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Abstract

The idea of renewable and regenerative resources has inspired research for more than a hundred years. Ideally, the
only spent energy will replenish itself, like plant material, sunlight, thermal energy or wind. Biodiesel or ethanol are
examples, since their production relies mainly on plant material. However, it has become apparent that crop
derived biofuels will not be sufficient to satisfy future energy demands. Thus, especially in the last decade a lot of
research has focused on the production of next generation biofuels. A major subject of these investigations has
been the microbial fatty acid biosynthesis with the aim to produce fatty acids or derivatives for substitution of
diesel. As an industrially important organism and with the best studied microbial fatty acid biosynthesis, Escherichia
coli has been chosen as producer in many of these studies and several reviews have been published in the fields of
E. coli fatty acid biosynthesis or biofuels. However, most reviews discuss only one of these topics in detail, despite
the fact, that a profound understanding of the involved enzymes and their regulation is necessary for efficient
genetic engineering of the entire pathway. The first part of this review aims at summarizing the knowledge about
fatty acid biosynthesis of E. coli and its regulation, and it provides the connection towards the production of fatty
acids and related biofuels. The second part gives an overview about the achievements by genetic engineering of
the fatty acid biosynthesis towards the production of next generation biofuels. Finally, the actual importance and
potential of fatty acid-based biofuels will be discussed.
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Introduction
During the recent decades it has become evident that the
world’s fossil fuel reserves are decreasing and will be most
probably depleted rather soon. However, until 2016 the
global demand for crude oil will increase by more than 1
million barrels per day [1], and also for the time after 2018
no dramatic change in energy need is expected. As a result
governments, companies and scientists work on the devel-
opment of sustainable ways to produce energy. Concern-
ing biofuels there are actually two major products of great
commercial importance: ethanol and biodiesel (fatty acid
alkyl ester, FAAE), which currently account for roughly
90% of the biofuel market [2,3].
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The main producers of bioethanol are the USA and
especially Brazil, where the gasoline must be blended
with at least 25% ethanol [4,5]. The production of etha-
nol is based on fermentation of Saccharomyces cerevisiae
and the most often used substrates are carbohydrates
obtained from sugarcane, corn, wheat, sugar beet and
some other plants [6]. In comparison to petrol, bioetha-
nol and bioethanol blends have a higher cetane number,
but a roughly 30% lower energy density [7]. Another
problem is the hygroscopicity of ethanol, which makes
storage and transportation challenging [8]. In theory,
bioethanol can be carbon-neutral as plant material is
used for its production. But due to the kind of fermenta-
tion process, forest clearance, intensive use of fertilizers
and the energy consumption during distillation, the
overall emissions of CO2 exceed its consumption. In
addition, other pollutants such as mono-nitrogen oxides
(NOx) or carbon monoxide (CO) are produced, which
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result in an environmental impact that might even be
worse than from the use of fossil fuels [9,10].
Biodiesel is produced by the transesterification of

mostly plant-derived triacylglycerols (TAG), yielding gly-
cerol and FAAEs. Methanol is being used as alcohol
moiety, due to its low price [11]. In contrast to ethanol,
biodiesel has very similar properties to petrol and can
therefore be used in the same engines and distributed
through the same infrastructure. Like ethanol, it has
some environmentally friendly aspects because it is de-
gradable, its biosynthesis consumes carbon dioxide (CO2),
and it has low sulfur content when compared to crude
oils. However, most studies conclude that the overall en-
vironmental impact of biodiesel is also negative [12], due
to the use of fertilizers for growing the oil plants and the
transesterification process, which is energy consuming
and relies on the use of toxic methanol [11].
Another drawback of currently used biofuels is that to

date all economically feasible processes are based on the
utilization of cereal crops (for example, wheat, and maize),
oil crops (for example rape, palm oil and soya) or sugar
crops (for example, sugar beet and sugar cane) [6,13]. In
the last years this has led to intensive political debate con-
cerning the social and environmental consequences of the
use of food and agricultural land for biofuel production
[9,14-16]. Owing to these drawbacks one speaks of first-
generation biofuels in contrast to second-generation
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Figure 1 Overview of the production of first- and second-generation
biofuels (Figure 1) which rely on the use of lignocellu-
lose or other feedstocks that do not directly compete with
food, and reduce the need for agricultural land [13].
As an alternative to the use of plant-derived TAGs, the

microbial production of free fatty acids (FFA) or FFA-
derived biofuels offers a great potential due to short pro-
duction times and very low land-use. To reduce the
competition with food, the use of cellulose, lignin, hemi-
cellulose, CO2 or other non-food carbon sources needs
further optimization, although many strategies have already
been established [17-19] and their suitability for biofuel
production has been shown [20-23]. Furthermore, direct
microbial production of FAAE has also been published,
which makes the subsequent transesterification unneces-
sary and thus saves energy costs and reduces the use of
methanol [24-26]. Some recent investigations lead to the
production of fatty acid-derived alkanes, alcohols, methylk-
etones or 3-hydroxyalkanoates. All mentioned compounds
are suitable as diesel replacement. The production of TAG
in Escherichia coli (E. coli) may in future become an alter-
native for TAG production by native producers (like species
of the genera Rhodococcus, Mycobacterium or Streptomy-
ces) that mostly exhibit a rather slow growth rate and are
not as easy to genetically modify as E. coli.
To date, promising results for microbial production of

free fatty acids and derived products have been obtained
mainly by metabolic engineering, but for the production
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of large amounts of cheap biofuels much effort still
needs to be undertaken. For this a detailed knowledge
about the participating enzymes and their regulation is
crucial. The objective of this review is to focus on the
biosynthesis of fatty acids in the fast growing and indus-
trially important microorganism E. coli. Especially, we
will sum up possibilities to genetically modify this bac-
terium towards an overproduction of fatty acids or fatty
acid-derived biofuels.

Fatty acid biosynthesis
Synthesis of fatty acids is one of the most ubiquitous
pathways in organisms. In eukaryotic and prokaryotic
cells fatty acids are precursors for a variety of important
building blocks such as phospholipids, sphingolipids,
sterols, as secondary metabolites and signaling mole-
cules, or they are attached to proteins. By changing the
grade of saturation of the phospholipids in cellular
membranes, their fluidity can be altered, which makes
an adaption to temperature changes possible. Because
the degradation of fatty acids yields a high amount of
ATP and reducing equivalents, they also represent a
suitable storage compound for energy and carbon. Espe-
cially in multicellular organisms, but also in unicellular
eukaryotes and prokaryotes, fatty acids are stored as
TAG or wax esters, whereas the storage of hydroxyfatty
acids as polyhydroxyalkanoates is limited to bacterial
species. In Archaea, fatty acids play a minor role, owing
to their differing membrane, which mainly consists of
fatty alcohol-glycerol diethers instead of fatty acid-
glycerol diesters. Nevertheless, fatty acid biosynthesis is
also performed by Archaea, and the products can be
used to acylate membrane proteins [27,28].
Despite the early development of fatty acid biosyn-

thesis during evolution of life but due to its importance,
the pathway is highly conserved within the kingdoms of
life. At the first step, malonyl-CoA is formed by carb-
oxylation of acetyl-CoA with hydrogencarbonate, by the
expense of ATP. Coenzyme A is then exchanged by the
acyl carrier protein (ACP) resulting in malonyl-ACP.
The ACP prevents the growing fatty acid chain from
degradation and from being used for anabolic reactions.
With malonyl-ACP, the first turn of the fatty acid bio-
synthesis cycle starts by an initial condensation of
malonyl-ACP with acetyl-CoA, yielding hydrogencar-
bonate, free coenzyme A and acetoacetyl-ACP. The latter
is then reduced to 3-hydroxybutyryl-ACP, dehydrated to
2-butenoyl-ACP and further reduced to butyryl-ACP.
Butyryl-ACP enters the next turn of the cycle again by a
condensation with malonyl-ACP. Fatty acid synthesis
stops when a certain chain length is reached, and the
acyl-ACP is used for membrane synthesis. As both reduc-
tion steps require two reduction equivalents, derived from
nicotinamide adenine dinucleotide (NADPH), the following
equation for the elongation of a fatty acid by a two-carbon
unit applies:

CnH2n−1O2−ACPþ C3O3H3−ACPþ ATP
þ 2NAD Pð ÞHþ 2Hþ

→Cnþ2H2nþ3O2−ACPþHCO3
– þ ADPþ Pi

þ 2NAD Pð Þþ

Despite high similarities in the general pathway, differ-
ent enzymes and different genetic organizations have
evolved. In animals and fungi, the type-I fatty acid syn-
thase caries out all steps of fatty acid biosynthesis as one
multifunctional protein complex. This type is further di-
vided into the fungal typeIa, in which the fatty acid syn-
thase is encoded by two genes and is assembled to a
α6β6 heterododecamer of about 2.6 MDa. Fatty acid syn-
thase typeIb is found in animals. Here, all required
proteins are encoded by a single gene, and the trans-
lated peptide chains form an α2 homodimer of about
540 kDa [29,30].
Type-II fatty acid synthase is predominant in prokary-

otes as well as in the plastids of plants, in which de novo
synthesis of plant fatty acids takes place [31-34]. An ex-
ception are Gram-positive, mycolic acid-producing bac-
teria, which contain a type-I fatty acid synthase as one
polypeptide chain [35-37] and additionally a type-II fatty
acid synthase, which is only involved in the elongation
of fatty acids with medium chain length but cannot start
de novo fatty acid biosynthesis [38,39]. The main differ-
ence of FAS type-II is that it consists of a set of enzymes
that are not organized as one single gene or operon. In
any case, in many bacteria such as E. coli, a number of
the genes are organized in the fab cluster. The bacterial
acetyl-CoA carboxylase represents an example for a bac-
terial enzyme complex that is involved in fatty acid
biosynthesis.
Studies of the fatty acid synthase of Archaea are rare,

because the de novo synthesis of fatty acids seems not to
be comparably important as in other organisms. The use
of fatty acids as anchor molecules for membrane pro-
teins has been proven [28], and additionally they have
been found as parts of phospholipids [40] and as free
fatty acids [41,42]. Due to similarities with the bacterial
fatty acid profile [43,44] and within the inhibition pat-
tern at high salt-concentration of archaeal and bacterial
FAS, as well as in the isolation procedure, it has been
suggested that Archaea contain a type-II FAS [45].

The E. coli type-II FAS enzymes
This section deals with the set of enzymes that perform
the fatty acid biosynthesis of E. coli. Transcriptional and
biochemical regulation is emphasized, and studies con-
cerning overexpression or deletion of the respective
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genes are discussed with special interest in the impact
on overproduction of fatty acids. The enzymes and regu-
lation of the membrane synthesis and fatty acid degrad-
ation are also of great interest, as they represent the
main competing pathways with a FFA overproduction.
An overview of the involved pathways is shown in
Figure 2.

AccABCD: acetyl-CoA carboxylase
Acetyl-CoA carboxylase represents the starting enzyme
and directs acetyl-CoA towards de-novo fatty acid bio-
synthesis and chain elongation. In E. coli, the four sub-
units form a very unstable complex that could be
purified as two subcomplexes: 1) the biotin carboxylase-
biotin carboxyl carrier protein (BC-BCCP), which is a
homodimer of AccC (biotin carboxylase), interacting
with four molecules of AccB (biotin carboxyl carrier
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protein) [46], and 2) the carboxyl transferase, which is a
heterotetramer, consisting of two subunits of AccA and
two subunits of AccD [47]. The reaction can be divided
into two half-reactions with (i) the carboxylation of bio-
tin, by the expense of ATP and with Mg2+-ions as cofac-
tor and (ii) the subsequent transfer of the carboxyl
group to acetyl-CoA, yielding malonyl-CoA [47].
Transcription of accABCD is strictly coordinated and

regulated, as the subunits have to be synthesized in equi-
molar amounts. In addition, the carboxylation of acetyl-
CoA is driven by cleavage of ATP and thus consumes
energy. The genes accB and accC build one mRNA,
which serves as a template for the translation of both
AccB and AccC [48]. Their transcription, which posi-
tively correlates with the growth rate, is further autore-
gulated by the N-terminal domain of AccB [49,50].
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and accC, whereas in an accB-deletion mutant the tran-
scription of the accBC operon is not altered [50]. Add-
itionally, the excess of AccB deregulates the biotin
synthetic operon and thus, the cells are stressed due to
the strong biotin-synthesis [51,52]. Enhanced production
of AccC also affects the biotin operon, as AccC forms
complexes with AccB, which is more efficiently biotinyl-
ated in its unbound form. If AccC is more abundant, al-
most no biotin is attached to AccB, and transcription of
the biotin operon is shut down by BirA, which has a
dual function as biotin protein ligase and as repressor
for the bio-operon [51]. The resulting reduction of fatty
acid biosynthesis by AccB or AccC overexpression how-
ever, is not seen in a strain with overexpression of both
proteins in equimolar amounts [53].
In contrast to accB and accC, the genes coding for the

carboxyl transferase are not part of an operon, and no
transcriptional regulation has been found by sequence
analysis [49]. Instead, the translation of the respective
mRNAs is controlled by the β-subunit (AccD) of the
mature carboxyl transferase [54]. This subunit forms a
zinc-finger motif, which binds to accA and accD mRNA,
but is also required for the catalytic activity [55]. Since
the binding of mRNA is preferred in comparison to the
binding of acetyl-CoA, high levels of acetyl-CoA (as in
growing cells) are required to resolve the complex of
carboxyl transferase and its mRNA and thus, to promote
both, synthesis of malonyl-CoA and translation of
AccA and AccD [54]. As the zinc-finger motif is found
in E. coli and Staphylococcus aureus AccD [56], as well
as in the chloroplast-encoded β-subunit of the carbox-
yltransferase of pea, tobacco, rice, liverwort [57,58]
and wheat but not in type-I fatty acid synthase, this
leads to the assumption that this type of regulation
might be common in type-II fatty acid synthases [56].
For the E. coli acetyl-CoA carboxylase it has been

shown that the enzyme activity is inhibited by acyl-ACP
with chain lengths of C6 to C20. Thus, an accumulation
of fatty acids that are not used for membrane lipid syn-
thesis is prevented [59].
Overexpression of different combinations of the four

subunits of the acetyl-CoA carboxylase in equimolar
amounts has been extensively studied by Davis et al.
[60]. The normally very weak enzyme activity in cellular
crude extracts could be enhanced 50-fold. Interestingly
the overexpression of accBCD led to an 11-times en-
hanced activity, whereas all tested combinations of one
or two subunits did not result in enhanced activity.
Comparing this with the more recent results for the
translational regulation of AccA and AccD [54], it seems
reasonable that a higher copy-number of the mRNA of
AccA or AccD, or both, lead to an overall higher level of
translation of accA and accD mRNA. Translation will be
higher than in the wild-type until equilibrium between
the copy number of AccAD and the respective mRNAs
is reached.
However, overproduction of AccABCD was found to

result only in enhanced production of free fatty acids if a
cytosolic form of thioesterase I (‘tesA) was coexpressed
and thus a metabolic sink for fatty acids was provided.
Nearly the same amount of free fatty acids was achieved
upon coexpression of accBCD and ‘tesA, and the expres-
sion of ‘tesA alone still resulted in high amounts of free
fatty acids. Additional coexpression of birA, to attach
the biotin cofactor to AccB, did not enhance the enzyme
activity significantly; therefore, biotin availability should
not be a limiting factor [60]. In the study of Zha et al.
[61], the level of malonyl-CoA in E. coli was increased
15-fold. They overexpressed the acetyl-CoA carboxylase,
and additionally improved acetate assimilation and de-
leted the formation of ethanol and acetate.
FabD: malonyl-CoA:ACP transacylase
Malonyl-CoA:ACP transacylase catalyzes the transfer of
the malonyl-moiety to ACP, which directs it towards
fatty acid neogenesis and fatty acid chain elongation.
Kinetic studies have shown that the E. coli FabD cannot
use acetyl-CoA as substrate but the latter shows a weak
competitive inhibition of the reaction. Also the binding
of ACP is inhibited by high CoA-SH concentrations. It
was further shown that in presence of equal concentra-
tions of substrates and products the formation of
malonyl-CoA is favored over the production of malonyl-
ACP [62].
Deletion of fabD has been shown to be lethal [63,64],

and overexpression of fabD in E. coli leads to a slightly
altered fatty acid composition. The proportion of palmi-
toleic acid was shown to decrease, whereas the propor-
tion of cis-vaccenic acid increases [65]. The authors
suggest that the different composition is caused by an
enhanced malonyl-ACP pool and thus, enhanced activity
of the 3-ketoacyl-ACP synthase II (FabF), which is the
enzyme responsible for chain elongation of C16:1 to
C18:1 [66]. Overexpression of the E. coli fabD, together
with ‘tesA, increases the amount of free fatty acids by
about 11% when compared to overexpression of the
thioesterase gene alone [67]. The fabD gene is tran-
scribed as part of the fab-cluster, which is described in
more detail in the regulation section.
FabB, FabF and FabH: 3-ketoacyl-ACP synthase I, II and III
The 3-ketoacyl-ACP synthase catalyzes the formation of
3-ketoacyl-ACP by condensation of fatty acyl-ACP with
malonyl-ACP. In the case of FabH, the substrates are
malonyl-ACP and acetyl-CoA, initiating the first cycle of
chain elongation during fatty acid biosynthesis. Subse-
quent elongation steps are performed by FabF and FabB.
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The activity of FabH with propionyl-CoA is as good as
with acetyl-CoA, leading to the formation of fatty acids
with an uneven number of carbon atoms. The activity
with butyryl-CoA is much lower, and hexanoyl-CoA is
no natural substrate of FabH [68]. The E. coli FabH ex-
hibits no activity with branched-chain acyl-CoA esters,
but heterologous expression of the Bacillus subtilis fabH
gene leads to the formation of branched-chain fatty
acids in E. coli [69].
The activities of FabF and FabB differ only in the ca-

talysis of some reactions. Both show activity with C6 to
C14 saturated fatty acyl-ACP esters; however, C14:0 is a
weak substrate of both enzymes and only FabF exhibits
low activity with C16:0 [70]. However, the condensation
reaction with butyryl-ACP was not tested [70], but as ac-
tivity of both enzymes with acetyl-ACP was found [71] it
seems likely that butyryl-ACP is also a suitable substrate.
In the synthesis of unsaturated fatty acids, FabB catalyzes

the condensation of cis-3-decenoyl-ACP (formed by the
FabA catalyzed reaction, see the section about FabA and
FabZ), cis-5-dodecenoyl-ACP and cis-7-tetradecenoyl-ACP
each with malonyl-ACP [72]. Only the last elongation step
that leads to the formation of vaccenic acid is catalyzed by
FabF [70].
Deletion of the fabH gene has been thought to be le-

thal [73]. However, a recent study has shown that this is
only true in a mutant strain that is also SpoT1-negative
[74] and only a significant reduction in growth rate and
cell size upon fabH deletion was reported. Thus, the ac-
tivity of FabH can only partly be substituted by other en-
zymes. Regarding the fatty acid profile, deletion of fabH
leads to enhanced production of C18 species, whereas
the amount of C16 species is reduced [74]. Overexpres-
sion of fabH leads to the opposite effect - at the expense
of C18:1, C14 and C16 fatty acids are more abundant
than in wild-type cells [75].
Deletion of fabF leads to a temperature-sensitive mu-

tant, because the elongation of C14:1 to C16:1 is per-
formed mainly by FabF [66]. Overexpression has been
shown to be lethal and a strong increase of malonyl-
CoA intermediates has been observed [76]. The lethal
effect could partly be resolved by coexpression of fabD,
and thus, it has been proposed that FabD (which
catalyzes the transacylation of malonyl-CoA to malonyl-
ACP) forms complexes with FabF or FabH and eventu-
ally also with FabB. Overexpression of fabF would leave
substantially no free FabD proteins and thus the FabD-
FabH complex would not be formed. This could hinder the
correct FabH activity and block the synthesis of new fatty
acids. Malonyl-ACP would easily be converted to malonyl-
CoA, which accumulates, as has been shown [76].
Deletion of fabB in E. coli leads to auxotrophy for un-

saturated fatty acids [77]. Overexpression is only suitable
to enhance the unsaturated fatty acid proportion if fabA
is also overexpressed [78]. However, a significant in-
crease in total fatty acid content is not achieved by fabA
and fabB overexpression and also the co-production of
‘TesA increases the total fatty acid content only by
50% [78].
The enzyme FabH catalyzes the first condensation re-

action and its activity is inhibited by high levels of long-
chain acyl-ACP esters [79], which accumulate when the
rate of membrane synthesis slows down. Furthermore,
the accumulation of long-chain acyl-ACP esters redirects
the activities of FabF and FabB towards the formation of
acetyl-ACP on the expense of malonyl-ACP. Transesteri-
fication of acetyl-ACP to acetyl-CoA is catalyzed by
FabH, when the enzyme is bound to long-chain acyl-
ACP [80]. As fabF and fabH are cotranscribed with the
E. coli fab-cluster, their transcriptional regulation will be
discussed in Section ‘Promoters of the fab-operon’.
Transcription of fabB is modulated by the repressors
FadR and FabR (detailed in ‘Transcriptional regulation
by FadR and FabR’).

FabG: 3-ketoacyl-ACP reductase
Following the condensation reaction, the resulting
3-ketoacyl-ACP is reduced to 3-hydroxyacyl-ACP at
the concomittant expense of NADPH and H+. This re-
versible reaction is catalyzed by FabG. FabG of E. coli was
first purified and analyzed by Toomey and Wakil [81],
who found that it is active over a wide range of different
3-ketoacyl-ACPs. Activity with acetoacetyl-CoA has also
been demonstrated, although the rate of reduction was
only 2% of the rate with the corresponding ACP ester.
NADH is not used as a coenzyme [81]. Also 3-ketoacyl-
CoA with longer chains are suitable substrates [82];
thereby, the FabG protein is also involved in the engi-
neered biosynthesis of polyhydroxyalkanoates consisting
of medium chain-length constituents [82-84]. In E. coli
the FabG activity in fatty acid biosynthesis cannot be
substituted by any other enzyme [64,85]. Homologous ex-
pression of fabG in E. coli increases the content of C16:0
and C18:0 acids by two and three times [86]. The tran-
scriptional regulation of fabG is discussed in Section
‘Promoters of the fab-operon’.

FabA and FabZ: 3-hydroxyacyl-ACP dehydrase
The enzymes encoded by fabZ and fabA in E. coli per-
form the dehydration of 3-hydroxyacyl-ACP. Moreover,
FabA subsequently isomerizes trans-2-decenoyl-ACP into
cis-3-decenoyl-ACP [87], which is the first reaction to-
wards the synthesis of unsaturated fatty acids. Under
physiological conditions, these reactions can be catalyzed
in both directions depending on the substrate and product
concentrations.
In earlier studies FabA was thought to only act in the

synthesis of unsaturated fatty acids, because a defect in
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fabA led to auxotrophy of unsaturated fatty acids [88-90].
However, further investigations showed that fabA overex-
pression increases the amount of saturated fatty acids [91]
and that FabA also catalyzes the dehydration of saturated
3-hydroxyacyl-ACPs with different chain lengths [92]. The
explanation for the saturated fatty acid accumulation in a
FabA-overproducing strain is, that cis-3-decenoyl-ACP is
not further reduced to decenoyl-ACP at an appropriate
rate and thus, reacts in the reversible reaction and re-
enters the cycle for the synthesis of saturated fatty
acids [91]. Only a strain that co-overexpresses fabA
and fabB will produce an enhanced proportion of
unsaturated fatty acids [78]. FabA can also dehydrate
3-hydroxydecanoyl-CoA with an activity of 11% in
comparison to 3-hydroxydecanoyl-ACP [93].
The second enzyme of E. coli that catalyzes the dehy-

dration of 3-hydroxyacyl-ACP intermediates was de-
tected in 1994 [94] and was designated as FabZ. It was
found that the dehydration of 3-hydroxymyristoyl-ACP
is mainly performed by FabZ, and thus it was sug-
gested that disruption of fabZ leads to an enhanced
pool of 3-hydroxymyristoyl-ACP [79,94]. Besides this
reaction, FabZ exhibits activity for all 3-hydroxyacyl-
ACP with shorter chain-length [79]. Homologous over-
expression of fabZ results in an about 2-fold increase
in palmitic acid and stearic acid levels [86]. In E. coli,
fabZ is part of the lipid A cluster, whereas fabA is not
transcribed together with other fatty acid or lipid-
metabolism genes. However, fabA is under control of
the regulators FadR and FabR (detailed in ‘Transcrip-
tional regulation by FadR and FabR’).

FabI: enoyl-ACP reductase
In E. coli there is a single enoyl-ACP reductase that per-
forms the last step in each fatty acid biosynthesis cycle,
which makes the gene essential if no external fatty acids
are fed [95,96]. The enzyme, which is encoded by fabI
[97], catalyzes the reduction of 2-enoyl-ACP to fatty acyl-
ACP at the expense of NADPH+H+ or NADH+H+.
As the two preceding steps in fatty acid biosynthesis

are reversible under physiological conditions, FabI plays
a determinant role in completing each elongation cycle
[98]. This important role makes the enzyme a suitable
candidate for posttranslational regulation. The enzyme is
severely inhibited by low concentrations of palmitoyl-
CoA (with a Ki of 3.3 μM in an NADH-dependent en-
zyme assay and 1.6 μM with NADPH), presumably to
prevent the energy-expensive biosynthesis of fatty acids,
when they are already available [95]. The enoyl-ACP re-
ductase is also inhibited by its product palmitoyl-ACP,
but at about 50 times higher concentrations [79,98]. The
fabI gene in E. coli is not part of any cluster that con-
cerns lipid synthesis. Overexpression of the fabI gene
does not result in any growth defect [99] but also does
not increase the cellular lipid, palmitic acid or stearic
acid content [86].

ACP, ACP synthase and ACP phosphodiesterase
The acyl carrier protein is encoded by acpP, which in
E. coli is part of the fab-cluster. To get the physiologic-
ally active form, a phosphopantethein group is at-
tached to a serine of the translated apo-ACP by the
action of the ACP synthase (AcpS). In E. coli an ACP
phosphodiesterase also exists (AcpH) that cleaves the
phosphopantethein residue of [100,101]. The physio-
logical role of ACP is to differentiate fatty acid biosyn-
thesis where all intermediates are bound to ACP from
fatty acid catabolism, where all intermediates are CoA
esters. In E. coli, ACP represents 0.25% of all soluble
proteins [102] and thus, belongs to the most abundant
proteins. Its absolute requirement has been demon-
strated by Goh et al. [103], who stopped cell growth by
inducible gene-silencing of acpP.
Overexpression of acpS leads to cessation of cellular

growth [104], which is due to strong inhibition of the
glycerol-3-phosphate acyltransferase [104,105]. This ef-
fect can be slightly resolved by coexpression of acpH,
because apo-ACP is a stronger inhibitor than holo-ACP.
However, the inhibition of fatty acid biosynthesis has
additionally been shown in vitro by the supplementation
of holo- or apo-ACP to cell-free extracts of a FFA-
producing E. coli strain [106]. Coproduction of ‘TesA
and apo-ACP stops cell growth completely and leads to
5-fold stronger formation of free fatty acids compared to
the expression solely of ‘tesA [104]. Also the heterol-
ogous expression of acpP offers some potential, as it has
been shown that the expression of acpP from Azospiril-
lum brasilense alters the E. coli fatty acid profile and the
content of C18:1 is increased 2-fold at 30°C [107].
A recent study of Battesti and Bouveret [108] has shown

evidence for an interaction between ACP and SpoT, a pro-
tein that can synthesize or degrade the signal molecule (p)
ppGpp (guanosine 5-triphosphate, 3-diphosphate). They
suggested a model in which SpoT senses the functionality
of the fatty acid biosynthesis and the consumption of
acyl-ACP, by the interaction with ACP and mediates
the stringent response if fatty acid biosynthesis is im-
paired. Additionally, they showed that SpoT cannot inter-
act with apo-ACP [108].

Membrane synthesis
In bacteria two systems exist for the formation of 1-acyl-
glycerol-3-phosphate; the genes for both are present in
E. coli [109]. The end product of fatty acid biosynthesis,
acyl-ACP, can be activated with an inorganic phosphate
group by the action of PlsX, leading to acyl-phosphate,
which is subsequently added to glycerol-3-phosphate by
the action of PlsY. Alternatively the fatty acid moiety of
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acyl-ACP can directly be condensed with glycerol-3-
phosphate by PlsB. The following steps to synthesize
diacylglycerol-3-phosphate and cytosine diphosphate
diacylglycerol are performed by PlsC and CdsA. The
latter intermediate is then used for the formation of
phosphatidylethanolamine, phosphatidylglycerol, cardi-
olipin or other membrane lipids [110,111].
PlsB of E. coli is active with both acyl-CoA and acyl-

ACP with similar affinity. The Km values for palmitoyl-
CoA and palmitoyl-ACP have been determined to be 50
μM and 70 μM [112]. Elevated (p)ppGpp levels, as in
the stringent response, seriously reduce the in vivo activ-
ity of PlsB, whereas the in vitro activity is not altered.
Accordingly posttranslational inhibition of PlsB by (p)
ppGpp has been suggested [113]. As a result, the intra-
cellular level of acyl-ACP increases, which inhibits the
fatty acid biosynthesis at several points [79] (see Section
‘Regulation by the stringent response’). Contrary to the
data from Heath and coworkers [113], the inhibition of
PlsB by (p)ppGpp has been shown in vitro by Ray and
Cronan [112] with the substrate palmitoyl-CoA. The re-
action with palmitoyl-ACP was not affected under the
conditions of the enzyme test. Overexpression of the
plsB gene resolves the inhibition of PlsB by (p)ppGpp
and thus, the fatty acid biosynthesis remains active,
which leads to the formation of longer cells because the
cell division is still affected [113].
Transcription of plsB has been found to be antagonis-

tic to transcription of the gene for diacylglycerol kinase
(dgkA) [114], so that the cell can react to different
stresses with either the biosynthesis of new membrane
lipids or the modification of the headgroups via degrad-
ation to diacylglycerol, phosphorylation and addition
of an alternative headgroup. Transcription of plsB is
inhibited in response to high levels of BasR [114], a
regulator protein that mediates iron or zinc stress
[115]. If E. coli is in an environment that leads to deg-
radation of the lipopolysaccharides or otherwise stresses
the cell envelope, the σE regulon is activated, which
leads to induction of plsB transcription [114]. During
the multiple changes in the transcriptome that are
mediated by the stringent response (due to amino-
acid starvation) the plsB transcription is downregu-
lated [116].
Despite the existence of both systems, PlsX and PlsY

or PlsB cannot substitute for a complete loss of the
other system in E. coli [117]. However, no significant in-
crease in glycerol-3-phosphate acyltransferase activity
has been found upon overexpression of plsX and plsY
[118]. Transcription of plsX and plsB are both inhibited
during the stringent response [116,119]. Thus, it was
suggested that PlsX and PlsY determine the concentra-
tion of acyl-phosphate, which might have a further regu-
latory function [117].
Fatty acid degradation
To metabolize fatty acids, they must be activated to acyl-
CoA esters. If fatty acids are the exogenous carbon source,
they bind to the transporter protein FadL. By a conform-
ational change, a pore is opened and the diffusion of fatty
acids into the periplasm is enabled [120]. Disruption of
fadL impaires growth on oleate [121]. Transport from the
periplasm to the cytosol is performed by FadD and is
coupled to the acyl-CoA ester formation at the expense of
ATP [122]. As has been shown recently, FadD also uses
free fatty acids that are cleaved from membrane lipids and
the formed acyl-CoA is consumed via the β-oxidation
pathway. Consequently, a fadD-disruption mutant accu-
mulates free fatty acids in the cytosol [123] and apart from
this, is unable to grow on oleate as a sole carbon source
[121]. Homologous overexpression of fadD enables E. coli
strains to grow on fatty acids with medium chain-length
and enhances the transcription of the fadE and fadBA
genes [124]. The affinity of FadD for medium chain-length
fatty acids can be enhanced by directed mutagenesis [125].
The degradation of acyl-CoA compounds proceeds in

a cycle that reverses the steps of the fatty acid biosyn-
thesis, resulting in the release of one unit of acetyl-CoA
in each cycle. FadE catalyzes the oxidation of acyl-CoA
to enoyl-CoA with a concomitant reduction of FAD to
FADH2. Disruption of fadE disables the ability of E. coli
to grow on dodecanoate or oleic acid as the sole carbon
source [121]. The enzyme FadB performs the hydration
of enoyl-CoA to 3-hydroxyacyl-CoA and further oxi-
dizes this intermediate to 3-ketoacyl-CoA [126]. The
β-ketothiolase FadA catalyzes the last step in the cycle
in which acetyl-CoA and an acyl-CoA (reduced by two
carbon atoms) are formed [127]. The final cleavage of
acetoacetyl-CoA is performed by YquF [127,128]. The
catabolism of unsaturated fatty acids additionally in-
volves the proteins FadH (2,4-dienoyl-CoA reductase)
[129] and probably also FadM (thioesterase III) [130].
However, the exact role of FadM is still not clear, as its
transcription is quite strong during growth on glucose.
This suggests that the protein function is not limited
to fatty acid degradation [131].
In anaerobic growth on fatty acids E. coli possesses some

alternative proteins, namely YfcYX (homologs of FadBA)
and YdiD (FadD homolog). An alternative FadE protein
(YdiO) is also suggested. These two sets of proteins are
not completely selective for aerobic or anaerobic condi-
tions, for example, YfcYX can partially compensate for a
loss of FadB and FadA [132-134]. In the anaerobic fatty
acid degradation pathway, nitrate is used as the final elec-
tron acceptor. Repression of the transcription of the genes
for the aerobic cycle is mediated by the ArcA/ArcB two-
component system [135]. For more detailed information
about the bacterial β-oxidation, the reader is referred to
recent review articles [136,137].
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All genes of the aerobic fatty acid degradation cycle
are under transcriptional control of the repressor protein
FadR (for details see Section ‘Transcriptional regulation
by FadR and FabR’), which releases the DNA upon bind-
ing of long-chain acyl-CoA, and thus enables transcrip-
tion of the β-oxidation genes [138,139]. Furthermore,
the fatty acid degradation cycle is under positive control
by the cyclic adenosine-monophosphate (cAMP) recep-
tor protein-cAMP complex (CRP-cAMP), so that at least
fadL, fadD and fadH are upregulated when glucose is
limited [140]. In addition, the upregulation of several
genes of the β-oxidation involves the sigma factor σS

(RpoS) [141], as detailed in Section ‘Regulation by the
stringent response’.
As discussed in the Section about free fatty acid pro-

duction, fadL, fadD or fadE have been deleted to prevent
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product uptake or utilization in fatty acid or related
biofuel-producing strains [26,142,143]. All of them have
been shown to increase the yields of the desired product,
at least in some of the studies.

Regulation in E. coli
In E. coli several genes for fatty acid biosynthesis or deg-
radation are controlled at the transcriptional level. The
main transcription factors are the proteins FabR and
FadR, but also other regulators, notably the signal mol-
ecule (p)ppGpp are involved (Figure 3).

Transcriptional regulation by FadR and FabR
The regulator FadR represses the transcription of all
genes that code for proteins of the β-oxidation cycle
[136,140] and via activation of the repressor protein IclR,
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also of the glyoxylate shunt [144,145]. FadR repression is
due to binding to the promotor sites, which is released
by interaction with long-chain acyl-CoA esters that ac-
cumulate only if external fatty acids are taken up or if phos-
pholipids from the membrane are degraded [138,139,146].
Since the uptake of fatty acids is mediated by FadL and
FadD, the corresponding genes are only partially repressed
by FadR [140] and additionally activated by CRP-cAMP,
under glucose limiting conditions. In the presence of glu-
cose, transcription of the fad-genes occurs only at a low
level, even when fatty acids are also available [147]. Besides
the negative control of the fad-regulon, FadR also acts as a
positive regulator for the transcription of fabA, fabB and the
operon fabHDG [138,139,148,149], and thus, is the activator
for the formation of both unsaturated and saturated fatty
acids.
In a mutant strain of E. coli that synthesizes no func-

tional FadR, all fad-genes are derepressed in addition to
the activation under glucose limiting conditions. The
resulting phenotype is such that the strain can grow on
fatty acids with medium chain-length, whereas the wild-
type can use them only if long-chain fatty acids are also
present and sequester FadR [150]. Due to the lacking in-
duction of the transcription of fabA and fabB, a fadR
mutant strain has a roughly 30% lower concentration of
unsaturated fatty acids [140,151]. On the contrary, the
homologous expression of fadR in a fatty acid-producing
strain of E. coli can increase the yield of saturated and
unsaturated fatty acids significantly [152].
In the study of Farewell et al. [153] a FadR mutant was

investigated that cannot be derepressed by long-chain
fatty acids. Probably owing to the impairment of unsat-
urated fatty acid synthesis, this mutant exhibited a low
survival rate during long-time cultivations.
Besides their regulation by FadR, fabA and fabB are

further under control of the fatty acid biosynthesis regu-
lator FabR [154,155]. More recently it has been shown
that FabR senses the composition of the cytosolic fatty
acid pool. In complex with unsaturated fatty acyl-ACP
the binding and thus, the repression of fabA and fabB is
strengthened, whereas the binding is weakened when
FabR is bound to saturated fatty acyl-ACP [156]. Ac-
cording to the study of Feng and Cronan [157], FabR is
the main regulator for fabB, whereas the transcription of
fabA is more strongly influenced by the action of FadR.

Promoters of the fab-operon
Many of the genes coding for enzymes of fatty acid bio-
synthesis in E. coli are organized in a cluster and under
control of different promoters. This so called fab-cluster
comprises the genes plsX, fabH, fabD, fabG, acpP and
fabF. PlsX is the first gene of this cluster; however, its own
promoter is rather weak so that about 60% of all tran-
scripts containing plsX-mRNA result from promoters
located further upstream [64,158]. This longer mRNA
contains transcripts of yceD (coding for an uncharacter-
ized protein) and rpmF (coding for the 50S ribosomal sub-
unit protein L32) so that coordinated regulation of these
proteins and fatty acid biosynthesis seems possible [159].
The genes fabH, fabD and fabG encode for proteins

that catalyze subsequent steps in the initiation of fatty
acid biosynthesis. They are transcribed by a strong pro-
moter within the upstream region of plsX and a weak
promoter upstream of fabD [64,160]. The strong pro-
moter has been investigated unravelling a 4-fold down-
regulation of transcription upon amino-acid starvation
[160], which is known to induce the synthesis of
(p)ppGpp. Furthermore, the transcription of fabHDG at
a normal level requires induction by FadR [149]. The
weaker promoter is thought to complement for polar ef-
fects [64]. Lacking a promoter directly upstream of the
coding sequence, fabG mRNA seems to be formed by
processing of the longer transcripts [64]. The last two
genes of the fab-cluster, acpP and fabF, each possess a
strong promoter and for the former, no control by the
growth rate or by FadR could be found [64].

Regulation by the stringent response
Many studies have shown that fatty acid biosynthesis in
E. coli correlates with the growth rate [74,161,162], but
the underlying mechanism was only partially investi-
gated. Of great importance is the concentration of the
global regulator (p)ppGpp, which in E. coli can be syn-
thesized by the action of RelA and either hydrolyzed or
synthesized by SpoT. Elevated concentrations of (p)ppGpp,
in combination with the regulator protein DksA [163,164],
influence the stability of the RNA polymerase complex.
As a result, the respective genes are activated or inacti-
vated. As enhanced (p)ppGpp concentrations tend to
destabilize σ70 promoters, the use of sigma factors other
than σ70 is facilitated, thereby further extending the alter-
ation of gene expression [116,119,165,166]. The resulting
changes of the cellular processes are referred to as the
stringent response [167].
One sigma factor that is upregulated by elevated con-

centrations of (p)ppGpp in the stationary phase is RpoS
[168]. RpoS is involved in multiple stress responses, in-
cluding UV, acid, heat, oxidative stress or starvation
[169-172]. With respect to the fatty acid metabolism, the
induction of fadA, fadB, fadE and fadH expression by
RpoS is of interest [141]. For additional information
about the regulation and influences of RpoS, the reader
is referred to a recent review article [173].
In cells growing under optimal conditions the concen-

tration of (p)ppGpp is very low; however, it can be in-
creased by amino-acid starvation [174], carbon-source
depletion [175], phosphate limitation [176,177], iron
limitation [178] or inhibition of fatty acid biosynthesis
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[108,179]. In E. coli, RelA is associated with the ribo-
somes and senses the binding of uncharged tRNAs (dur-
ing amino-acid limitation), upon which the synthase
activity of RelA is induced [174,180,181]. Furthermore,
the degradation of (p)ppGpp by SpoT is reduced 5-fold,
leading to a more than 20-fold increase in (p)ppGpp
concentration. Glucose starvation triggers an approxi-
mately 5-fold increase of the (p)ppGpp concentration
[176,182], which is achieved by a strong inhibition of the
hydrolase activity and a decrease of the synthesis of
(p)ppGpp to 30%. As SpoT permanently interacts with
the acyl carrier protein [108], it is likely that the degrad-
ation or synthase activities of SpoT are influenced by the
difference in the charge of ACP, similar to RelA. The
hereby provided link between fatty acid biosynthesis and
(p)ppGpp concentration might be responsible for the in-
crease in (p)ppGpp concentration under carbon limitation.
Elevated (p)ppGpp concentrations have direct and in-

direct effects on the biosynthesis of fatty acids. Fastest is
the inhibition of enzymes, as shown in vivo for PlsB
[113] and in vitro for FabZ [183]. On the level of tran-
scription, a 4-fold decrease of the promoter of fabH,
which controls fabH, fabD and fabG, is triggered by
amino-acid starvation [160]. Additionally, the transcription
of plsB, accBC and fadR is downregulated [116,119,149],
whereas fabA, fabB, cfa and ybhO appear to be upregu-
lated. The respective gene products are involved in the syn-
thesis of stearic acid, unsaturated and cyclopropane fatty
acids and cardiolipin [119]. These processes are typically
for E. coli cells entering the stationary phase [153,184,185].
However, the enhanced expression of cfa is due to its
σS-dependent promoter [168]. The same or a similar
mechanism might also explain the upregulation of
fabA and fabB, which stands in contrast to the de-
creased synthesis of their activator, FadR, during the
stationary growth phase.
The inhibition of PlsB leads to an increase in the

amount of long-chain fatty acyl-ACP, which in turn in-
hibit FabH, FabI [79] and the acetyl-CoA carboxylase
[59]. An additional result of acyl-ACP accumulation is
the modified activity of FabH, FabF and FabB, which
leads to the degradation of malonyl-ACP to acetyl-CoA
via the intermediate, acetyl-ACP. Overexpression of plsB
partially relieves the inhibition of the fatty acid synthesis,
leading to very long cells in the stationary phase [113].
As for the genes coding for enzymes of the β-oxidation

pathway, the expression of yfcX and fadE is enhanced
during the stringent response. On the contrary, the ex-
pression of fadD during stringent response of the wild-
type was lower than in the mutant control strain that
was not able to accumulate (p)ppGpp upon amino-acid
starvation [166]. In this context one should keep in mind
that the expression of the enzymes of the fatty acid deg-
radation cycle is regulated by FadR [138,139], whereas
the expression of fadD can be induced by CRP-cAMP
[140] (see also Section ‘Fatty acid degradation’).
Further impacts of the high (p)ppGpp concentration

during the stringent response are the inhibition of the
genes for tRNAs, rRNAs and ribosomal proteins [186,187],
as well as of the initiation factor IF2 [188]. A recent study
by Edwards et al. [189] also found interactions between the
carbon-storage regulators CsrA, CsrB and CsrC with the
regulators of the stringent response.

Regulation according to the growth conditions
Long-chain fatty acids can be metabolized by E. coli;
however, carbohydrates are the preferred carbon sources
[140]. Aerobic growth on glucose is accompanied by a
missing transcriptional induction of the β-oxidation
genes, by CRP-cAMP [140,147], and by the repression
by FadR [136,140]. Since the repression of fadD and
fadL is less stringent, fatty acids can be taken up in small
amounts [140] and relieve the binding of FadR to the re-
spective promoters [138,139]. Due to the similar affinity
of PlsB towards fatty acyl-CoA, as towards fatty acyl-
ACP, the former can directly be used for the membrane
biosynthesis [112]. If glucose (and any other suitable
carbohydrate carbon source) is also missing, the concen-
tration of cAMP increases and the complex CRP-cAMP is
formed, which binds to the promoters of the β-oxidation
genes and induces their transcription [140].
Under anaerobic conditions, the situation is somewhat

different: Transcription of fadA, fadB, fadE, fadD and,
to a lesser extend, fadL is inhibited by the regulator
ArcA [135], and the proteins FadK, YfcY, YfcX, YdiO and
YdiD are responsible for the anaerobic fatty acid degrad-
ation, if a more suitable carbon source is not available
[132]. Under these conditions, uptake of long-chain fatty
acids by FadL is very slow and activation by FadD is not
possible. However, FadK, which replaces FadD under an-
aerobic conditions, has a low activity towards long-chain
fatty acids. Consequently, anaerobic growth on oleic acid
is possible but is very slow [133]. In contrast to long-
chain fatty acids, the transport of fatty acids with a
medium or short chain-length does not require the ac-
tivity of FadL [132,151]. Also the activity of the other
proteins of the anaerobic β-oxidation, for short and
medium chain-length fatty acids, is sufficient to enable
a robust growth on these substrates under anaerobic
conditions [132].

Production of free fatty acids
The use of E. coli and other microorganisms for the pro-
duction of free fatty acids was initiated by the discovery
that the periplasmic enzyme thioesterase I (TesA) dereg-
ulates the tight product inhibition of fatty acid synthesis,
when expressed as a cytosolic enzyme (‘TesA) [190].
This enzyme cleaves the fatty acyl-ACP, and with a
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considerably lower activity the fatty acyl-CoA thioester
bond also. The resulting free fatty acids accumulate in
the late exponential and in the stationary phase and are
mostly released to the culture medium [190].
Since fatty acids are very energy-dense, produced in

relatively large amounts and in every organism, they
represent a suitable target for the development of
single-cell oils. Also the use of alternative carbon
sources has been demonstrated in a variety of microor-
ganisms. With increasing attention towards the search
of sustainable energy sources, many studies have been
performed in the last 15 years with the aim of utilizing
fatty acid biosynthesis for biofuel production. However,
due to the strict regulation of this pathway much basic
research is still needed to improve the yields of free
fatty acids or related products. Besides of E. coli, fatty
acid overproduction has been established in cyanobac-
teria [23,191] and yeast [192].

Thioesterase expression and physiological consequences
As shown in Table 1, every strategy that yielded a con-
centration of more than 0.2 g l-1 fatty acids used a cyto-
solic thioesterase from E. coli or from a different organism.
By the use of different thioesterases, the product can be
considerably altered with respect to yield, fatty acid chain-
length and degree of unsaturation [143,193-195]. However,
the expression level of any thioesterase must be tuned
carefully, because already low levels increase the fatty acid
titer significantly, and too strong a thioesterase activity has
been shown to impair FFA production, both in in vitro and
Table 1 Efficiency of genetic modifications

Variable Background

Thioesterase - overexpression Wild-type

ΔfadD Wild-type

ΔfadE Wild-type

Thioesterase - overexpression ΔfadD

Thioesterase - overexpression ΔfadE

ΔfadD Thioesterase overexpression

ΔfadE Thioesterase overexpression

accABCD ΔfadD or ΔfadD + Thioesterase overexpres

fabF Thioesterase overexpression + ΔfadE

fabZ Thioesterase overexpression + ΔfadD or Δ

fabG; fabZ; fabI Thioesterase overexpression + ΔfadE

fabA Thioesterase overexpression + ΔfadE

fabB Thioesterase overexpression + ΔfadE

fabBA Thioesterase overexpression + ΔfadE

fadR Thioesterase overexpression + ΔfadE

(1) Wild-type = 0.02 g l-1 [143]. (2) Compared with the reference strain of the same
single gene (variable). For calculation of the yield improvement, we compared t
strain plus deletion or overexpression of the respective gene. Thioesterases from
cytosolic enzyme. All other genes in this table were derived from E. coli.
in vivo experiments [106,196]. In addition, a high titer of
FFA in the culture medium can also cause severe defects in
the cellular viability. Desbois and Smith [197] summarized
the antibacterial actions of FFA, ranging from membrane
lysis and interruption of the electron transport chain to
possible interferences with membrane proteins or nutrient
uptake. Concerning the physiological effects of endogenous
FFA overproduction, it has been shown that thioesterase
overexpression can alter the degree of saturation of the
membrane lipids in E. coli [193] and in Synechococcus elon-
gatus [191]. Additional effects are the induction of stress
responses and reduced membrane integrity and viability of
the production strains [193,198]. In the study of Lennen
and coworkers [199], an improved fatty acid export system
has been suggested to improve viability, and several
components of the E. coli system have been identified
and investigated. Deletion of the gene of the fatty acid
transporter FadL has already been tested in combin-
ation with tesA overexpression [142] and gave promis-
ing results.
Of importance for the microbial production of biofuels

are strategies to enhance the tolerance of E. coli towards
organic solvents, as performed by Oh and coworkers
[200]. Deletion of fadR resulted in an enhanced propor-
tion of saturated fatty acids in the membrane of E. coli,
as has been observed in previous studies [140,151]. The
higher grade of saturation made the membrane less per-
meable for organic solvents. By deletion of marR, the re-
pressor of marA expression, the multidrug resistance of
E. coli was permanently induced. Besides others this led
Improvement of the total yield (x-fold) References

12-fold to 35-fold (1) [26,195,202]

3-fold to 10-fold (1) [143,194,202]

5-fold (1) [196]

1.5-fold to 11.5-fold (2) [26,143,202]

4-fold (2) [196]

2-fold (2) [26]

3-fold (2) [26]

sion 1.1-fold to 1.33-fold (2) [143,202]

15 fold diminished or 3-fold enhanced (2) [152,196]

fadE 3-fold enhanced or no change (2) [196,204]

1.5-fold (2) [196]

1.1-fold (2) [152]

2.3-fold (2) [152]

1.7-fold (2) [152]

7.4-fold (2) [152]

study. The table is sorted according to the overexpression or deletion of a
he final fatty acid concentration of the background strain with the same
different organisms have been tested, but were always expressed as a
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to the constitutive expression of tolC, acrA and acrB.
The gene products build an efflux system for organic
solvents and thus enhance the survival of E. coli in pres-
ence of high concentrations of organic solvents. Interest-
ingly, these genes are exactly the same genes that had
been proposed by Lennen and coworkers [199] for im-
proved fatty acid export. A combination of both dele-
tions (fadR and marR) led to an even higher tolerance of
organic solvents, compared to the single deletions [200].
However, fadR deletion may not be ideal, if one aims at
the production of fatty acids. Hence, a combination of
marR deletion and the improved synthesis of saturated
fatty acids, for example, by overexpression of fabA [91]
or fabZ [86], appears to be promising.

Deletion of β-oxidation genes
To prevent product degradation, many studies have
been performed in a strain that was inhibited in fatty
acid β-oxidation. The main target for deletion was
fadD [26,106,143,190,194,201-203], whereas deletion
of fadE was mainly done when the activation of the
FFA to fatty acyl-CoA esters was necessary for further
product processing [26,142,152]. Although most stud-
ies found FFA levels enhanced upon (partial) deletion
of the β-oxidation pathway or did not control the suc-
cess of this deletion, Cho and Cronan [190], as well as
Liu and coworkers [142] did not detect a positive effect
when thioesterase overexpression was combined with
the deletions of fadD, fadE or fadL (to impair re-
uptake of FFA). In these studies it was suggested that
the β-oxidation pathway has not the capacity to cope
with the strong FFA production. An alterative explan-
ation might be that the positive control of fadL, fadD
and fadH by the cAMP receptor protein-cAMP com-
plex [140] was limiting in some of the performed stud-
ies, which might be caused by different cultivation
conditions. In contrast, it seems unlikely that the nega-
tive control via the FadR repressor (released upon
acyl-CoA binding) differed in the studies where the
fadD or fadL genes were not deleted.

Investigation and remodeling of the whole pathway
In order to improve FFA production on a broad scale, a
computational model of the E. coli metabolism has been
used, and several deletions in the glycolysis or tricarb-
oxylic acid cycle have been investigated along with the
overexpression of genes of fatty acid biosynthesis [204].
Deletion of the genes responsible for acetate formation
has been tested to improve malonyl-CoA titers [61] or
FFA productivity [194,201,205]. This strategy clearly re-
duced acetate formation; however, in the two latter stud-
ies the reduction of acetate formation did not enhance
FFA yields. Instead, Zhang and coworkers [194] state
that the acetate formation is already diminished in
efficient FFA producers. This is also interesting with
respect to the pH of the medium, as E. coli production
strains tend to slightly increase the pH, instead of de-
creasing it as wild-type cells [194].
An alternative way to investigate the production of

FFA as a whole is the reconstruction of the pathway
under controlled conditions in vitro. In the study of Liu
et al. [106] cell extracts of E. coli production strains were
used to determine the concentrations of NADPH and
malonyl-CoA, which enabled half-maximal reaction vel-
ocity. For NADPH a Km value of 34.7 μM was calcu-
lated, and based on an estimated concentration of
NADPH in the cytosol of 100 to 200 μM [206-208] it
was concluded that this cofactor should not be limiting.
In contrast, the calculated Km value for malonyl-CoA of
15.7 μM exceeds the estimates of Davis et al. [60] and
Bennet et al. [206], who give a cellular concentration of
malonyl-CoA of less than 5 μM. Consequently, the
addition of malonyl-CoA or acetyl-CoA-carboxylase to
cell free extracts enhanced the in vitro reaction velocity
of fatty acid biosynthesis [106]. In addition, the overex-
pression of the acetyl-CoA carboxylase was also investi-
gated several times in combination with other genetic
modifications, and successfully enhanced FFA produc-
tion [60,106,143]. However, Acc overexpression alone
was not sufficient for FFA production in a ΔfadD back-
ground [202]. A detailed study of how to improve the
malonyl-CoA concentration in the cytosol has been per-
formed by Zha and coworkers [61]. By deletion of acet-
ate formation pathways, heterologous expression of Acc
from Corynebacterium glutamicum and the E. coli
acetyl-CoA synthase, 16-fold higher malonyl-CoA con-
tent was achieved.
For those who wish to improve the substrate or cofac-

tor supply, Yu et al. [196] have tested higher concentra-
tions of acetyl-CoA (0.5 mM), malonyl-CoA (1.5 mM),
NADH (1 mM), NADPH (1.5 mM), NAD+ (5 mM) and
NADP+ (5 mM) in an in vitro reconstitution experiment
of fatty acid biosynthesis. With these concentrations, no
inhibition was observed. In contrast, Liu and coworkers
[106] found a strong inhibitory effect of high concentra-
tions of apo- and holo-ACP on in vitro fatty acid synthe-
sis. The limit for a beneficial effect has been determined
to be 32 μM for both apo- or holo-ACP [196]. This find-
ing is in agreement with the study of Keating et al.
[104], who found that overexpression of tesA and acpP
strongly inhibits the growth of E. coli. Coexpression of
acpS relieved this phenotype only slightly, suggesting
that both apo- and holo-ACP are also inhibitory in vivo.
With respect to the other enzymes of fatty acid bio-

synthesis, it was found that FabA, FabB, FabD, FabF,
FabG, FabH, FabI and FabZ occur in about equal con-
centrations in wild-type E. coli cells, whereas TesA and
holo-ACP proteins are considerably more abundant



Janßen and Steinbüchel Biotechnology for Biofuels 2014, 7:7 Page 14 of 26
http://www.biotechnologyforbiofuels.com/content/7/1/7
[196]. To get an even better understanding of potential
candidates for overexpression, an in vitro assay was per-
formed using purified enzymes, with fixed concentra-
tions. When all enzymes were used in a concentration of
1 μM and 10 μM for ACP and TesA respectively, a fur-
ther enhancement of the concentrations of FabA, FabB,
FabD or FabG did not result in an increase of activity.
FabF and FabH (the latter less pronounced) inhibited the
enzymes of FAB at higher concentrations, whereas FabI
and FabZ enhanced the FAB activity 2- and 6-fold, re-
spectively, when added at a concentration of 10 μM
[196]. Some of these data were confirmed in vivo (see
Table 1), for example, the lack of enhanced FFA produc-
tion upon (co-)overexpression of FabA [78,152], whereas
coexpression of FabB doubled the FFA production in an
E. coli strain with a fadD-deletion and overexpression of
tesA [152]. The role of FabF remains even more contro-
versial. Due to the strong inhibition of the in vitro assay,
Yu et al. [196] tested coexpression of the fabF gene in
their production strain and could also detect a strong
decrease in FFA titer. On the contrary, Zhang et al.
[152] enhanced the FFA yield of their production strain
nearly 3-fold upon fabF overexpression. However, they
observed a higher FFA yield, when fabF was expressed at
a lower rate. Both studies were performed using a fadE
deletion mutant of E. coli and strong tesA and fabF over-
expression. Apart from the use of different plasmid sys-
tems, Yu and coworkers [196] coexpressed an additional
thioesterase from Cinnamomum camphorum in both in
vitro and in vivo experiments. This thioesterase has ac-
tivity towards fatty acids of a chain length ranging from
12 to 18 carbon atoms [209]. It is also noteworthy, that
overexpression of fabF has a lethal effect in a strain that
does not overproduce FFA [76] (compare to the Section
about FabB, FabF and FabH).
Similar discrepancies can be found in the literature on

fabZ overexpression. Upon co-overexpression of fabZ,
the FFA titer was enhanced nearly 3-fold in a fadD dele-
tion mutant with expression of a thioesterase from Rici-
nus communis [76]. In contrast, in the study of Yu and
coworkers [196], enhanced levels of FabZ improved the
rate of fatty acid biosynthesis only in vitro, whereas in
vivo the combined co-overexpression of fabZ, fabI and
fabG was necessary to outperform the control strain
with fadE deletion and overexpression of tesA and the
thioesterase from C. camphorum. Taken together these
results indicate that overexpression of more than one
enzyme of the FAB are much more likely to improve
FFA production of already existing production strains.

Altering the regulation or pathway direction
A promising addition to the overexpression of genes that
are involved in fatty acid biosynthesis offers the use of
regulatory mutants. A possible target to improve the
FFA yields is the carbon-storage regulator, which con-
sists of the CsrA protein and the non-coding RNAs CsrB
and CsrC [210]. CsrA acts as a posttranscriptional in-
hibitor or activator by binding to the 5’-untranslated se-
quence of target mRNAs [211]. This binding can be
prevented by the interaction with CsrB or CsrC that
consist of several CsrA binding sites and sequester this
protein [212]. In the study of Edwards et al. [189] 721
transcripts have been identified that copurify with CsrA,
which regulates cellular processes such as glycolysis,
glycogen formation or the stringent response. McKee
et al. [213] have used csrB overexpression to enhance
the productivity of a tesA expression strain. Besides the
nearly doubled FFA production, a concomitant reduc-
tion in acetate formation was observed.
A more obvious candidate to alter the regulatory net-

work is the repressor of fatty acid degradation, FadR. In
an E. coli strain with a fadE deletion and with tesA over-
expression, coexpression of fadR resulted in a more than
seven-fold enhanced FFA production [152]. Due to the
induction of fabA and fabB, the coexpression of fadR
leads to an increase of the unsaturated fatty acid (UFA)
content from 13% to 43% in the production strain.
Deletion or disruption of the fadR gene leads to a con-

stant expression of the β-oxidation genes. This enables
E. coli to grow aerobically on fatty acids with medium
chain-length [214]. The expression can further be en-
hanced by a mutation in the cAMP receptor protein
(crp*) that leads to a deregulated catabolite repression
[215]. By the deletion of arcA [135] and a mutation in
the regulatory gene atoC, aerobic growth of E. coli on
fatty acids with short chain-length is possible [216,217].
The aforementioned mutations in fadR, crp, arcA and
atoC have been used in combination with the deletion of
fermentative pathways and overexpression of the genes
fadB, fadA and fadM for a functional reversal of the
fatty acid degradation cycle with the aim to produce FFA
from non-related carbon sources [201]. As this way does
not need the energy-consuming conversion of acetyl-
CoA to malonyl-CoA, the theoretical yield for FFA pro-
duction from glucose can be increased from about 36%
(g g-1) to 43% (g g-1) [218].

Process optimization
Although many studies have focused on the engineering
of an efficient production strain, they were mostly per-
formed in a batch mode. If investigated, fed-batch fer-
mentations have significantly increased the productivity,
and titers of 2.5 g l-1 to 7 g l-1 have been achieved
[106,143,201]. Due to the growth inhibitory effect of
high concentrations of fatty acids in the culture medium
and to the fact that the product must be somehow puri-
fied, Liu and coworkers [142] have applied an extraction
unit to their fed-batch fermentation system. Beginning
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10 hours after induction, the culture volume was pumped
through a tributylphosphate phase at a rate of 0.8% per
minute (volume for extraction per volume cultivation
medium). After passage of the tributylphosphate phase,
the culture medium was pumped back into the fermenter
vessel. By this process, a total fatty acid production of
roughly 9 g l-1 was achieved [142].
Although fed-batch fermentations have advantages

over batch cultures, continuous fermentations offer an
even higher potential, because the cells can be kept
under optimal conditions and in the most suitable
growth phase. With the aim of FFA production, continu-
ous cultivations of an E. coli strain with replacements of
fadD, fadE and fadAB, each by one copy of the thioesterse
gene from Umbellularia californica, have been performed
[203,204]. Limitation of carbon, nitrogen or phosphate
source has been applied with phosphate limitation enab-
ling the best results. With respect to the carbon source
(glucose) a conversion rate to FFA of 0.1 (g g-1) has been
achieved, and the highest biomass-specific productivity
was 0.068 g FFA per g cell dry weight per hour [203].

Production of FAAE
The production of FAAE has been the focus of several
studies in recent years. It relies on the microbial produc-
tion of fatty acids and of a short chain-length alcohol.
After the fatty acids are activated to acyl-CoA the forma-
tion of an ester bond with an alcohol is performed enzy-
matically. For this reaction, nearly all studies performed
so far used the promiscuous wax ester synthase/acyl-
CoA:diacylglycerol acetyl transferase (WS/DGAT; AtfA)
of Acinetobacter baylyi ADP1. This enzyme has been
shown to exhibit activity with an extraordinary wide
range of alcohols and fatty acids [219,220]. As alcohol
moiety ethanol is preferred due to its low toxicity for the
Table 2 FAEE-producing strains of E. coli

Gene deletion Wax exter synthase and
alcohol production

Overexpression
of other genes

Yield (g

- atfA; pdc; adhB 0.43

- atfA; pdc; adhB 1.28

- atfA; pdc; adhB 11

- atfA; ethanol added tesA; fadD 0.1

fadE atfA; ethanol added tesA; fadD 0.4

fadE atfA; pdc; adhB tesA 0.037

fadE atfA; pdc; adhB tesA; fadD 0.233

fadE atfA; pdc; adhB tesA; fadD; atfA 0.427

fadE atfA; pdc; adhB tesA; fadD; atfA 0.674

fadE atfA; pdc; adhB tesA; fadD; accABCD 0.922

fadE atfA; pdc; adhB (1) tesA; fadD; fadR (1) 1.5

(1) Dodecane overlay to prevent fatty acid ethyl ester (FAEE) evaporation. Gene sou
Escherichia coli (all other genes).
production organism, compared to methanol or butanol
and the ease of its microbial production. The activity of
the AtfA towards ethanol is considerably lower than
towards the natural substrates diacylglycerol or long
chain-length alcohols [219]. An attempt to overcome
this possible bottleneck has been the comparison of
five different wax ester synthases towards FAEE pro-
duction in S. cerevisiae [221].
The first study to produce FAEE-based (fatty acid ethyl

ester) microdieselin E. coli has been performed by
Kalscheuer et al. [24], yielding 1.3 g l-1 FAEE by fed-
batch fermentation (Table 2). They expressed the Zymo-
monas mobilis pyruvate decarboxylase (pdc) and alcohol
dehydrogenase B (adhB) to produce ethanol. By coex-
pression of atfA, the cells were enabled to form an ester
consisting of ethanol and a fatty acid. This study pro-
vided the blue print for most subsequent studies to pro-
duce FAEE. Optimization of the fed-batch process by
Elbahloul and Steinbüchel [222] yielded a maximum
FAEE concentration of 11 g l-1. However, these two stud-
ies used oleic acid that was externally added to the cul-
ture medium and did not rely on endogenously produced
fatty acids. To produce FAEE from non-related carbon
sources, at least a thioesterase (for cleavage of acyl-ACP)
and a fatty acid CoA ligase have to be combined with
ethanol production and atfA expression [26,223]. These
studies have also shown a significant increase in FAEE
production upon deletion of the fadE gene. Fed-batch fer-
mentations to produce FAEE from glucose have been opti-
mized with respect to the medium, time of induction,
temperature and feeding rate, by Duan and co-workers
[223], yielding a maximal FAEE content of 0.9 g l-1.
Despite the advances in FAEE production derived from

non-related carbon sources, the yields are still far too
low for commercial purposes. One problem is the
l-1) Process
time (h)

Productivity
(g l-1 h-1)

Process Reference

48 0.009 batch + oleate [24]

72 0.018 fed-batch + oleate [24]

47 0.234 fed-batch + oleate [222]

48 0.002 batch [26]

48 0.008 batch [26]

48 0.001 batch [26]

48 0.005 batch [26]

48 0.009 batch [26]

48 0.014 batch with dodecane overlay [26]

72 0.013 fed-batch [223]

72 0.021 batch [191]

rce: Acinetobacter baylyi ADP1 (atfA); Zymomonas mobilis (pdc; adhB);
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instability of production strains that probably results
from ethanol accumulation [26,224]. Cultivations of the
production strain have been performed at 25 or 30°C
[26,223], and the latter study reports that at 37°C no
FAEE production was achieved. A more recent study
approached the problem of ethanol toxicity by finetun-
ing the expression of all overexpressed genes [152]. This
is achieved by coexpression of fadR and introduction of
FadR binding sites in the strong promoters of all overex-
pressed genes, despite tesA. When FFAs accumulate, the
repression of fadD, pdc, adhB and atfA by FadR is re-
lieved depending on the amount of FFA. As a result, the
formation of ethanol, as well as of acetate could be
clearly reduced.
With respect to the use of FAEE as an alternative and

renewable energy source, carbon sources must be used
that are even cheaper than glucose and do not compete
with food and feed production. Attempts have already
been made that prove the possibility of using hemicellu-
loses or pretreated switchgrass for FAEE production by
fermentation of E. coli [26,225].
Besides FAEE production, the biosynthesis of fatty

acid methyl esters has also been performed in E. coli,
by the action of a fatty acid methyltransferase that uses
S-adenosylmethionine as the donor for the methyl
group [25]. However, the yield in this study was very
low at roughly 15 μM FAME . Alternative products in
the class of FAAE are wax esters, which are formed
naturally by some plant species. Microbial production
of wax esters in E. coli was first achieved by Kalscheuer
and coworkers [226], who used the acyl-CoA reductase
from the jojoba plant to reduce fatty acyl-CoA to fatty
alcohol. The latter was esterified with fatty acyl-CoA,
yielding wax esters. In this study, the maximal concen-
tration of wax esters reached 1% of the cell dry weight.
Steen et al. [26] demonstrated wax ester formation in
E. coli ΔfadE upon overexpression of the genes for an
acyl-CoA reductase (from Mus musculus), tesA, fadD
and atfA. More recently wax ester synthesis was also
established in the cyanobacterium S. elongatus by the
overexpression of atfA, an acyl-ACP reductase and al-
cohol dehydrogenase [227].
The production of large amounts of fatty acid ethyl

esters in microorganisms other than E. coli is so far re-
stricted to S. cerevisiae [221,228], which is known to
naturally synthesize small amounts of FAEE with medium
chain-length [229]. FAEE production could potentially
benefit from the endogenous ethanol production and tol-
erance of high ethanol concentrations of S. cerevisiae.
However, the study of Yu et al. [228] shows that the en-
dogenous ethanol production has to be boosted in order
to achieve higher amounts of FAEE. The best result in this
study was a concentration of 0.52 g l-1 after 72 hours of
batch cultivation.
Production of other fatty acid-derived biofuels
Besides free fatty acids and fatty acid alkyl esters some
research has focused on the production of alternative
biofuels that are derived from E. coli fatty acid biosyn-
thesis. The native and engineered pathways of E. coli are
summarized in Figure 4. Examples for this are triacyl-
glycerols that also occur naturally in a variety of
eukaryotic and prokaryotic cells, methyl ketones, alco-
hols and alkanes and polyhydroxyalkanoates with a
medium chain-length.

TAG
The formation of TAG is native to only a few bacterial
genera, such as Rhodococcus, Mycobacterium, Streptomy-
ces, Nocardia, Acinetobacter or Alcanivorax [230]. Of
these the organisms Rhodococcus opacus [38,231-234],
Streptomyces coelicolor [235-237] and species of the
genus Mycobacterium [238-240] are the best studied. R.
opacus has been shown to accumulate TAG up to 86%
of the cellular dry weight [231] and was subject to pilot-
scale fermentation and optimization [241-243].
Attempts to establish TAG formation in E. coli have

been very rare. In 2008 Arabolaza and coworkers [235]
transformed an E. coli dgkA (diacylglycerol kinase A)
mutant with plasmids containing three different WS/
DGAT enzymes from S. coelicolor. The dgkA mutant of
E. coli has earlier been found to accumulate high levels
of diacylglycerol, due to an impaired membrane lipid-
recycling following to the synthesis of membrane-
derived oligosaccharides [111,244,245]. Expression of
one of the investigated WS/DGAT enzymes (Sco0958)
led to TAG formation in the mutant strain [235].
An alternative way has been investigated more recently

[236,246], which employs enzymes that catalyze the de-
phosphorylation of phosphatidic acid, yielding diacyl-
glycerol. The first study used the overexpression of the
atfA and E. coli pgpB (phosphatidate phosphatase) genes,
by which the synthesis of 1.1 mg l-1 TAG was achieved.
The study of Comba et al. [236] used the same biosyn-
thetic route, but with the genes Sco0958 and lppα or
lppβ (phosphatidate phosphatases) from S. coelicolor.
Apart from E. coli, heterologous TAG formation has

also been performed in the cyanobacterium S. elongatus,
by overexpression of atfA [227]. As S. elongatus uses an
acyl-ACP synthetase instead of an acyl-CoA ligase for
fatty acid activation [247], this raises the question as to
whether AtfA can also use acyl-ACP as substrate.
Optimization of the native TAG production in algae by
metabolic engineering also offers great potential for the
production of next-generation biofuels [248,249].

Methyl ketones
Methyl ketones are formed by the hydrolysis of an acyl-
ACP intermediate and the subsequent decarboxylation
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of the 3-keto acid. These volatile substances were first
found in rue (Ruta graveolens) [250] but are widespread
among plant, animal and microbial species [251]. Wild-
type E. coli cells do not produce significant amounts of
methyl ketones, but the ability can be established by
metabolic engineering. In the first study small amounts
of methyl ketones were obtained by overexpression of
the genes shmks1 and shmks2 (methylketone synthases 1
and 2) from wild tomato (Solanum habrochaites) [252].
Park et al. [253] applied overexpression of these genes in
an E. coli strain that was blocked in four pathways of the
fermentation metabolism by deletion of the genes adhE,
ldhA, poxB and pta. This strain procuced 450 mg l-1
methyl ketones. Shortly before, a methyl ketone titer of
380 mg l-1 was published upon overexpression of the
genes fadB, fadM and Mlut11700 (an acyl-CoA oxidase
of Micrococcus luteus) in an E. coli strain with deleted
fadE and fadA genes [254]. The combination of the
genes fadB, fadM and Mlut11700 was also sufficient for
chemolithoautotrophic production of up to 180 mg l-1

methyl ketones in a strain of Ralstonia eutropha with
both β-oxidation operons deleted [255].

Fatty alcohols and alkanes
Another way to process fatty acids for fuel production is
the reduction to long-chain alcohols, alkanes and alkenes.
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First attempts have been performed by Keasling and co-
workers [256], who showed that an E. coli fadE mutant
produced small amounts of fatty alcohols. Additional
overexpression of fadD, acr1 (acyl-CoA reductase 1 from
A. calcoaceticus BD413) and tesA enhanced the fatty alco-
hol production to 60 mg l-1 [26]. Another study has shown
that the overexpression of only a fatty acyl-CoA reductase
(in this case from Arabidopsis thaliana) is sufficient for
fatty alcohol production in otherwise unmodified wild-type
E. coli [257]. By reversal of the β-oxidation pathway [201]
(see Section ‘Altering the regulation or pathway direction’
for details) and overexpression of an alcohol dehydrogenase,
330 mg l-1 n-alcohols with chain lengths of 5 to 10 carbon
atoms were produced. A slightly higher concentration of
350 mg l-1 fatty alcohols was achieved by expression of the
carboxylic acid reductase (Mycobacterium marinum), ahr
(aldehyde reductase of E. coli) and tesA genes [258].
The biosynthesis of alkanes and alkenes is not done by

further reduction of a fatty alcohol, but by a decarboxyl-
ation or decarbonylation of a fatty acid or aldehyde. In
2010 Lennen et al. reported on the production of al-
kanes by the conversion of fatty acids, extracted from an
overproducing strain of E. coli [202]. Complete biosyn-
thesis of alkanes was achieved by overexpression of acyl-
ACP reductase and aldehyde decarbonylase (both from
S. elongatus) in E. coli [259]. As these enzymes can use
acyl-ACP, the coexpression of fadD does not lead to
higher productivity. Presumably, a thioesterase overex-
pression would also rather diminish fatty alkane produc-
tion. By coexpression of fabH2 (β-ketoacyl-ACP synthase
of B. subtilis) up to 80 mg l-1 alkanes with even and un-
even chain length could be produced [260].
A similar system based on FFA took advantage of the

genes luxCED (fatty acid reductase complex from Photo-
rhabdus luminescens) and NpAD (aldehyde decarbony-
lase from Nostoc punctiforme) for the production of fatty
alkanes [261]. By coexpression of fabH2, branched-chain
fatty acids were also produced and processed to the re-
spective alkanes. The coexpression of fatB (thioesterase of
C. camphora, specific for tetradecanoyl-ACP) resulted
mainly in the synthesis of tridecane. However, the yields of
the alkane production were lower than 10 mg l-1, also with
fatB overexpression [261]. In the study of Akhtar and co-
workers [258] a carboxylic acid reductase of M. marinum
and an aldehyde decarboxylase of Prochlorococcus marinus
were used in combination with tesA expression. The exact
yields were not given, but it was stated that the yields were
considerably lower than for fatty acids or alcohols.
The production of 1-alkenes by the decarboxylation of

FFA has been studied in the Gram-positive bacterium
Jeotgalicoccus sp. ATCC 8456. Identification of the re-
sponsible gene (a fatty acid decarboxylase) revealed that
heterologous expression is sufficient for one-step pro-
duction of 1-alkenes in E. coli [262].
PHAmcl

Polyhydroxyalkanoates (PHA) are polymers that can be
used as biodegradable plastics. However, their physical
properties and thus their usability depend on the kind of
the monomer (s) [263]. Whereas the well-investigated
and first-discovered polyhydroxybutyrate (PHB) is syn-
thesized by the condensation of two molecules of
acetyl-CoA (reaction of PhaA) and the subsequent re-
duction of acetaldehyde (by PhaB) and polymerization
of 3-hydroxybutyrate (by PhaC) [264], the monomers
of PHA with longer carbon chains typically are taken
from fatty acid biosynthesis [265] or degradation [266].
Biosynthesis of these PHAmcl (with medium chain-
length) also occurs in many prokaryotes and is well
studied in species of the genus Pseudomonas [267] that
were also genetically modified [268-270]. The monomers
of PHA with medium or long alkyl chains are 3-hydroxy
fatty acids and in addition to their use as bioplastics may
be considered as potential biofuels.
Aiming to establish the production of PHAmcl in E. coli,

the cells are made to overproduce or grow on FFA
that enter the β-oxidation, and the intermediate prod-
uct 3-hydroxyacyl-CoA is then polymerized by a suit-
able PhaC (PHA synthase) enzyme. In the first studies
concerning PHAmcl production in E. coli, this was
achieved by expression of the PHA synthases 1 and 2
of Pseudomonas aeruginosa in E. coli mutants, im-
paired in the β-oxidation and with acrylic acid as the
inhibitor [271,272].
Klinke et al. [273] reported the synthesis of PHAmcl

up to 2.3% of the cell dry weight by overexpression of
tesA and phaCmcl from P. aeruginosa. With the same
PHA polymerase and the thioesterase of U. californica,
coexpressed in an E. coli fadB mutant 6% of the cell dry
weight could be achieved [274]. The effect of fadA, fadB
or fadAB mutant strains was further studied by Park and
Lee [275]. By the coexpression of phaA, phaB (both of
R. eutropha) and phaC2 and with decanoate feeding, the
authors showed the production of PHB-PHAmcl copoly-
mers with different ratios of PHB to PHAmcl, depending
on the deletion mutant used.
A step towards the production of PHA homopolymers

with medium chain-length-3-hydroxyalkanoates as con-
stituents has been the production of 3-hydroxydecanoate,
up to 46% of the cell dry weight by the combined expres-
sion of tesB (thioesterase II from E. coli) and phaG ((R)-3-
hydroxydecanoyl-ACP transacylase from P. putida) [276].
However, a polymerization of 3-hydroxydecanoate has not
been reported in this study. Further attempts towards the
production of copolymers with short and medium chain-
lengths have been the coexpression of several mutant
genes of fabH and phaC1 (from Pseudomonas sp. 61–3)
with phaA and phaB (from R. eutropha) [277] and add-
itionally with fabG [82]. These studies succeeded in the
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production of PHA with an enhanced proportion of
monomers with 6, 8, 10 and 12 carbon atoms. By applica-
tion of an E. coli fadR and atoC mutant, the polymer con-
tent could be further enhanced [83]. To date, the highest
amount of PHA copolymer (15% of the cell dry weight)
from non-related carbon sources has been achieved by
Agnew et al. [278]. They expressed the tesA gene for FFA
production in combination with the P. aeruginosa
genes phaC, phaJ ((R)-specific enoyl-CoA hydratase)
and PP_0763 (putative acyl-CoA synthetase), in an E. coli
strain with deletions in fadR, fadI, fadJ (also named yfcX),
fadA and fadB.

Feedstocks
If one wishes to produce microbial biofuels (or bulk che-
micals) in a cost-competitive way with petrochemical or
oil plant-based production processes, there are two key
factors to consider. First, it is important to achieve high
product-concentrations, as that will influence the prod-
uctivity of a fermentation plant and maximize the yields
in product recovery and refinement. The second key fac-
tor is the cost for the carbon source [279]. In far-
developed processes, the carbon source can account for
30 to 60% of the production costs, as is the case for the
production of polyhydroxybutyrate from glucose [280],
propanediol from glycerol [281] or ethanol from sugar
cane molasses [282].
Glucose is the most common substrate for bacterial

growth and is used in most of the studies that were per-
formed in the field of biofuel production with engi-
neered E. coli. However, glucose is rather expensive,
whereas sucrose from sugar cane was described as the
cheapest carbon source available for industrial fermenta-
tions in 2004 [283]. Also for future development, sucrose
was expected to be at least as competitive (on price) as
lignocellulosic biomass for the carbon source [283].
Utilization of sucrose is limited to a few E. coli strains,

but can be established in E. coli K-12 by overexpression
of cscA and cscB, coding for the invertase and the sucrose
transporter [284]. However, as mentioned in the introduc-
tion, biofuel synthesis based on sucrose utilization will
lead to competition with food production and to the use
of arable land. Thus, the use of lignocellulosic biomass
would be promising, but it typically includes severe pre-
treatment of the material, to break down the dense cellu-
lose fibers [285]. Currently, this pretreatment involves
acid- or base-catalyzed hydrolysis and the addition of cel-
lulase enzymes, and hence is quite expensive. Further-
more, a sideproduct of this pretreatment is the formation
of furfural, which inhibts bacterial growth. This problem
has been addressed in a recent publication, and by expres-
sion of fucO, ucpA and pntAB and deletion of yqhD, the
furfural tolerance of E. coli could be enhanced [286].
Another problem is that lignocellulosic biomass (once
degraded to its components) consists of several differ-
ent sugars that are utilized sequentially, due to the ca-
tabolite repression system of E. coli. This sequential
degradation leads to many short lag phases, when the
bacteria switch from one consumed carbon source to
another. To circumvent this problem, regulatory mu-
tant strains can be used [287]. However, degradation of
the phenolic compounds from the lignin moiety of
lignocellulose is still not possible for E. coli strains and
reduces the possible product yield on this substrate.
Besides lignocellulose, cheap substrates that can be uti-
lized by E. coli include cheese whey [288,289] or sea-
weed hydrolysate [290].
Most studies have addressed either the production of

biofuels or the growth of E. coli on alternative carbon
sources. However, direct production of FAEE has been
reported using hemicellulose sugars [26] and pretreated
switchgrass [20,225].

Conclusions
Of the products that were discussed in this review, free
fatty acids and PHAs from genetically engineered E. coli
were the subject of most studies and have consequentely
yielded the best results. The production of FAEE has
only yielded high concentrations if an even higher
amount of oleic acid has been supplemented to the
medium (in addition to the primary carbon source)
[222]. Methyl ketones, fatty alcohols and alkanes are be-
ing synthesized only with low yields, but research on
their microbial production has just begun. Triacylglycer-
ols can already be produced naturally by many microbes.
Engineering of E. coli towards TAG production will only
lead to a competetive process if it is possible to combine
a high TAG-accumulation with the fast growth of E. coli.
Concerning the productivity of fatty acid synthesis it is

difficult to estimate the current state of the art, since
many studies have been performed only in batch mode.
The theoretical limit of fatty acid production with glu-
cose as the carbon source is roughly 35% (w/w). With
some engineered strains, 56 to 85% of the theoretical
limit has been reached [201,291] by metabolic engineer-
ing and by modifications in the regulation of fatty acid
metabolism. However, the highest-reported product con-
centrations approached 10 g l-1, with productivities in
the range of 0.1 to 0.2 g l-1 h-1 [106,142,143,201,292].
These values indicate that much research still needs to
be done to reduce the time for the production of high
concentrations of fatty acids. As cell growth and fatty
acid production compete for the carbon source, it will
be necessary to develop a continuous fermentation or a
repeated fed-batch process with high cell-densities that
enable high product-concentrations. A problem may then
arise, because free fatty acids can impose a considerable
stress on the cells if present in high concentrations. Thus,
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a continuous extraction or the conversion to non-toxic
endproducts seems to offer great potential for future pro-
cesses and strain improvements. PHA or TAG are such
end products, but they accumulate in the cells, which
makes recycling of living cells impossible. FAEE might be
suitable and have been shown not to be growth-inhibitory
up to concentrations of 100 g l-1 [26]. Finally it is desire-
able to combine biofuel production with the engineered
ability to grow on cheap resources like cellulose or hemi-
cellulose. First attempts have already been made to show
the general possibility [26,225].
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