mechanisms sustain progressive
renal function loss and scarring, which, if left untreated,
inexorably leads to end-stage renal failure (ESRF). Thanks
to compensatory adaptations by the high number of
unimpaired nephrons, this does not immediately trans-
late into changes in the renal function parameters most
commonly used in the clinical practice, such as serum
creatinine and urea. Beyond a certain level of injury, how-
ever, compensatory adaptations no longer keep pace with
nephron loss, and glomerular filtration rate declines.

Prevention of progressive renal function decline 
with RAS inhibition: results from clinical trials
Given the important role of angiotensin II in inducing
and sustaining glomerular hypertension and proteinuria
and its deleterious consequences, clinical studies have
focused on the renoprotective effects of angiotensin II
inhibition.
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The Angiotensin-Converting Enzyme Inhibition in
Progressive Renal Insufficiency (AIPRI) study showed
that angiotensin-converting enzyme (ACE) inhibitor
therapy reduced the risk of serum creatinine doubling in
583 mainly non-diabetic patients with chronic proteinu-
ric nephropathies [22]. However, a much more effective
BP reduction on ACE inhibitors did not allow for a con-
clusion about whether this effect was specific for the ACE
inhibitor therapy itself or merely reflected better control
of arterial hypertension. Stronger evidence of the reno-
protective effect of ACE inhibitors were provided by the
Ramipril Efficacy in Nephropathy (REIN) study, showing
that with comparable BP control, treatment with the ACE
inhibitor ramipril reduced the rate of GFR decline and
progression to ESRF in patients with non-diabetic protei-
nuric nephropathies compared with placebo. Patients
with higher levels of baseline proteinuria benefited the
most [23,24]. In a subsequent meta-analysis of 1860 non-
diabetic patients, it was again shown that ACE inhibition
significantly reduced the risk of creatinine doubling or
kidney failure [25]. Importantly, the risk reduction was
limited to patients with ≥ 500 mg urinary protein excre-
tion per day, further supporting the pathogenic role of
proteinuria in promoting renal damage.

Although the responsiveness to antiproteinuric therapy
may vary between the different non-diabetic glomerulop-
athies, the aforementioned studies were not designed to
detect such differences. However, efficacy of angiotensin
II inhibition has been reported for diverse proteinuric
diseases including IgA nephropathy [26], membranous
nephropathy [27], and HIV-associated nephropathy [28].
For primary focal and segmental glomerular sclerosis,
data regarding the efficacy of angiotensin II inhibition are
scarce [29].

Of note, current evidence supports the benefit of RAS
inhibition even in the advanced phases of renal failure. A
post hoc analysis of the REIN study showed that the effi-
cacy of ACE inhibitor therapy over placebo in prevention
of ESRF was consistent across all levels of baseline GFR
[30]. Even more compelling evidence of the beneficial
effect of ACE inhibitor therapy was provided by Hou et
al., who randomly assigned 224 non-diabetic patients
with an estimated GFR < 30 mL/min to benazepril or pla-
cebo [31]. After 3.4 years of follow-up, the number of
patients progressing to ESRF was 40% lower in the group
of patients on benazepril compared with the placebo
group (P = 0.02), despite similar BP control. Thus, RAS
inhibitors should be continued up to the very advanced
phases of renal failure. However, when GFR declines to <
15 mL/min, RAS inhibitor discontinuation may be con-
sidered, in order to increase GFR and retard the need for
renal replacement therapy[32].

In (incipient) diabetic nephropathy, ACE inhibitors and
angiotensin II receptor type I blockers (ARBs) also exert

their renoprotective effects. In hypertensive T1DM or
T2DM patients with microalbuminuria or overt nephrop-
athy, both ACE inhibitors and ARBs protected against the
progression of renal disease independent of BP reduction
[33-37]. Moreover, it was shown that in normoalbuminu-
ric hypertensive T2DM patients, trandolapril halved the
risk of developing microalbuminuria compared with con-
ventional therapy [38]. This is of major importance
because microalbuminuria strongly predicts diabetic
nephropathy, and T1DM or T2DM patients with microal-
buminuria have a 21-fold and 9-fold increased risk,
respectively, of developing diabetic nephropathy com-
pared with those without microalbuminuria [39,40].

ACE inhibitors versus ARBs: is there any difference?
Only few studies have addressed the question of whether
ACE inhibitors are better than ARBs or vice versa. In the
Renoprotection of Optimal Antiproteinuric Doses
(ROAD) study, non-diabetic proteinuric patients were
randomized to either benazepril or losartan in the con-
ventional dose or in a dose that was titrated upwards until
the maximum antiproteinuric efficacy was reached [41].
This study clearly demonstrated that the titrated therapy
reduced the incidence of the combined endpoint of
serum creatinine doubling, ESRF or death after a median
follow-up of 3.7 years. Importantly, the effects of the
strategy did not depend on the type of drug; the results
were not different between benazepril and losartan.
Another study, comprising type 2 diabetic patients with
incipient or overt nephropathy, showed that there was no
significant difference in the effects of enalapril and telm-
isartan on measured GFR decline after 5 years of treat-
ment, although the decline in GFR tended to be lower in
patients on enalapril [42]. Other studies in hypertensive
type 2 diabetics with early nephropathy comparing ACE
inhibitors and ARBs have also failed to show significant
differences in the effects of these two drug classes on BP
and urinary albumin excretion [43,44]. These findings are
particularly important for renal disease prevention and
treatment in low-income countries, as ACE inhibitors are
much less costly than ARBs [45].

Double RAS inhibition to maximize proteinuria reduction
Double RAS inhibition may have a superior antiproteinu-
ric effect to single inhibition with either agent. In patients
with persisting proteinuria, the addition of an ARB to an
ACE inhibitor counteracts the effects of angiotensin II
that is produced via ACE-independent pathways,
whereas the addition of an ACE inhibitor to an ARB lim-
its compensatory angiotensin II production. Direct com-
parisons of combined RAS blockade versus single
blockade are scarce, and the only moderately large study
reported to date has recently been retracted because its
validity could not be proven in a subsequent institutional
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investigation [46]. However, a meta-analysis of smaller
studies on patients with primary glomerulonephritis and
proteinuria showed that double RAS inhibition was safe,
and was more effective than single inhibition in treating
proteinuria [47]. Moreover, patients treated according to
the multimodal approach to proteinuria called 'remission
clinic', which includes double RAS inhibition, had a
strongly decreased risk of progression of renal disease
compared with historic control patients on standard ther-
apy titrated to BP, especially those with non-diabetic pro-
teinuric nephropathies[48].

Concerns have been raised about double RAS inhibi-
tion because combined treatment of ramipril and telmis-
artan increased the risk of the combined primary renal
outcome of death, serum creatinine doubling or dialysis
compared with either agent alone in a large study com-
prising 25,620 patients with atherosclerotic disease and/
or diabetes with end-organ damage [49]. However, it is
important to realize that this increase in risk was mainly
driven by the increased incidence of acute temporary
hemodialysis, conceivably a treatment-related acute
effect on renal hemodynamics that is reversible upon
treatment withdrawal and does not indicate chronic renal
disease progression. Moreover, 96% of patients in this
study had normo- or microalbuminuria, and these results
should not be generalized to patients with proteinuric
nephropathies, in whom intensive proteinuria reduction
will halt the vicious circle of progressive renal damage
that is sustained by increasing levels of proteinuria [50].

Renal functional improvement in humans treated 
with RAS inhibition
The studies mentioned above have predominantly used
prevention of progression of albuminuria or deterioration
of kidney function as the outcome of interest. Not many
studies have addressed the possibility of long-term remis-
sion or even regression of proteinuric kidney disease with
angiotensin II inhibition (Table 1). Preceded by several
case reports [51,52], the first trial evidence that ACE inhi-
bition may induce remission of nephrotic range proteinu-
ria and stabilization of kidney function was provided by
the Captopril Study, in which seven of 42 (16.7%) T1DM
patients treated with captopril showed remission of

nephrotic range proteinuria and stabilization of serum
creatinine levels, compared with only one of 66 (1.5%)
patients assigned to placebo [53]. After 1 year of follow-
up, the single patient treated with placebo was also
switched to ACE inhibition because of inadequate BP
control. After nearly 8 years of follow-up, six of the seven
patients for whom data were available remained in remis-
sion, whereas only one patient had progressed to ESRF
[54]. Although better systolic BP control in the captopril
group would have contributed to these findings, it was
suggested that treatment with ACE inhibition can reverse
the usually relentlessly progressive course of nephrotic
range proteinuria in a subgroup of patients with T1DM.

For non-diabetic patients, long-term follow-up of the
REIN study showed that the rate of measured GFR
decline progressively improved to a level of about 1 mL/
min/1.73 m2/year after at least 5 years of continued
ramipril use [55], which approximates the average age-
related loss in GFR over time in healthy subjects [56].
Moreover, a breakpoint was identified in the slope of GFR
changes over time, suggesting an improvement in mean
GFR after 36 months of treatment. Indeed, 10 of 26
ramipril-treated patients had positive GFR slopes after
the breakpoint. Patients with a positive GFR slope had a
larger decrease in proteinuria compared with those in
whom the slope improved but remained negative (Figure
1) [55]. Taken together, the findings of the Captopril and
REIN studies, although not biopsy-proven, suggest that
upon treatment with ACE inhibitors, recovery of kidney
function due to kidney repair or regeneration is possible
both in diabetic and in non-diabetic chronic proteinuric
nephropathies.

Renal structural improvement in animals treated 
with RAS inhibition
In a broad range of animal models of proteinuric disease,
treatment with ACE inhibitors, ARBs, or both has been
shown not only to prevent progressive renal damage, but
also to induce regression of glomerulosclerotic, tubu-
lointerstitial and vascular lesions [57-67]. Remuzzi et al.
developed a technique for three-dimensional reconstruc-
tion of the glomerular capillary tuft, thus permitting a

Table 1: Definition of progression, remission and regression of proteinuric chronic nephropathies.

Progression Remission Regression

Proteinuria, g/24 hours ≥ 1 0.3 to 1 <0.3

Glomerular filtration rate *Declining Stable Increasing

Renal structural changes Worsening Stable Improving

* Faster than physiological decline associated with aging (1 ml/min/1.73 m2/year).
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more accurate estimation of the extent of glomeruloscle-
rosis, which is underestimated by currently employed
two-dimensional imaging methods. Using this method, it
was possible to show that in rats with advanced non-dia-
betic proteinuric nephropathy, administration of high-
dose ACE inhibitors reduced the volume of sclerosis in
most glomeruli (unless they were almost totally sclero-
sed), and increased the volume of normal capillary tissue
by up to 40% (Figure 2)[66]. Other investigators have

shown that the beneficial effects of angiotensin II inhibi-
tion on renal structural changes are dose-dependent and
that the ideal dose may be higher than those recom-
mended for antihypertensive treatment [59,60]. More-
over, a combined approach with ACE inhibitor, ARB and
statin therapy was shown to be superior to combined
treatment with ACE inhibitor and ARB, and led to com-
plete regression of proteinuria and prevention of renal
failure in a rat model of passive Heymann nephritis [68].
These studies suggest that maximization of antiproteinu-
ric therapy is warranted to optimize the regeneration
capacity of the kidney.

Evidence for renal structural improvement with 
RAS inhibition in humans
Owing to the difficulties in obtaining repeat biopsies,
only a few investigators have had the opportunity to study
whether the human kidney is capable of repairing or
regenerating chronically damaged renal tissue. The proof
of concept that kidney repair is indeed possible in
humans was provided by Fioretto et al., who studied
biopsies of eight patients with T1DM and mild to
advanced diabetic nephropathy after pancreas transplan-
tation [69]. Five years after transplantation, no structural
improvements were observed, but after 10 years, there
was a significant decrease in glomerular and tubular
basement membrane thickness and in mesangial frac-
tional volume. Change in the latter was significantly cor-
related with the change in urinary albumin excretion rate.
Kimmelstiel-Wilson nodules, typical of diabetic nephrop-
athy, disappeared. Pancreas transplantation was accom-
panied by a significant decrease in creatinine clearance at
1 year of follow-up in all patients. This may have been a
result of immunosuppressive treatment with ciclosporin;
however, during the subsequent 9 years of follow-up, cre-
atinine clearance remained remarkably stable and even
improved in some patients, although it did not return to
pre-transplantation values. These findings indicate that
kidney repair is possible in diabetic nephropathy, but just
as diabetic lesions take a long time to develop, they also
take a long time to disappear.

In non-diabetic nephropathy also, kidney repair is pos-
sible. A study in proteinuric patients with idiopathic
membranous nephropathy treated with the anti-CD20
monoclonal antibody rituximab added to the evidence in
favor of kidney repair in humans [48]. In seven patients in
whom complete remission of proteinuria had been
obtained, biopsies were repeated after a median of 21
months after rituximab administration. The characteris-
tic subepithelial electron-dense immune deposits were
completely or partially reabsorbed, and staining for IgG4
was significantly decreased. Importantly, foot process
effacement and loss of intact slit diaphragms were largely
reversed. Inactivation by rituximab of the autoimmune

Figure 1 GFR time-dependent changes over time in the 26 pa-
tients on prolonged ramipril therapy in the Ramipril Efficacy in 
Nephropathy (REIN) study. The breakpoint analysis found that GFR 
time-dependent changes could not be described by one single first-
degree equation, but rather by two different equations describing ran-
domization to 36 months and from 36 to 54 months, respectively. Y1 

and Y2 equations describe the interpolating curves before and after the 
breakpoint, respectively.
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pathways underlying idiopathic membranous nephropa-
thy may thus allow restoration of the glomerular struc-
ture.

Renal structural improvement with RAS inhibition in non-
diabetic nephropathies
To our knowledge, no randomized studies are available
investigating renal structural changes with angiotensin II
inhibition in non-diabetic nephropathies. In an observa-
tional study, 15 patients with mild to moderate biopsy-
proven IgA and non-IgA mesangial proliferative glomer-
ulonephritis and relatively mild proteinuria were treated
with an ARB for an average of 28 months. Although the
global glomerular sclerosis ratio was not significantly
altered by treatment with an ARB, 13 of the 15 patients
showed a decrease in mesangial matrix expansion and
interstitial fibrosis. Because treatment was associated
with a significant decrease in proteinuria and systolic BP,
no conclusion can be drawn from this study about a pos-
sible class-specific effect of ARBs [70].

Renal structural improvement with RAS inhibition in 
diabetic nephropathy
Several studies have attempted to investigate the effect of
angiotensin II inhibition on renal structural changes in
humans. Small studies in microalbuminuric T1DM
patients treated with enalapril, perindopril or the β-
blocker metaprolol showed a decrease in glomerular
basement membrane thickness after 3-4 years of follow-
up[71,72]. Although a similar trend was present, this
finding was not confirmed in a larger study in 59 T1DM
microalbuminuric patients treated with enalapril or pla-
cebo[73]. In this study, however, mean glomerular and
mesangial volumes were significantly increased in the
placebo group compared with the enalapril group after 5
years of follow-up. A smaller study in 13 normoalbumin-
uric normotensive T1DM patients also showed a signifi-
cant decrease in mesangial fractional volume after 5 years
of treatment with the ARB candesartan. However, this
decrease was accompanied by a decrease in BP, thus pre-
cluding a conclusion about a possible class-specific
effect[74]. Recently, a large study on the renal and retinal
effects of angiotensin II inhibition in 256 normoalbumin-
uric and normotensive patients with T1DM revealed that
both ACE inhibition and ARB delayed the progression of
retinopathy, but not nephropathy. Although sequential
biopsies showed that the increase in the primary outcome
of mesangial fractional volume after 5 years of follow-up
was statistically significant in the placebo and ARB-
treated groups, but not in the group treated with an ACE
inhibitor, statistical comparisons between treatment
groups revealed no significant differences [75]. Similarly,
a study in 50 micro- and macroalbuminuric T1DM
patients with preserved renal function but with histologi-

cal evidence of diabetic nephropathy at baseline failed to
detect any improvement in renal structural abnormalities
after 3 years of treatment with enalapril or nifedipine
compared with placebo [76]. Finally, for patients with
T2DM, the effects of ACE inhibition on renal structural
changes were investigated in 19 patients with micro- or
macroalbuminuria who were randomized to treatment
with perindopril or placebo [77]. After 2 years of follow-
up, a significant increase in interstitial fractional volume
was seen in the placebo group, which was absent in the
perindopril-treated patients. The data also suggested that
treatment with perindopril stabilized the percentage of
sclerosed glomeruli in patients with T2DM, but this
could not be confirmed in a smaller sample of 11 patients
for whom electron microscopy data were available [78].

Although some of the studies cited above hint at the
possibility of an effect of angiotensin II inhibition on
renal structural changes in diabetic patients, they are
inconsistent, and do not allow distinguishing between a
specific effect of angiotensin II inhibition or of blood-
pressure lowering in general. On the other hand, the neg-
ative results reported by other studies should not be
taken as evidence for the absence of a beneficial effect of
angiotensin II blockade, as some of these studies included
patients at a very early stage of diabetic nephropathy or
had only very small numbers. All studies had a relatively
short duration of follow-up, and it should be kept in mind
that, as described above, the effects of pancreas trans-
plantation on renal structural changes in T1DM took 10
years to become evident [69].

New therapeutic perspectives to optimize RAS 
inhibition
Blockade of the RAS at several sites has recently been
proposed as a way to optimize antiproteinuric treatment
in patients unresponsive to maximum combined ACE
inhibitor and ARB therapy. Aldigier et al. showed that in
remnant kidney rats the anti-aldosterone spironolactone
promoted regression of glomerulosclerosis in 33% of
cases when used alone, a percentage that increased fur-
ther when nonspecific antihypertensive treatment or
losartan were added [79]. Promising results in proteinuria
reduction have also been obtained with aldosterone
antagonists in patients unresponsive to single or dual
RAS blockade [80]. Two recent meta-analyses found that
add-on therapy with anti-aldosterone therapy reduces
proteinuria in patients already on ACE inhibitor or ARB
therapy, but this approach carries a high risk of hyper-
kalemia, especially in patients with advanced renal failure
[81,82]. Moreover, response to anti-aldosterone therapy
is not a uniform finding, especially in patients with non-
diabetic nephropathies [83].

Renin is another component of the RAS that can be tar-
geted. In the transgenic mRen-2 rat model, levels of
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plasma and tissue renin and other RAS components are
altered, leading to hypertension. In mRen-2 rats with
streptozotocin-induced diabetes, the direct renin inhibi-
tor aliskiren reduced renal gene expression of TGF-β1
and collagen I, but not collagens III and IV, and also
reduced expression of the (pro-)renin receptor in glomer-
uli, tubules and cortical vessels[84]. Other studies showed
that aliskiren reduced albuminuria and glomerulosclero-
sis to a similar extent as the ACE inhibitor perindopril,
despite lower BP reduction [85], and in non-diabetic
mRen-2 rats, aliskiren and the ARB irbesartan similarly
attenuated glomerular structural and functional
changes[86]. In humans, aliskiren, in addition to losartan,
was shown to significantly reduce the urinary albumin
excretion rate compared with placebo in hypertensive
patients with T2DM nephropathy[87]. However, it is not
known whether this effect is superior to that which could
have been obtained with upwardly titrated doses of losar-
tan or with the combination of losartan with an ACE
inhibitor. Given the high costs of this new drug, especially
in comparison with ACE inhibitors, this issue needs to be
resolved before aliskiren is routinely prescribed in every-
day clinical practice.

Finally, growing evidence is accumulating of an antipro-
teinuric and nephroprotective effect of vitamin D, possi-
bly acting again, at least in part, through RAS inhibition.
Indeed, vitamin D receptor-null mice show increased lev-
els of renin, whereas administration of vitamin D to wild-
type animals suppresses renin mRNA levels in the kidney
[88]. In remnant kidney rats, vitamin D administration
significantly reduced glomerular hypertrophy over pla-
cebo [89]. A preliminary report from a randomized pla-
cebo-controlled clinical trial recently showed that 2 μg/
day of paricalcitol added on to RAS inhibitor therapy
decreased albuminuria by > 30% in a large cohort of
patients with T2DM and overt nephropathy, whereas the
smaller dose of 1 μg/day had a non-significant effect on
urinary albumin excretion, similar to that of placebo [90].

Mechanisms of renal disease regression
Two main, non-mutually exclusive mechanisms may be
advocated to explain improved renal function and regres-
sion of histological lesions with angiotensin II inhibition.
First, angiotensin II inhibition itself may favor kidney
repair beyond reduction in BP and proteinuria, by affect-
ing ECM deposition and podocyte structure and func-
tion. Alternatively, the kidney has an inherited capability
to repair itself once the chronic insult (for example pro-
teinuria) has been eliminated or attenuated. The evidence
supporting these two hypotheses will be described below.

Direct effects of angiotensin II inhibition
Several mechanisms have been proposed by which angio-
tensin II inhibition may directly promote regression of

renal injury. A prominent feature of glomerulosclerosis is
increased deposition of ECM, which is brought about by
a change in the balance between breakdown proteinases
and their inhibitors [7]. Results from animal studies have
suggested several pathways by which angiotensin II may
affect this balance. A key player in the deposition of ECM
is transforming growth factor-β (TGF-β). In various rat
models of progressive nephropathy, elevated TGF-β
expression normalized upon treatment with an ACE
inhibitor or ARB [58,66]. Conversely, TGF-β expression
did not normalize upon treatment with hydralazine, sug-
gesting an intrinsic effect of angiotensin II inhibition and
not merely of BP reduction [58]. Importantly, repeated
kidney biopsies in humans with T2DM and albuminuria
after 2 years of treatment with the ACE inhibitor perin-
dopril versus placebo showed decreased expression of the
TGF-β1 gene and diminished downstream activation
[91]. Another important factor is plasminogen activator
inhibitor (PAI)-1, an inhibitor of matrix degradation with
known profibrotic activity [92]. Its production can be
directly induced by angiotensin II via the AT1 receptor
[93]. After five-sixths nephrectomy in rats, regression of
glomerulosclerotic lesions induced by treatment with
ACE inhibitors and/or ARB was linked to decreased PAI-
1 mRNA expression and reduced PAI-1 immunostaining
on biopsy [61]. In the same study, mRNA expression of
another inhibitor of proteolysis, tissue inhibitor of metal-
loprotease (TIMP)-1, was also reduced Finally, although
increased production of matrix metalloproteinase
(MMP)-2 and MMP-9 might favor regression as they pro-
mote ECM turnover and collagen breakdown, they were
in fact reduced in the aforementioned study. In another
study, however, increased MMP-2 and -9 levels returned
to normal after 4 weeks of losartan treatment, concomi-
tantly with normalization of collagen I and IV expression
[58,61]. The role of MMPs in promoting regression of
glomerular lesions therefore remains to be determined.

Several studies have suggested that angiotensin II has a
direct effect on glomerular permselectivity [94,95]. In
mice, altered organization of F-actin fibers and redistri-
bution of the murine podocyte foot process protein
zonula occludens-1 induced by angiotensin II was shown
to be accompanied by increased protein permeability.
Stabilization of F-actin prevented these changes [8].
Therefore, reorganization of the actin cytoskeleton,
which is crucial to preserve podocyte-podocyte interac-
tions, seems to be the underlying molecular mechanism
of angiotensin II-induced glomerular permselective dys-
function, which may be inhibited by targeted treatment.
Furthermore, angiotensin II receptor blockade was
shown to reverse the decrease in vascular endothelial
growth factor (VEGF)-A and angiopoietin-1 production
by damaged podocytes [96]. These factors are all impli-
cated in glomerular endothelial cell survival, and restora-



van der Meer et al. Fibrogenesis & Tissue Repair 2010, 3:7
http://www.fibrogenesis.com/content/3/1/7

Page 8 of 11
tion of their production after glomerular injury may be
important for capillary remodeling during regression of
glomerulosclerotic lesions [57,66]. Finally, it was recently
shown that lisinopril not only halted age-related podo-
cyte loss in a rat model of spontaneous glomerular injury,
but even increased the podocyte number compared with
age-matched untreated animals [97]. These findings are
in contrast to a previous report in which podocyte num-
bers were not affected by treatment with high-dose enal-
april in five-sixths nephrectomized rats [57]. The use of
different animal models is a possible explanation for these
contradictory findings. Given that podocytes are highly
differentiated cells, the finding of increased numbers is
surprising. The authors of that report speculated that the
limited proliferative capacity of podocytes is facilitated by
ACE inhibition, or alternatively that parietal epithelial
cells, which are increased with ACE inhibition, may serve
as progenitor cells for podocytes and migrate from Bow-
man's capsule into the capillary tuft [97].

Finally, in cell cultures, proliferation of glomerular
mesangial and endothelial cells is stimulated by angio-
tensin II [98]. Consistent with these findings, treatment
with high-dose enalapril was associated with diminished
mesangial cell proliferation and normalization of the
number of endothelial cells, both of which are increased
in untreated rats after subtotal nephrectomy [57]. How-
ever, from this study it cannot be concluded whether
these effects can be directly attributed to angiotensin II
inhibition or whether they are secondary responses to
other components, such as decreased blood pressure or
reduced glomerular scarring.

Mechanisms of renal self-repair
Regression of glomerulosclerosis and neoformation of
glomerular tissue has been linked to progenitor cells in
the bone-marrow or inside the kidney [4,99-102]. Bone
marrow cells act as a reservoir for glomerular mesangial
cells in rodents [103], and cross-bone-marrow transplan-
tation from young to old mice allows a partial regression
of structural lesions associated with aging [101]. When
injected after cisplatin injury, bone-marrow mesenchy-
mal stem cells accelerate morphological and functional
repair of the injured nephrons [104]. However, incorpora-
tion of mesenchymal cells into regenerating renal epithe-
lium is a rare event, hence it has been hypothesized that
their regenerative effect is most likely mediated by para-
crine mechanisms related to the production of a broad
array of mediators and growth factors with immunosup-
pressive, anti-inflammatory, antiapoptotic and prolifera-
tive effects [105]. Renal cell precursors also reside inside
the kidney. Renal stem cells expressing the embryonic
markers CD24 and CD133 have been identified in adult
human kidney at the urinary pole of Bowman's capsule.
Of note, the same markers identify common progenitors

of podocytes and tubular cells during renal development
[106]. Accordingly, experimental studies showed the
presence of transitional cells exhibiting a mixed pheno-
type of parietal epithelial cells and podocytes at the vas-
cular pole of the glomerulus [107]. Therefore, CD24+
CD133+ cells might be responsible for regeneration of
both podocytes and tubular structures after injury, at
least in mice [108,109]. In addition, evidence exists that
endothelial and mesangial cells can proliferate in some
circumstances, and that podocytes may even promote
capillary growth by stimulating proliferation and migra-
tion of glomerular endothelial cells [102,110]. Moreover,
it is well known that tubular epithelium has self-regener-
ating capacity after acute kidney injury, upon which dif-
ferentiated tubular cells proliferate and migrate to replace
damaged cells [111].

Stem cells have also been identified in proximal and
distal tubuli and peritubular capillaries, although their
role in and relative effect on kidney regeneration still has
to be defined [112]. Finally, the renal papilla can also be a
niche for kidney stem cells, and these cells were shown to
start proliferating after renal ischemia [113]. Thus, vari-
ous mechanisms have been proposed by which the kidney
is able to repair itself, although the relative importance of
each of these mechanisms remains to be elucidated [114].

Conclusion
Different renal injuries eventually lead to reduced
nephron numbers and increased intraglomerular pres-
sure in the remaining nephrons. This results in increased
urinary protein losses that, through a toxic effect on
tubular cells, promote progressive renal scarring and
function decline. Experimental studies and clinical trials
clearly showed that strict BP control and maximal inhibi-
tion of RAS can reduce proteinuria and the rate of renal
function decline. Notably, these therapies may halt and
even promote regression of renal injury in some patients.
Kidney repair induced by angiotensin II antagonists may
either result from inhibition of the direct effects of angio-
tensin II on podocytes, glomerular permselectivity and
fibrogenesis, or from the intrinsic capability of the kidney
to repair itself once elements sustaining disease progres-
sion, such as hypertension and proteinuria, are con-
trolled. A more in-depth understanding of the
mechanisms by which RAS inhibition may retard or even
reverse renal disease progression may significantly
improve the morbidity and mortality associated with
chronic kidney disease.
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