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Does a mobile laminar airflow screen reduce
bacterial contamination in the operating room?
A numerical study using computational fluid
dynamics technique
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Abstract

Background: Air-borne bacteria in the operating room (OR) may contaminate the surgical wound, either by direct
sedimentation from the air or indirectly, by contaminated sterile instruments. Reduced air contamination can be
achieved with an efficient ventilation system. The current study assesses the additive effect of a mobile laminar
airflow (MLAF) unit on the microbiological air quality in an OR supplied with turbulent-mixing air ventilation.

Methods: A recently designed OR in NKS (Nya Karolinska Sjukhuset, Stockholm, Sweden) was the physical model
for this study. Simulation was made with MLAF units adjacent to the operating table and the instrument tables, in
addition to conventional turbulent-mixing ventilation. The evaluation used numerical calculation by computational
fluid dynamics (CFD). Sedimentation rates (CFU/m2/h) were calculated above the operating table and two instrument
tables, and in the periphery of the OR. Bacterial air contamination (CFU/m3) was simulated above the surgical and
instrument tables with and without the MLAF unit.

Results: The counts of airborne and sedimenting, bacteria-carrying particles downstream of the surgical team
were reduced to an acceptable level for orthopedic/implant surgery when the MLAF units were added to conventional
OR ventilation. No significant differences in mean sedimentation rates were found in the periphery of the OR.

Conclusions: The MLAF screen unit can be a suitable option when the main OR ventilation system is unable to reduce
the level of microbial contamination to an acceptable level for orthopedic implant surgery. However, MLAF effect is
limited to an area within 1 m from the screen. Increasing air velocity from the MLAF above 0.4 m/s does not increase
the impact area.

Keywords: Air-borne bacteria, Colony-forming unit, Operating room, Microbiological air quality, Mobile ultraclean
exponential laminar airflow screen, CFD simulation
Background
Surgical site infections, air-borne transmission and
ventilation
Surgical-site infections (SSIs) are serious and contribute
to higher rates of patient morbidity and mortality, in-
creased hospitalization time, and patient dissatisfaction
[1]. Infections after hip- and knee-prosthetic surgery are
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devastating. Several measures must be taken to reduce
the infection rate [2].
It is well-known that operating room (OR) personnel

are the main source of airborne bacteria as they dissemin-
ate infectious particles into their surrounding environ-
ment. A person releases about 104 skin scales per minute
during walking, 10 percent of which carry bacteria [3].
However, the count of discharged microorganisms varies
widely, even as much as 12-fold, between individuals and
sampling days [4]. The size of the particles carrying micro-
organisms has been reported ranging from 4–60 μm [5,6].
Bacteria suspended in the OR air may contaminate the
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surgical wound, either by direct sedimentation from the
air or indirectly by contaminated surgical instruments [7].
Air contamination can be reduced with an efficient

ventilation system to dilute and evacuate contaminants
from the OR [8], increasing the performance of staff
clothing to prevent bacteria shedding to the air [9], and
restricting the number of people and their activity in the
OR [10,11].
Laminar airflow (LAF) is the most efficient OR ventila-

tion system [8,12]. However, indoor obstacles including
medical lamps, surgical staff, and equipment can easily
affect the unidirectional airflow pattern of a vertical LAF
system [13,14]. Intended colony-forming unit (CFU)
levels (<10 CFU/m3) will not be present, and the desired
SSI-rate decrease cannot be achieved. Installing a LAF
ventilation system might also be difficult in existing ORs
and is costly when constructing new ORs. A mobile
laminar airflow (MLAF) unit could overcome both the
problem with physical obstacles and costs.
A MLAF unit with conventional turbulent-mixing ven-

tilation is a valuable complement to general ventilation
in reducing bacterial load during operations in an OR
[15-19]. The authors conclude that the additional MLAF
screen reduced the number of viable airborne bacteria
and sedimenting, bacteria-carrying particles (BCPs) to
the same level as ultra-clean LAF-ventilation.

Microbiological air-sampling methods
Currently, microbiological air sampling in ORs is per-
formed either by passive air sampling (PAS) with settle
plates or by active air sampling (AAS) with a slit sam-
pler, impaction sampler, or filter sampler [20]. PAS mea-
sures the settlement rate of viable particles on surfaces,
while AAS provides information about the concentration
of viable particles in the air. Both methods require ac-
cess to a bacteriological laboratory and can only be used
in existing ORs. Sadrizadeh et al. provides a more de-
tailed explanation of the mathematical modeling of ac-
tive and air-sampling methods [10].

Computational fluid dynamics
It is important to control air distribution in enclosed spaces
to create and maintain a comfortable, healthy atmosphere
for occupants, especially in sensitive indoor environments
such as ORs. Experimental studies provide direct evidence
of airflow and particle-transport phenomena. However, the
complexity of indoor airflow makes experimental investiga-
tion very difficult and expensive.
With recent advances in computer technology in vari-

ous methods, computational fluid dynamics (CFD) has
become an essential complementary tool to physical ex-
periments. CFD is the science of predicting fluid or gas
flow, which largely reduces the number of required phys-
ical experiments and provide great potential for improving
prediction accuracy of air distribution in enclosed envi-
ronments. This method was successfully applied in simu-
lated OR environments [10,13,21]. The data made it
possible to clarify uncertainties at initial stages of design.
Obtaining precise information can provide an important
foundation on which to base design decisions. It can also
overcome some measurement limitations and extend the
range of research. Generally, the CFD technique has three
main steps.
Pre-processing: This step consists of defining simula-

tion domain and grid generation. The domain in which
flow is to be analyzed requires modeling, generally with
a CAD software package. For the complex geometries,
some degree of simplification may be required to correct
the geometry and make it valid as a CFD model. Por-
tions of the flow-domain boundary coincide with the
surfaces of the body geometry. The spatial geometric
spaces the fluid occupies are modeled so as to provide
input for grid generation. Mesh generation is essential in
the CFD analysis process, which subdivides the domain
into discrete cells, known as grid or mesh. The created
mesh surrounds the object and then extends in all direc-
tions to get the physical properties of the surrounding
fluid; in other words, the OR air in the present study.
The mesh is very fine in areas with large gradients in the
flow field and coarser in regions with relatively little
change.
Boundary condition and solve: Numerical simulation

generally requires input parameters consisted of the de-
sired strategy. The boundary conditions are specified as
the fluid properties and behavior at the boundaries of
the problem, inlet temperature and velocity, and particle
generation rate. The numerical solution is obtained by
an iterative method, which achieves high accuracy using
a large number of repetitions. As the simulation pro-
ceeds, the solution is monitored to determine if a con-
verged solution has been obtained.
Post-processing: This stage involves extracting the de-

sired flow properties (velocity, particle concentration,
temperature) from the computed flow field. This is ac-
complished by means of contour and color plots, vector
plots, and animation for dynamic result.
Result sensitivity should be examined to understand pos-

sible differences in the accuracy of results and with respect
to initial flow conditions and experimental investigation.

Methods
A newly designed NKS (Nya Karolinska Sjukhuset) OR,
which was adopted in the authors’ previous work,
[10,22] was chosen as the physical model for this study.
The OR dimensions are L 8.5 m × W 7.7 m× H 3.2 m.
Figure 1 shows the geometrical configuration.
Ventilating air was introduced through 24 diffusers,

evenly spaced over the ceiling, with a total airflow rate



Figure 1 An isometric view of the OR model.
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of 2500 L/s, yielding a design ventilation rate 47 air
changes per hour (ACH). Outgoing air was extracted
through four exhaust openings placed on the parallel
vertical walls at floor level. Ten surgical staff members
were placed in upright stationary positions, mostly around
the operating table. A MLAF (TOUL-400) screen was
placed at the foot end of the operating table, with the air
flow directed along the table. Two sterile instrument ta-
bles equipped with MLAFs (TOUL-300) were also consid-
ered. Figure 2 shows two MLAF units in an OR, one
placed at the foot of the operating table and the other at
the end of an instrument table. A source strength (mean
value of CFUs emitted from one person per second) of five
CFU/s per individual was considered for each surgical staff
Figure 2 Two MLAF units in an OR. Photo from South Hospital
(Södersjukhuset), Stockholm.
member, in accordance with SIS-TS 2012 [23]. Simulation
was performed under different MLAF centerline velocities
from zero (MLAF unit switched off) to 1.0 m/s.
The authors performed a comprehensive validation of

the flow field between numerical CFD results and mea-
sured data [10]. The relative error between measurement
and simulation was less than 5 percent. However, this
aspect was outside the scope of the present study and
not analyzed here.
In this study, both AAS and PAS approaches were nu-

merically simulated. The simulated AAS method esti-
mated air at a total flow rate of 100 L/min, drawn for
10 min through a slit sampler installed above each table.
Table 1 Mean values of volumetric bacteria-carrying
particles for different centerline velocity of the mobile
laminar screen unit

MLAF screen
velocity

Operating table Instrument
table one

Instrument
table two

CFU/m3 CFU/m3 CFU/m3

(m/s) Mean (min–max) Mean (min–max) Mean (min–max)

off 19.08 (9–32) 18.12 (13–28) 7.66 (5–24)

0.2 9.94 (4–12) 8.36 (3–13) 1.82 (1–4)

0.4 1.21 (1–4) 1.14 (0–5) 0.90 (0–3)

0.6 0.72 (0–3) 0.08 (0–1) 0.08 (0–1)

0.8 0.04 (0–1) 0.06 (0–1) 0.00 (0–0)

1.0 0.00 (0–0) 0.00 (0–0) 0.00 (0–0)

CFD simulation results were based on active air-sampling method.
(CFU: colony-forming unit, MLAF: mobile laminar airflow).



Table 2 Mean values of sedimenting bacteria-carrying particles for different centerline velocities of the MLAF unit

MLAF
screen
velocity

Operating table Instrument table one Instrument table two OR periphery

CFU/m2/h CFU/m2/h CFU/m2/h CFU/m2/h

(m/s) Mean (min–max) Mean (min–max) Mean (min–max) Mean (min–max)

off 180.78 (157–210) 225.80 (155–312) 51.06 (32–63) 382.85 (289–401)

0.2 43.94 (34–55) 96.44 (83–121) 27.86 (23–35) 380.36 (254–421)

0.4 14.02 (11–20) 37.42 (32–65) 19.92 (14–29) 393.69 (298–501)

0.6 15.84 (8–19) 29.54 (21–52) 18.80 (15–24) 390.50 (301–423)

0.8 14.70 (9–14) 22.72 (21–40) 17.44 (13–22) 384.85 (319–419)

1.0 14.60 (8–14) 17.32 (12–38) 14.46 (14–21) 386.07 (329–438)

CFD simulation results were based on the passive air-sampling method. (CFU: colony-forming unit, MLAF: mobile laminar airflow).
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The total number of CFU was then counted, and the
concentration presented as the number of CFU/m3. This
gave a direct quantitative estimate of the number of
CFUs in the sampled air. In the simulated PAS approach,
the total surface area of the tables were exposed to the
OR air during one hour, and results were estimated as
CFU/m2/h. For each case, air sampling was repeated 100
times to achieve statistically reliable results. Sadrizadeh
et al. provide more details of numerical AAS and PAS
calculations [10,22].

Results
Table 1 shows the mean value of volumetric BCP concen-
tration (CFU/m3) as a function of MLAF screen velocity
obtained by CFD simulation of the AAS method. Mean
concentration of BCPs in the air above the operating table
was 19 CFU/m3 with standard OR ventilation. When the
MLAF unit was functioning at a velocity of 0.4 m/s, BCP
concentrations decreased to a mean value of 1 CFU/m3.
The same BCP concentration trend was seen for instru-
ment table one. The number of microorganisms in the air
above instrument table two was lower with standard OR
Instrument Table 1, TOUL 300
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Figure 3 MLAF impact area as a function of screen-unit velocity and
ventilation than for the other tables, due to the local air-
flow pattern and the distance of this table from the surgi-
cal team members. However, when the MLAF unit was
functioning, the concentration of 8 CFU/m3 dropped to a
concentration of 1 CFU/m3.
Table 2 shows the mean value of BCP sedimentation

rate (CFU/m2/h) above the tables and in the OR periph-
ery, with and without a MLAF screen, when simulating
the PAS method. When the main OR ventilation system
functioned without a MLAF screen, the mean values of
BCP sediment distribution on the surface area of the oper-
ating table, and instrument tables one and two, respect-
ively were 180, 225, and 51 CFU/m2/h. When the MLAF
unit was at a velocity of 0.4 m/s, the sedimentation rates
were reduced to values of 14, 37, and 19 CFU/m2/h. There
was no further reduction when the velocity increased from
0.4 m/s to 1.0 m/s. No major difference in BCP sedimen-
tation rate could be observed in the peripheral area of the
OR, with or without MLAF units.
Figure 3 shows the impact area of MLAF units, as a

function of screen velocity and the distance from the
center point of the MLAF screen. The area impact of
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MLAF greatly depends on screen velocity. In this case,
a screen velocity of 0.4 m/s already gave good particle
elimination at a distance of 1 m away from the screen.

Discussion
The results from the CFD simulation show that MLAF
can play a marked role in reducing microbial contamin-
ation of the critical surgical zone. CFU counts showed
obvious declining trends when the MLAF airflow func-
tioned, both when analyzed as CFU/m3 and CFU/m2/h.
Surgeries in which air-borne transmission of microor-
ganisms should be reduced to a minimum (such as hip-
and knee-prosthetic surgery) can be safely performed in
the examined OR with the current number of staff mem-
bers, even if the MLAF screen functions at the minimum
velocity of 0.4 m/s. The desired count of < 10 CFU/m3 for
infection-sensitive surgery was reached at that velocity.
Friberg et al. [15] evaluated the MLAF screen unit and

found that at a distance of 1.4 m–1.6 m away from the
screen, the bacterial count reduction rate was moderate,
at approximately 80 percent. CFU simulation showed
that an increase of MLAF air velocity above 0.4 m/s did
not increase the impact area. Enough washing effect to
remove pathogens before they settle can be obtained at a
distance of about 1 m away from the screen, but not fur-
ther. This shows that optimal positioning of the screen
unit was critical for removal efficiency. It also indicated
a limitation of the usefulness of a MLAF unit.

Conclusion
The MLAF screen unit can be a suitable option when
the main OR ventilation system is unable to reduce the
level of microbial contamination to an acceptable level
for orthopedic implant surgery. However, MLAF effect is
limited to an area within 1 m from the screen. An in-
crease of MALF air velocity above 0.4 m/s does not sig-
nificantly increase the impact area.
It would be valuable to perform the same simulation with

and without MLAF with the staff dressed in a clothing sys-
tem resulting in a source strength of 1.5 CFU/s–2.5 CFU/s
per person [9,24].
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