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Abstract

wild-type QM6a.

certain inducing conditions.

Background: Trichoderma reesei is an organism involved in degradation of (hemi)cellulosic biomass. Consequently,
the corresponding enzymes are commonly used in different types of industries, and recently gained considerable
importance for production of second-generation biofuel. Many industrial T. reesei strains currently in use are derived
from strain Rut-C30, in which cellulase and hemicellulase expression is released from carbon catabolite repression.
Nevertheless, inducing substances are still necessary for a satisfactory amount of protein formation.

Results: Here, we report on a T. reesej strain, which exhibits a very high level of xylanase expression regardless if
inducing substances (e.g. D-xylose, xylobiose) are used. We found that a single point mutation in the gene
encoding the Xylanase regulator 1 (Xyr1) is responsible for this strong deregulation of endo-xylanase expression
and, moreover, a highly elevated basal level of cellulase expression. This point mutation is localized in a domain
that is common in binuclear zinc cluster transcription factors. Only the use of sophorose as inducer still leads to a
slight induction of cellulase expression. Under all tested conditions, the formation of cbh! and cbh2 transcript level
strictly follows the transcript levels of xyri. The correlation of xyr! transcript levels and cbh1/cbh2 transcript levels
and also their inducibility via sophorose is not restricted to this strain, but occurs in all ancestor strains up to the

Conclusions: Engineering a key transcription factor of a target regulon seems to be a promising strategy in order
to increase enzymes yields independent of the used substrate or inducer. The regulatory domain where the
described mutation is located is certainly an interesting research target for all organisms that also depend so far on
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Background

Trichoderma reesei (telomorph, Hyprocrea jecorina) [1] is a
filamentous ascomycete thriving as a saprophyte on dead
plant material. It degrades cellulose and hemicelluloses by
secreting a wide array of cellulases and hemicellulases. A
genome-wide analysis revealed 10 celluloytic and 16
xylanolytic enzyme-encoding genes in 7. reesei [2]. The
most abundantly secreted and industrially interesting
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enzymes are the two main cellobiohydrolases, CBHI
and CBHII (EC 3.2.1.91) [3], and two major specific
endo-f3-1,4-xylanases, XYNI and XYNII (EC.3.2.1.8)
[4]. We will use the term major, industrially relevant
hemicellulases and cellulases (MIHCs) throughout this
publication for these two cellulases and two hemicellulases.

The MIHCs work together with further enzymes to de-
grade cellulose and xylan. This results in the formation of
soluble oligo- and monosaccharides, such as cellobiose,
D-glucose, xylobiose, and D-xylose. In addition, sophorose
is a product of the transglycosylation activity of some of
these enzymes [5]. All of these molecules were reported to
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have influence on the expression of MIHCs in T. reesei.
The presence of D-glucose causes carbon catabolite
repression (CCR), which results in the secretion of low
quantities of MIHCs; expression of XYNI is even com-
pletely shut off. Sophorose is the most potent inducer for
the expression of CBHI and CBHIL It also triggers the
expression of XYNII (reviewed by [6]). D-xylose modulates
XYNI and XYNII expression in a concentration-dependent
manner. Strongest induction occurs by using low concen-
trations (0.5 mM), whereas high concentrations lead to a
repressing effect on xylanase expression [7].

Despite the different patter of inducibility of the expression
of MIHCs, it generally depends on the presence of the main
transactivator of hydrolases Xyrl (Xylanase regulator 1).
Xyrl has a Gald-like Zn,Cyss binuclear cluster domain,
which is involved in DNA-binding. A xyrl deletion mutant
does not produce any MIHCs at the level of either
transcription or of protein formation [89]. It has been
reported that using D-xylose or xylobiose could not induce
the expression of xyrI itself, even if these saccharides are po-
tent inducers of XYNI and XYNII expression mediated via
Xyrl. However, analogous to its target genes, Xyrl
expression is regulated by CCR mediated by Crel
[10]. Crel is a wide-domain regulator that binds under
repressing conductions (high concentrations of easily utilis-
able monosaccharides such as D-glucose or D-xylose) to
its binding site in the promoter of e.g. xyrl or xynl
resulting in a down-regulation or a complete shut-off of
transcription, respectively [11-13].

It is evident that a release from CCR is a useful prerequis-
ite for industrial exploitation of 7. reesei for the production
of MIHCs. Therefore, a prominent Crel-deficient mutant
strain of T. reesei, Rut-C30, which was described as a high
yielding cellulase mutant [14], has been used as the pro-
genitor strain for many recent industrial strains. However,
industrially satistying production of MIHCs by Rut-C30
and its industrially used offspring still depends on potent
induction. Using certain inducing compounds or a particu-
lar media composition is the common way to achieve this
induction, but both add cost which may lead to a higher
price for the resulting enzyme products. In particular, the
economical, ecological and socio-economical success of
products such as second-generation biofuel strongly
depend on their cheap availability of MIHCs as well
as a production process using non-food biomass as
starting material.

In this study we report on an industrially used 7. reesei
strain that produces high amounts of MIHCs independent
of the presence of a certain inducer. Moreover, this strain
shows a glucose-blind phenotype when it comes to
expression of MIHCs. Consequently, we analysed this strain
at the transcriptional level in order to identify the molecular
mechanisms behind this phenotype. Interestingly, we found
aside to other mutations a single point mutation in Xyrl
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and investigated to which extent this is responsible for the
outstanding phenotype of that strain.

Results

A two-step mutant derived from T. reesei Rut-C30 yields
elevated and aberrant xylanase expression due to a
single point mutation in xyr1

The industrial strain Iogen-M4 (derived from Rut-C30 by
spontaneous mutation) was used as parental strain for UV
mutagenesis. During the subsequent screening process the
mutant logen-M8 was selected due to its elevated
xylanase activity. Cultivation in a bioreactor revealed a
generally elevated protein secretion rate and confirmed an
increase of xylanase expression compared to its parental
strain. High levels of XYNI and XYNII could even be
found in the supernatant when cellulase inducing condi-
tions were applied. An additional figure presenting ELISA
data shows this more in detail (see Additional file 1). In
order to identify a possible genetic cause for this behav-
iour, the genomes of logen-M4 and Iogen-M8 were
sequenced. The two strains differ in 17 point mutations
within ORFs giving rise to mutations in known or
predicted proteins. One of which is a point mutation
within xyrl manifesting in the expression of an altered
Xyrl having alanine replaced by valine at position 824
(A824V). The complete sequences of the wild-type and
mutated xyrl and Xyrl is given in an additional file (see
Additional file 2). This point mutation was introduced
into Iogen-M4 resulting in the strain Iogen-M4X. This
strain leads to an identical expression of cellulases and
hemicellulases behaviour like Iogen-MS8. Vice versa,
re-establishing the wild-type xyrl in Iogen-M8 resulted
in the strain Iogen-M8X exhibiting xylanase expression
levels comparable to the parental strain Iogen-M4. Figure 1
gives an overview of these strains, their pedigree, and their
xylanolytic properties when grown on xylan plates.

Strong deregulation of expression of MIHCs can be
observed in T. reesei logen-M8

The outstanding properties of lIogen-M8 with regard to
xylanolytic activity were investigated on the level of tran-
scription to identify changes in regulatory mechanisms of
expression of MIHCs compared to Rut-C30, its first
ancestor with a Crel-negative background. Therefore, both
strains were pre-grown in Mandels-Andreotti (MA)
medium containing solely glycerol as carbon source. These
mycelia were replaced into MA medium containing either
50 mM D-glucose, 0.5 mM D-xylose, 66 mM D-xylose, or
1.5 mM sophorose as carbon sources or inducers [7,15,16].
An additional culture was incubated in MA medium with-
out carbon source as reference. Samples were taken directly
from the pre-culture (before the replacement) and after
three and six hours of incubation. RNA of these samples
was extracted and used as template for RT-qPCR analysis.
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Figure 1 Pedigree and xylanolytic properties of T. reesei strains
used in this study. (A) Schematic drawing of the pedigree of
strains of which investigated ones are shown in boxes. Next to
arrows the method of strain generation is indicated: UV-mutagenesis
(UV), nitrosoguanidine (NTG), spontaneous mutation (SM). White
arrows indicate strain generation before this study, grey arrows
indicate strain generation during this study, black arrows indicate
strains generated by targeted gene replacement during this study.
Xylanolytic properties of strains generated during this study are
represented by growth on plates containing 0.2% (w/v) azo-xylan as
carbon source at 30°C for 24 h (B) and for 72 h followed by a 2 h
incubation at 50°C (C).

Transcript levels of xynI and xyn2 of logen-M8 could be
detected at a constantly high level, regardless if any, or
which, carbon source or inducer was used (Figure 2A, B).
This finding correlates with the elevated and deregulated
xylanolytic enzyme formation observed previously during
the UV mutant screening procedure. Generally, logen-M8
shows considerably higher transcript levels of all tested
genes under all conditions compared to Rut-C30 (compare
Figure 2A-E to Figure 2F-]); e.g. transcript levels of xynl
and xyn2 are 100- to 10,000-fold increased compared to
those in Rut-C30 (compare Figure 2A to Figure 2F and
Figure 2B to Figure 2G, respectively). In contrast, in
Rut-C30, other than a general, slight deregulation, the
genes xynl and xyn2 are both inducible by D-xylose
(Figure 2F, G).

In addition, the transcript levels of the main
cellobiohydrolase-encoding genes, cbhl and cbh2, showed a
striking increase (up to 10,000-fold) in Iogen-M8 compared
to Rut-C30 (compare Figure 2C, D to Figure 2H, I). These
genes remain subject to induction in Iogen-M8 as a com-
parison of their transcript levels derived from incubation
without carbon source to those with sophorose reveals
(Figure 2C, D), even if the extent of inducibility is less pro-
nounced than in Rut-C30 (Figure 2H, I). Notably, in both
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strains xyrl transcription is inducible by sophorose
(Figure 2E, J), and the patterns of transcript levels of
cbhl and cbh2 reflect those of xyrl on all carbon
sources or inducers tested (Figure 2C-E and Figure 2H-J).

In summary, Iogen-M8 has general highly elevated
transcript levels of all genes under all investigated
conditions compared to Rut-C30. Consequently, we
conclude Iogen-M8 exhibits a strong deregulation in
expression of MIHCs.

Deregulation of MIHCs expression only partly occurs in
the parental strain of logen-M8

The comparison of transcript levels of all MIHCs-encoding
genes revealed strong differences between logen-M8 and
Rut-C30. As two mutation/selection steps gap these two
strains, we examined the intermediate strain logen-M4 in
order to see what the first step and what the second step
contribute to the observed phenotype of logen-M8. There-
fore, we performed a carbon source replacement experi-
ment applying the same conditions as before and analyzed
the transcript levels. Like logen-M8, Iogen-M4 also exhibits
higher transcript levels of all investigated genes under
all conditions tested compared to Rut-C30 (compare
Figure 3A-B to Figure 2F-J). However, the rise of
transcript levels is less pronounced in Iogen-M4 than
in Iogen-M8 (compare Figure 3A-E to Figure 2A-E).
D-xylose at low and high concentrations induces xynl
and xyn2 (compared to no carbon source) in Iogen-M4
(Figure 3A, B). The same is true for Rut-C30 (Figure 2F,
G), while in Iogen-M8 the high xynI and xyn2 transcript
levels remain unaffected regardless if D-xylose is applied
or not (Figure 2A, B). Sophorose induces cbhl and cbh2
gene expression in logen-M4 (Figure 3C-E) as already
observed before for Rut-C30 (Figure 2H-]) and, to a lesser
extent, for Iogen-M8 (Figure 2C-E). In summary, we
found elevated transcript levels of all MIHCs-encoding
genes already in Iogen-M4 (compared to Rut-C30), but to
less pronounced extent than in Iogen-M8. Moreover, the
deregulation of xylanase gene expression observed in
Iogen-M8 cannot be seen in Iogen-M4.

A824V transition in Xyr1 causes strong deregulation of
xylanase expression and elevated basal cellulase
expression

As previously stated, 17 point mutations in ORFs were
identified in Iogen-M8 in comparison to logen-M4. We
found that the A824V transition in Xyrl leads to the
elevated expression of xylanases in Iogen-M8. In order to
test whether this mutation is solely responsible for all
observed differences in transcript levels of Iogen-M4 and
Iogen-M8, we performed transcript analysis of logen-M4X.
This strain is isogenic to Iogen-M4 with the only exception
of expressing the altered A824V (i.e. the Iogen-M8 like)
Xyrl (Figure 1A). Transcript levels of all investigated genes
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Figure 2 Analysis of transcript levels of MIHCs-encoding genes and xyr1 in T. reesei RutC30 and logen-M8. The xylanase overexpression
strain logen-M8 (A-E) and its ancestor strain Rut-C30 (F-J) were precultured on glycerol and thereafter transferred to MA media without carbon
source (NC) or containing 50 mM (w/v) glucose (G) or D-xylose (XO) at the indicated concentration, or 1.5 mM sophorose (SO) as an inducer.
Samples were taken directly before transfer of mycelium (PRE), after 3 h of incubation (light grey bars), and after 6 h of incubation (dark grey
bars). Transcription analyses of indicated genes from both strains were performed via gPCR using sarl and act transcript levels for normalization.
Results are given as relative transcript ratios in logarithmic scale (Ig). The values provided in the figures are means from three biological
experiments. Error bars indicate standard deviations. Transcript levels always refer to the reference sample (wild-type QM6a, NC 3 h).
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(xynl, xyn2, cbhl, cbh2, xyrl) were nearly the same in
Iogen-M4X and logen-M8 (compare Figure 2A-E to
Figure 4A-E). Consequently, we conclude that the A824V
transition in Xyr1 is responsible for the strong deregulation

of xylanase expression and the additional rise in transcript
levels of xynl and xyn2 observed in Iogen-M8 (higher than
in Iogen-M4) as well as the high basal transcript levels of
cbhl and cbh2.
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Figure 3 Analysis of transcript levels of MIHCs-encoding genes
and xyr1 in T. reesei logen-M4. The parental strain of logen-M8,
logen-M4, was precultured on glycerol and thereafter transferred to
MA media without carbon source (NC) or containing 50 mM (w/v)
glucose (G) or D-xylose (XO) at the indicated concentration, or

1.5 mM sophorose (SO) as an inducer. Samples were taken directly
before transfer of mycelium (PRE), after 3 h of incubation (light grey
bars), and after 6 h of incubation (dark grey bars). Transcription
analyses of indicated genes (A-E) were performed via gPCR using
sarl and act transcript levels for normalization. Results are given as
relative transcript ratios in logarithmic scale (Ig). The values provided
in the figures are means from three biological experiments. Error
bars indicate standard deviations. Transcript levels always refer to
the reference sample (wild-type QM6a, NC 3 h).

In accordance with all other strains we could observe
that xyrl, cbhl, and cbh2 are inducible by sophorose in
Iogen-M4X (Figure 4C-E). As a consequence of this
observation, we questioned if this is due to a
principle regulatory mechanism also present in the
wild-type QM6a and not restricted to the strains
investigated in this study so far (i.e, a consequence of
mutagenesis and selection).

Gene expression of cbh1 and cbh2 strictly depends on the
level of xyr1 transcription

Notably, transcript levels of xyrl are induced on sophorose
in all strains investigated in this study so far (Figure 2E, J,
Figure 3E, and Figure 4E). Moreover, the patterns of tran-
script levels of cbhl and cbh2 strictly reflect those of xyrl
under all conditions tested (Figure 2C-E, Figure 2H-],
Figure 3C-E, and Figure 4C-E). As mentioned, all
these strains are derivatives of Rut-C30, a mutant
derived from the wild-type strain QM6a (Figure 1A).
We questioned whether the correlation between xyrl
transcript levels and those of c¢bhl and c¢bh2 can
already be observed in the wild-type strain and
performed an analogous carbon source replacement
experiment using QM6a.

Sophorose induces xyrI transcription also in the wild-
type (Figure 5E). In concordance with the results
obtained with the other strains, chhl and c¢bh2 transcript
levels are also elevated in QM6a on sophorose and
generally reflect the carbon source/inducer-dependent
pattern of xyrl transcript levels (Figure 5C-E). In
summary, elevated levels of xyrl seem to correlate
directly with up-regulation of cbhl and cbh2 tran-
scription in all investigated 7. reesei strains (compare
Figures 2, 3, 4 and 5C-E). In contrast, xylanase
expression in all investigated strains including the
wild-type strain does not follow changes in xyri
expression levels, i.e. Xyrl transactivates the xylanase
regulon in a concentration-independent manner
(compare Figures 2, 3, 4 and 5A, B, E).
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Figure 4 Analysis of transcript levels of MIHCs-encoding genes
and xyr1 in T. reesei logen-M4X. logen-M4X, which is logen-M4
with the mutated Xyr1, was precultured on glycerol and thereafter
transferred to MA media without carbon source (NC) or containing
50 mM (w/v) glucose (G) or D-xylose (XO) at the indicated
concentration, or 1.5 mM sophorose (SO) as an inducer. Samples
were taken directly before transfer of mycelium (PRE), after 3 h of
incubation (light grey bars), and after 6 h of incubation (dark grey
bars). Transcription analyses of indicated genes (A-E) were
performed via gPCR using sarl and act transcript levels for
normalization. Results are given as relative transcript ratios in
logarithmic scale (Ig). The values provided in the figures are means
from three biological experiments. Error bars indicate standard
deviations. Transcript levels always refer to the reference sample
(wild-type QM6a, NC 3 h).

In silico characterization of the xyr1 sequence part that
bears the A824V transition

According to DELTA-BLAST (http://www.ncbinlm.nih.
gov/), Xyrl has a so-called fungal transcription factor
regulatory middle homology region (FTFRMH region)
(from L359 to L904, cd12148 with an E-value of 1.77¢ ™)
located next to the Gal4-like DNA-binding domain (from
R93 to Y126, cd00067 with an E-value of 2.81e'%). The
A824V mutation of Xyrl is located within the FTFRMH
region. This FTFRMH region is present in the large family
of fungal zinc cluster transcription factors that contain
an N-terminal GAL4-like Cys6 zinc binuclear cluster
DNA-binding domain [17]. The C-terminal domain of
Cep3p, a subunit of the yeast centromere-binding factor 3,
is similar to the FTFRMH region (E-value 1.22¢**). A 3D
model is available for a great part of Cep3p based on X-ray
diffraction [18]. An alignment of the FTFRMH regions of
Xyrl, Cep3p, and the consensus sequence matches position
A824 of Xyrl with 1463 of Cep3p (Constraint-based
Multiple Alignment Tool, http://www.ncbi.nlm.nih.gov/)
and is shown in an additional file [see Additional file 3].
1463 of Cep3p is located in the middle of an a-helix, which
reaches from M458 to 1475. A graphic display is given in an
additional file (see Additional file 4). Additionally, three
different secondary structure predictions for the domain of
Xyrl locate A824 in the middle of an a-helix (http://www.
compbio.dundee.ac.uk/, BCL:Jufo9D at http://meilerlab.
org/, http://bioinf.cs.uclac.uk/psipred/). Consequently, we
assume that the A824V mutation in Xyrl possibly leads to
a change in secondary structure.

Discussion

During this study we found that the expression of the two
major cellulase genes c¢bhl and cbh2 strictly follow xyrl
transcript levels. Accordingly, Portnoy and co-workers
reported that in a cellulase-overproducing strain, xyrl
transcript levels are elevated compared to common 7.
reesei strains (as QM9414) [19]. These findings suggest
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Figure 5 Analysis of transcript levels of MIHCs-encoding genes
and xyr1 in T. reesei QM6a. The wild-type QM6a was precultured
on glycerol and thereafter transferred to MA media without carbon
source (NC) or containing 50 mM (w/v) glucose (G) or D-xylose (XO)
at the indicated concentration, or 1.5 mM sophorose (SO) as an
inducer. Samples were taken directly before transfer of mycelium
(PRE), after 3 h of incubation (light grey bars), and after 6 h of
incubation (dark grey bars). Transcription analyses of indicated genes
(A-E) were performed via gqPCR using sar! and act transcript levels
for normalization. Results are given as relative transcript ratios in
logarithmic scale (Ig). The values provided in the figures are means
from three biological experiments. Error bars indicate standard
deviations. Transcript levels always refer to the reference sample
(wild-type QM6a, NC 3 h). * indicates the reference sample, ND
means not detected.

that cellulase gene expression is highly dependent on the
amount of Xyrl.

Otherwise, we found that the expression of the two
major xylanases, xynl and xyn2, does not strictly follow
xyrl transcript levels. Interestingly, in Aspergillus nidulans
a constitutive expression of x/nR (the xyrl homolog [20])
under the gpdA promoter led to enhanced and continu-
ously high x/mA/B transcript formation, while x/nD
transcript diminished after 1 h and did not follow the x/nR
transcript level pattern anymore [21]. Altogether, we
assume that regulation of xylanase gene expression is not
directly dependent on the amount of Xyrl and seems to
rely on additional mechanisms.

The different Xyrl responsiveness of cellulases and
xylanases was also observed in a 7. reesei QM9414 strain
constitutively expressing xyrl. There, the cellulolytic
regulon of Xyrl was positively affected, while the
xylanolytic regulon was negatively affected [22]. Notably,
this observations are supported by the number of in silico
identified Xyrl-binding sites in respective promoter re-
gions. The reported Xyrl-binding site, 5-GGC(T/A)3-3’
[23-26], occurs 14 times within 1 kb of the promoter
region of cbhl, whereas it occurs only 4 times within 1 kb
of the promoter region of xynl. Currently ongoing in vivo
footprinting analysis of corresponding promoters
revealed that 12 and 2 of these sites are differently
contacted comparing inducing and repressing conditions,
respectively (unpublished observations, Gorsche, R,
Lichti, J., Mach, R.L., Mach-Aigner, A.R.). Supportively, we
found during this study that sophorose, which has been
known for decades as a potent cellulase inducer [15], posi-
tively influences xyrl expression. As stated before, expres-
sion of the two major cellulase genes cbhl and cbh2
strictly follow xyrI transcript levels. Taken together, we
assume, that induction of c¢hh1 and cbh2 by sophorose is a
direct result of elevated xyrl transcription levels. The
issues discussed so far could be observed in all of the
T. reesei strains investigated in this study, including the
wild-type QM6a.
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However, two outstanding phenomena could be observed
in Iogen-MS8: first, a strong deregulation of xylanase expres-
sion and second, a generally very high level of transcript
formation of MIHCs. By investigating correspondingly
manipulated strains, we found that a single point mutation
in Xyrl (A824V) is fully responsible for the deregulation of
xylanase gene expression and the high basal level of c¢bhl
and cbh2 expression. A similar phenomenon was briefly
described for the XInR in A. niger. A V756F mutation
resulted in constant xylanase activity even under repressing
conditions [27]. Nonetheless, we currently cannot provide a
mechanistic explanation, it is noteworthy that the
A824V transition is located in a predicted a-helix
within a FTFRMH region. As alanine has the lowest
helix propensity (0 kcal/mol), whereas valine has a
higher value (0.61 kcal/mol) [28]. The mutation in Xyrl
may result in a structural change. Notably, the previously
mentioned V756 in XInR corresponds to V821 in Xyrl
located in the same predicted a-helix as A824.

For Gal4 it was reported that glucose has a direct
effect on its activity. The localisation of the glucose
response domain in Gal4 was narrowed down to a central
region [29], in which the FTFRMH region lies (E-value
4.57¢°). Albeit a functional similarity of both regions
seems likely, we found that the phenotype of logen-M8 is
not linked just to D-glucose. Consequently, we presume
that the corresponding domain of Xyr1 is a more generally
regulatory region.

Conclusions

We have shown that a single point mutation in a regulatory
domain of the central regulator Xyrl has tremendous
effects on expression behaviour of MIHC:s in an industrially
used strain of T. reesei. We believe that this finding is a very
promising starting point for directed strain developments
by e.g. transcription factor engineering. Supporting results
from A. niger suggest that the observed phenomenon is not
limited to Trichoderma. Therefore, we recommend manip-
ulations of the regulatory domain of this group of Gal4-like
transcription factors as a strategy for inducer-independent
expression of MIHCs.

Methods

Fungal strains

The following T. reesei strains were used throughout this
study: the wild-type strain QM6a (ATCC 13631), Rut-C30,
which was described as a high yielding cellulase mutant of
QM6a (ATCC 56765) [14], logen-M4, which is a spontan-
eous mutant of Rut-C30 [30], logen-M8, which is a strain
obtained by UV mutation from logen-M4, logen-M4X,
which is a derivate of Iogen-M4 bearing an introduced
point mutation (A824V) in Xyrl, and logen-M8X, which
is a derivate of logen-M8 bearing a reconstituted
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wild-type xyrl. All strains were maintained on malt
extract agar or potato-dextrose-agar.

UV mutagenesis and screening

In order to obtain Iogen-M8, conidia of logen-M4 from
a single potato dextrose plate were suspended in 10 ml
of sterile distilled water and filtered through glass wool
to remove any mycelia. The conidia were diluted in
water to a concentration of 10°> per mL and irradiated in
a thin film with a germicidal lamp at a distance of 7 cm.
Irradiation for 90-120 seconds was generally sufficient
to give 1 - 10% survival. Diluted suspensions were plated
onto selective media containing acid swollen cellulose as
the primary carbon source and 4 g L™ of the glucose
anti-metabolite 2-deoxyglucose. logen-M8 was selected
for its ability to grow and produce large clearing zones
on this medium, indicative of hyperproduction of
cellulose-degrading enzymes.

Growth conditions

For carbon source replacement experiments, mycelia
were pre-cultured in 1 L Erlenmeyer flasks on a rotary
shaker (180 rpm) at 30°C for 18 h in 300 mL of Mandels-
Andreotti (MA) medium [31] containing 105 mM of
glycerol as the sole carbon source. A total of 10° conidia
per liter (final concentration) was used as the inoculum.
Pre-grown mycelia were washed, and equal amounts were
resuspended in MA media containing D-xylose, D-glucose,
and sophorose in concentrations as stated. Mycelia were
also grown in MA media without any carbon source
(control). Samples were taken directly before the carbon
source replacement (after harvesting the mycelia after pre-
growth), after 3 hours, and after 6 hours of incubation.
Samples were derived from three biological replicates and
were pooled before RNA extraction.

Cultivations in a bioreactor were run in a 14 L pilot
scale fermentation vessel (Model MF114 New Brunswick
Scientific Co.) set up with 10 L of Initial Pilot Media. Oper-
ational parameters were: agitation at 500 rpm, air sparging
at 8 standard L min™, a temperature of 28°C, and pH was
maintained at 4.0 - 4.5 during batch growth and pH 5.0
during enzyme production. An additional file provides
a more detailed bioreactor protocol (see Additional
file 5).

Growth on xylan plates was performed using MA
medium containing 0.2% (w/v) azo-xylan (Megazym,
Wicklow, Ireland) at 30°C.

Determining the relative concentrations of cellulases and
hemicellulases

The relative concentrations of cellulases and hemicellulase
mixtures in the culture supernatants produced in bioreac-
tors were determined by ELISA. Supernatants and purified
component standards were diluted 1-100 pg mL™ in
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phosphate-buffered saline, pH 7.2 (PBS) and incubated
overnight at 4°C in microtitre plates. The plates were
washed with PBS containing 0.1% Tween 20 (PBS/Tween)
and incubated in PBS containing 1% BSA (PBS/BSA) for
1 h at room temperature (RT) followed by washing with
PBS/Tween. Rabbit polyclonal antisera specific for CBHI,
CBHII, EGI, XYNI, XYNII, and BGLI were diluted in PBS/
BSA, added to separate microtitre plates and incubated for
2 h at RT. Plates were washed and incubated with a goat
anti-rabbit antibody coupled to horseradish peroxidase for
1 h at RT. After washing, tetramethylbenzidine was added
and incubated for 1 h at RT. The absorbance at 660 nm
was measured and converted into protein concentration
using the standards. The relative concentration refers to
the total protein concentration of the culture supernatants.

Isolation of chromosomal DNA and genome sequencing
After growth in 75 mL of MA medium containing
50 mM glucose at 28°C for 4 days, cultures were filtered
through sterile glass fibre filters and frozen in liquid nitro-
gen. Biomass was ground to fine powder and resuspended
in 30 mL of lysis buffer (20 mM EDTA, 10 mM Tris—HC],
pH 7.9, 1% Triton x-100, 500 mM guanidine-HCl, 200 mM
NaCl, 0.76 mg mL™ Driselase® 0.4 mg mL™* T. harzianum
beta-glucanase, and 0.8 pg mL™ T. viride chitinase C). After
treatment with RNase A and RNase T1 at 20 ug mL™ and
100 U mL™" final concentrations (50°C, 1 h), Proteinase K
was added to a concentration of 0.8 mg mL™ (50°C, 1 h).
Following centrifugation (20 min at 12,000 x g), the clarified
lysate was used to isolate chromosomal DNA using the
Qiagen® Genomic-tip 500/G genomic DNA isolation kit
(Qiagen Inc.-Canada, Ontario, CA).

Genomic DNA was sequenced using the Illumina/Solexa
GAIIx sequencing technology (as distributed by Montreal
Biotech Inc., Quebec, Canada) utilizing two lanes per strain
(one lane of single read and one lane of paired-end reads).
The raw sequences were assembled directly against publicly
available sequence for strain QM6a (http://genome.jgi-
psf.org/Trire2/Trire2.info.html) using DNAstar Seqman
NGen® software (DNASTAR Inc., Wisconsin, USA). After
assembly, a single nucleotide polymorphism calling
procedure was used to identify a table of high-confidence
sequence variants.

Plasmid construction

A 2.6 kb fragment comprising the 3’-UTR of T. reesei xyrl
was amplified from Iogen-M4 gDNA using primers
FT161f and FT162r. Primer sequences are provided in
Table 1. The product was used as a template for a second
PCR using primers FT163f and FT164r to generate
flanking sequences used in the subsequent recombination
steps. Using the In-Fusion HD Cloning System (Clontech
Laboratories Inc., California, USA), the second product
was recombined with pNCBgl-NN that had been
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Table 1 Oligonucleotides used in this study

Name Sequence (5' - 3') Usage

act1f TGAGAGCGGTGGTATCCACG gPCR

actlr GGTACCACCAGACATGACAATGTTG

cbh1f GATGATGACTACGCCAACATGCTG

cbhir ACGGCACCGGGTGTGG

cbh2f CTATGCCGGACAGTTTGTGGTG

cbh2r GTCAGGCTCAATAACCAGGAGG

tagxyn2f  GGTCCAACTCGGGCAACTTT

tagxyn2r CCGAGAAGTTGATGACCTTGTTC

tagxyrlf  CCCATTCGGCGGAGGATCAG

tagxyrir  CGAATTCTATACAATGGGCACATGGG

sarlfw TGGATCGTCAACTGGTTCTACGA

sarlrev. GCATGTGTAGCAACGTGGTCTTT

xyn1f CAGCTATTCGCCTTCCAACAC

xynir CAAAGTTGATGGGAGCAGAAG

FT161f GGAGGCCACTCAATCGTATGA xyr1 3'-UTR cloning

FT162r CGTGCCGCAATCCGGTTGTT

FT163f  TGGGTGGTGGTATAGTCTTAAGGG
AGGCCACTCAATCGTATGA

FT164r ACGGCCAGTGAATTCTTAATTAA
CGTGCCGCAATCCGGTTGTT

FT165f GATGTGGCAGCCGGGGAA xyrl 5'-UTR and coding

FTi66r  TTAGAGGGCCAGACCGGTTC sequence cloning

FT167f ACTCTAGATTAATTAAGATGTGGC
AGCCGGGGAA

FT168r GCTTTCGCCACGGAGCTTTAGAGG
GCCAGACCGGTTC

FT169f  TGCCTGCAGGTCGACTCTAGATTA
ATTAAGATGTGGCAGCCGGGGAA

FT170f CGGTCTGGCCCTCTAAAGCTCCGT cbh1 3'-UTR cloning
GGCGAAAGCCT

FT171r GACGAATGATGGCGGCCGCTT
TCCAGGCCGCCAGCTATG

linearized by Nhel digestion to produce the intermediate
plasmid, pSC1. pNCBgI-NN contains a 3.2 kb insert com-
prising the promoter, coding region, and terminator of the
N. crassa pyr4 gene isolated from plasmid pFB6 [32] and a
polylinker with unique Nhel and Notl sites located at the
3‘end of the pyr4 insert.

Separately, 4.1 kb fragments were amplified from
Iogen-M4 and logen-M8 gDNA using primers FT165f
and FT166r comprising the xyrl 5-UTR and the wild-type
xyrl or xyr1(A824V) coding sequence, respectively. The
resulting products were used as templates for a second
PCR using primers FT167f and FT166r. FT167f introduces
Xbal and Pacl sites at the 5-end of the amplified
products. These PCR products were used as tem-
plates for a third PCR using primers FT168r and
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FT169f, to generate fragments suitable for subsequent
recombination steps.

A 586 bp fragment comprising the 3’-UTR of the c¢bhI
gene was amplified from Iogen-M4 gDNA using primers
FT170f and FT171r.

pSC1 was linearized using Nkel and NotI and recombined
with the 4.1 kb fragment containing the xyr! 5-UTR and
xyrl or xyr1(A824V) coding sequence and the 586 bp
c¢bhl 3-UTR fragment using the In-Fusion HD Cloning
System (Clontech). This resulted in pSCxyrl-TV and
pSCxyr1A824V-TV wused for fungal transformation.
Vector maps are provided in an additional file (see
Additional file 6).

Protoplast transformation

The protoplast transformation of T. reesei was performed
as described in U.S. Patent No. 8,323,931. To obtain logen-
M4X, the plasmid pSCxyr1****V-TV was transformed into
a uridine auxotroph of Iogen-M4 selecting for uridine
prototrophy on modified (MA) medium [31]. Introduction
of pSCxyrl-TV into a uridine auxotroph of Iogen-MS8,
followed by selection for uridine prototrophy, resulted
in a mutant strain bearing the wild-type xyrl namely
Iogen-M8X.

RNA-extraction and reverse transcription

Harvested mycelia were homogenized in 1 mL of peqGOLD
TriFast DNA/RNA/protein purification system reagent
(PEQLAB Biotechnologie, Erlangen, Germany) using a
FastPrep FP120 BIO101 ThermoSavant cell disrupter
(Qbiogene, Carlsbad, US). RNA was isolated according
to the manufacturer’s instructions, and the concentration
was measured using the NanoDrop 1000 (Thermo
Scientific, Waltham, US).

Synthesis of cDNA from mRNA was carried out using
the RevertAid” H Minus First Strand cDNA Synthesis
Kit (Fermentas, St. Leon-Rot, Germany) according to
the manufacturer’s instructions.

Quantitative PCR analysis

Quantitative PCRs were performed in a Mastercycler® ep
realplex 2.2 system (Eppendorf, Hamburg, Germany). All
reactions were performed in triplicate. The amplification
mixture (final volume 25 pL) contained 12.5 pL 2 xiQ
SYBR Green Mix (Bio-Rad Laboratories, Hercules, USA),
100 nM forward and reverse primer and 2.5 pL ¢cDNA
(diluted 1:100). Primer sequences are provided in Table 1.
Cycling conditions and control reactions were performed
as described previously [33]. Data normalization using
sarl and act as reference genes, and calculations were
performed as published previously [33]. The transcript
levels in all figures were referred to those from QM6a
incubated without carbon source for 3 h; therefore, they
can be compared cross-figure wisely.
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Additional files

Additional file 1: Protein composition and abundance of
fermentation supernatant. The relative abundance of cellulases and
hemicellulase components (CBHI, CBHII, EGI, BGLI, XYNI and XYNII) in
bioreactor supernatants produced by T. reesei logen-M4, logen-M4X,
logen-M8, and logen-M8X was determined by ELISA and is given in
percent of total protein.

Additional file 2: Gene and aligned protein sequences of wild-type
and mutated xyr1/Xyr1. Intron sequences are shown in italics. Note:
The Trichoderma reesei genome database (http://genome.jgi-psf.org/
Trire2/Trire2.home.html) annotates 3 introns in the xyr’ mRNA. cDNA
sequencing revealed that the middle intron is in fact translated and
therefore included in the given sequence. Positions of the mutated site
are highlighted in yellow.

Additional file 3: Alignment of the fungal transcription factor
regulatory middle homology region (FTFRMH region) of Xyr1 and
Cep3p and the consensus. Protein sequences of the FTFRMH region of
Xyr1 and Cep3p and the consensus sequence were aligned with COBALT
(http://www.ncbinlm.nih.gov/tools/cobalt/). Position 824 in Xyr1 is
highlighted in red. The helix at M485 to 1475 in Cep3p is highlighted in
yellow. Xyr1_dom, FTFRMH region of Xyr1; Cep3p_dom, FTFRMH region
of Cep3; Consensus, consensus sequence of the FTFRMH region.

Additional file 4: Graphical representation of 3D structure of
dimerized chain A of Cep3p. Protein 3D structure of chain A of Cep3p
(PDB: 2VEQ_A) visualized with Cn3D 4.3. Pictures show a dimer from 3 angles,
respectively. The helix at M458 to 1475 is highlighted in yellow in both dimers.

Additional file 5: Detailed protocol for cultivation in a bioreactor.

Additional file 6: Vector maps of pSCxyr1-TV and pSCxyr1A824V-TV.
Maps of the vectors pSCxyr1-TV and pSCxyr1A824V-TV used to generate
logen M8X and logen-M4X, respectively. Vectors were digested with Pacl
prior to transformation of strains logen-M8 and logen-M4.

Abbreviations

CCR: Carbon catabolite repression; FTFRMH: Fungal transcription factor
regulatory middle homology region; MA: Mandels Andreotti; MIHCs: Major,
industrially relevant hemicellulases and cellulases; PBS: Phosphate-buffered
saline; RT: Room temperature; BSA: Bovine serum albumine; Xyr1: Xylanase
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