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Abstract

Background: A solid-state anaerobic digestion method is used to produce biogas from various solid wastes in
China but the efficiency of methane production requires constant improvement. The diversity and abundance of
relevant microorganisms play important roles in methanogenesis of biomass. The next-generation high-throughput
pyrosequencing platform (Roche/454 GS FLX Titanium) provides a powerful tool for the discovery of novel
microbes within the biogas-generating microbial communities.

Results: To improve the power of our metagenomic analysis, we first evaluated five different protocols for
extracting total DNA from biogas-producing mesophilic solid-state fermentation materials and then chose two
high-quality protocols for a full-scale analysis. The characterization of both sequencing reads and assembled contigs
revealed that the most prevalent microbes of the fermentation materials are derived from Clostridiales (Firmicutes),
which contribute to degrading both protein and cellulose. Other important bacterial species for decomposing fat
and carbohydrate are Bacilli, Gammaproteobacteria, and Bacteroidetes (belonging to Firmicutes, Proteobacteria, and
Bacteroidetes, respectively). The dominant bacterial species are from six genera: Clostridium, Aminobacterium,
Psychrobacter, Anaerococcus, Syntrophomonas, and Bacteroides. Among them, abundant Psychrobacter species, which
produce low temperature-adaptive lipases, and Anaerococcus species, which have weak fermentation capabilities,
were identified for the first time in biogas fermentation. Archaea, represented by genera Methanosarcina,
Methanosaeta and Methanoculleus of Euryarchaeota, constitute only a small fraction of the entire microbial
community. The most abundant archaeal species include Methanosarcina barkeri fusaro, Methanoculleus marisnigri
JR1, and Methanosaeta theromphila, and all are involved in both acetotrophic and hydrogenotrophic
methanogenesis.

Conclusions: The identification of new bacterial genera and species involved in biogas production provides
insights into novel designs of solid-state fermentation under mesophilic or low-temperature conditions.
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Background

Due to fossil fuel crisis, atmospheric pollution, and global
warming, the development of renewable and clean energy
forms has become a critical task for the human society.
The production of biogas through biomass fermentation,
regarded as an environment-friendly, clean, and renewable
resource, has been gaining more attention in many deve-
loped and developing countries [1,2]. In China, solid
biomass wastes (SW), such as kitchen, livestock, and
agricultural wastes (largely crop straws and stalks),
are produced at the multi-million ton level annually
[3] and the untreated disposals of such wastes may
lead to severe long-term environmental hazards and
resource wasting. Therefore, the utilization of anaerobic
fermentation to convert SW into biogas represents a
promising effort if it can be accomplished at an industrial
scale and in an economical way. In recent years, solid-
state anaerobic digestion (SS-AD) has been promoted in
China because of its many advantages, including less
reactor-capacity demand, lower heating-energy need, and
no stirring-energy consumption, particularly as opposed
to liquid-state anaerobic digestion [2]. However, the yield
of methane, the major end-product of this process, has
not been sufficient for an industrial-scale promotion, let
alone economical plausibility.

The biochemical process for anaerobic methane produc-
tion is complex. The diversity and abundance of microbes
involved in the process certainly play a major role, which
are influenced by microbial community compositions,
fermentation materials, climate variations, and designs of
chambers, to name just a few. In the initial steps of SS-AD,
hydrolytic Firmicutes reduce large macromolecules (inclu-
ding proteins, complex fats, and polycarbohydrates) to their
building blocks (i.e, amino acids, long-chain fatty acids,
and monosugars) and other bacteria (including acidogens
and acetogens) further degrade them into smaller inter-
mediates (such as acetate, carbon dioxide, and hydrogen).
In the later steps, methanogens, which are mainly derived
from Archaea, convert the smaller substrates into methane
through both aceticlastic and hydrogenotrophic pathways
[4-6]. Therefore, a thorough understanding of composition,
structure, and function of the microbial communities resi-
ding in anaerobic reactors is crucial for developing novel
fermentation strategies and improving methane yield of the
existing biogas reactors as well as ideas for novel designs.

Although the biochemistry and enzymology of methano-
genesis for model organisms are well characterized [7], the
structure and function of biogas-producing microbial
communities have not been sufficiently explored,
particularly under different anaerobic fermentation
conditions. In the past decade or so, investigations of
different biogas-producing systems and waste treatment
conditions, including anaerobic mesophilic sludge digester
[8], mesophilic anaerobic chemostats fed with synthetic
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wastewaters [9,10], thermophilic upflow anaerobic filter
reactor [11], fully- stirred reactor fed with fodder beet
silage [12], thermophilic municipal biogas plant [13], and
two-phase liquid biogas reactor operated with silages [14],
have been conducted. Thermophilic anaerobic municipal
solid-waste digester [15] and packed-bed reactor for
degrading organic solid wastes of artificial garbage slurry
[16] were also studied. However, the methodology used
for these studies was based on constructing and sequen-
cing 16S rDNA and mcrA clone libraries, and the choice
of PCR primers for amplifying sequence fragments of the
target genes and other sequences typically creates biases,
and it has been difficult to cover the entire complexity of
microbial communities based on just the sequences from
a limited number of gene-specific clones. The next-
generation sequencing technologies have overcome many
of these problems, particularly the pyrosequencing
platform (such as the Roche/454 GS FLX sequencer) that
generates longer read lengths ranging from 200 to 400 bp
as compared to other platforms (such as the Illumina
Hiseq2000 system that generates 50—150 bp reads in its
single-directional sequencing runs [17-20]) and creates
less bias in sequencing library construction [21,22]. Based
on this platform, a German group conducted the first
metagenomic analysis on a complex system of biogas-
producing plant [20], and developed related bioinformatic
methods [23,24]. They further revealed that in addition
to the archaeal methanogen Methanoculleus species
(which play a dominant role in methane production)
and abundant numbers of cellulolytic Clostridia
(which were important for the hydrolysis of cellulosic
plant biomass for acetogenesis) other methanogen
taxa (including Streptococcus, Acetivibrio, Garciella,
Tissierella, and Gelria) are also detected but their
precise functional roles in methane formation remain
to be elucidated [17,25]. A similar study that used a
SOLiD™ short-read DNA sequencing platform has
recently confirmed the importance of hydrogen metabolism
in biogas production [26]. Nevertheless, a metagenomic
study on the SS-AD system based on deep-sampling and
long-read sequencing supported by the next-generation
sequencing platforms is of essence in moving the
field forward.

Aside from sequencing and bioinformatic analysis, DNA
extraction and its quality yield from samples of complex
materials (such as liquid vs. solid and source vs. processing)
also greatly affect results of metagenomic sequencing
[27,28]. DNA extraction efficiency and quality from biogas
samples have also been compared to PCR-based analyses
[29], but a robust method, particularly for analyzing
samples from SW biogas fermentation materials and
based on high-throughput shotgun pyrosequencing, has
yet to be reported. Toward this end, we first evaluated five
DNA extraction protocols (including four based on
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commercial kits and one derived from the classic
chloroform-isoamylalcohol method) for samples collected
from a mesophilic SS-AD fermenter fed with SW. After
the T-RFLP evaluation (see Methods for details), we then
chose the two better protocols and prepared DNA
samples for our pyrosequencing-based metagenomic
study. Our results have led to novel insights into
microorganism composition, gene content, and metabolic
capacity of the SW fermentation.

Results and discussion

Evaluation of DNA extraction methods for
high-throughput pyrosequencing

Biogas fermentation samples are extremely complex due to
the presence of multiple organic compounds and diverse
degradation products. In SS-AD samples, microorganisms
bind strongly to solid materials and have a rather heteroge-
neous distribution inside the samples. In order to find a
better protocol for the isolation of high-quality DNA
preparations for pyrosequencing, we set out to evaluate five
DNA extraction methods. Using electrophoresis assay for
checking quality and yield of genomic DNA extracts
(Figure 1 and Table 1), we found that Protocols E, EY, and
F gave rise to the highest yields, ranging from ~160.5 ng/pl
to ~121.4 ng/pl, while Protocol P produced the lowest
yield, with ~20.5 ng/ul. However, Protocol F showed the
highest degree of smearing (Figure 1) and both Protocols F
and S showed low purity based on Ajgo/Azze ratios
(Table 1). The DNA extract from Protocol S appeared dark
yellowish and its quality could not be measured based on
spectrophotometry. The differences among the five
methods were primarily observed at the cell lysing steps,

MP F EEYS

Figure 1 The electrophoresis results of DNA preparations
based on the five methods from a biogas reactor sample. M,
molecular marker Transplus 2 K. P, F, E, EY, S refer to the five
protocols, respectively. Except for Protocol P, which was loaded with
5l of undiluted DNA solution, only 1 ul of undiluted DNA solution
was loaded on the 0.8% agarose gels for the rest of the extracts.

Page 3 of 17

Table 1 Comparison of DNA yield and purity among five
DNA extraction protocols

Method Parameters of DNA quantity and purify $

DNA yield (ng/pl) Azeo/Azs0 Aze0/Az30
P 20.5 161 0.88
F 153.6 1.81 0.33
E 160.5 1.88 1.89
EY 1214 1.81 1.82
S ND ND ND

S DNA quantity and purity were measured fluorometrically based on
NanoDrop. The purity parameter concerning carbohydrate, phenol and
aromatic compound contaminations was calculated based on the ratio of the
absorptions at 260 nm to 230 nm (A,60/A230)- To check for protein
contamination, the ratio of the absorptions at 260 nm to 280 nm was
evaluated (A,50/Azs0). ND, not determined due to the impurity of DNA
solution. The purity of DNA preparations was measured based on Ayso/Azg0 >
1.8 and Ays0/Az30 > 1.8.

which are critical for DNA vyield and quality especially
when field sampling is the only source [29,30]. According
to our results, Protocol P (the Mo-Bio PowerSoil DNA
Isolation Kit) showed the lowest DNA yield, suggesting
insufficient lysing despite the use of vigorous mechanical
force (vortexing for 15 min), especially when compared
with the corresponding steps in other related protocols
(hand shaking for a few minutes or vortexing for 30 s).
Therefore, we realized that in addition to mechanical
forces, lysis reagents used for the protocols may also be
crucial for preparing better cell lysis.

We further evaluated the DNA preparations from all five
methods based on T-RFLP analysis. The Shannon-Weiner
index was used to indicate diversity and complexity, and
the Simpson index was used to measure abundance.
Bacteria and archaea were analyzed separately. The
results showed that Protocol E resulted in the highest
bacterial diversity (Shannon-Weiner index of 3.6) and
the highest abundance (Simpson index of 0.95; Table 2), fol-
lowed by Protocols P and EY. Protocols E and EY showed
higher archaeal enrichment than that of Protocols P, F and
S. We therefore chose DNA extracts from Protocols E and
EY for pyrosequencing, which consistently lead to higher
yield, purer DNA, and high microbial diversity.

Table 2 Diversity indexes of T-RFLP analysis for different
protocols
Method Diversity index for bacteria

Diversity index for archaea

Shannon- Simpson Shannon- Simpson
Weiner Index (H) Index (D) Weiner Index (H) Index (D)

E 3.578163 0.945856 2.76696 0.88734
F 3293445 0923434 1.245221 0.561454
p 3410967 0.944772 1.984324 0.762865
S 3.116197 0.921699 1.63489%4 0.665427
EY 3313463 0.924693 2670502 0.872466

For each protocol, bacterial and archaeal diversities were analyzed separately.
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Sequencing and metagenomic assembly
Pyrosequencing of two DNA libraries (from Protocols E
and EY), namely “BE” and “BEY”, were performed and the
data from the experiments were summarized in Table 3.
The first sequencing runs of BE (named as BE-1) and BEY
resulted in 266,781,751 bp sequences from 738,005 reads
(an average read length of 362 bp) and 197,514,392 bp
sequences from 551,339 reads (an average read length of
358 bp), respectively. It is obvious that there are more data
and higher microbial richness (Figure 2A in section 3.3)
obtained from BE (BE-1) than from BEY. Therefore, the
BE sample was sequenced twice again as BE-2 and BE-3.
Since the BE sample was sequenced three times, it
yielded 647,369,218 bp sequences from 2,280,601 reads (in
an average read length of 283 bp). The assembly of the total
reads gave rise to 118,433 contigs containing 76,759,543 bp,
which were accounted for approximately 12% of the total
sequences measured in basepairs generated in this study.
The number of large contigs (>500 nt) was 37,276 (an N50
of 1,712 bp), in which the largest contig contains
158,075 bp. The average GC content of the total reads from
the BE sample is 46% (Additional file 1: Figure S1).

Comparison of microbial compositions between samples
BE-1 and BEY

We used rarefaction analysis to assess species richness of
the system. Using MEGAN (a meta-genomic bioinformatic
tool) and at the best resolved levels based on the NCBI
taxonomy database and our sequence data, we analyzed
the microbial richness, based on sequence reads, between
libraries BE-1 and BEY (Figure 2A) and revealed that the
number of taxonomic leaves or clades of BE-1 are all
higher than those of BEY, and the result indicated that
BE-1 contains more microbial taxa than BEY, and indeed
BE-1 and BEY contain 717 and 643 leaves for all assigned
taxa, respectively. Furthermore, the rarefaction curves of
both libraries in archaea appear close to saturation at 20%
of the total reads, whereas those in bacteria are increased to

Table 3 Summary of sequencing results
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100% of the total reads. Our results suggest that the current
sampling depth is not yet close to the natural status for
bacteria but may be saturated for archaea.

Matching the sequencing reads from BE-1 and BEY to
sequences collected in NT and NR databases, we dissected
microbial community structure of the two libraries (exclu-
ding the reads with no-hits; Figure 2B), showing that at the
domain level there is significant difference between the two
libraries in the proportion of reads assigned to bacterial,
archaeal, viral, and eukaryotic sequences (Figure 2B). In the
BE-1 data set, 4.7% and 90.9% of the reads were assigned to
archaea and bacteria, but decreased to 3.0% and 71.2% for
those of BEY, respectively. In contrast, only 3.4% of the
reads were assigned to eukaryotes and almost no viral
sequence was detectable in BE-1, but eukaryotic and viral
detections were significantly increased to 20.5% and 9.3% in
BEY, respectively. The taxonomic bias in the microbial
communities detected between the datasets from Protocols
E and EY may reflect the thoroughness of sample pre-
washing with TENP buffer that may partially wash off
bacteria known to be lightly adhered to solid matrix.

Examining the taxonomies built from mapped sin-
gle reads of libraries BE-1 and BEY (Additional file 1:
Figure S2), we observed that the dominant taxa at
the genus level for archaea and bacteria (such as
Methanosarcina and Clostridium for the former and
the latter, respectively) are comparable between the two
libraries; but there were greater numbers of microbial taxa
observed in the BE (combining BE-1, BY-2, and BE-3) and
BEY libraries (Table 2 and Figure 2A). Therefore, Protocol
E in combination with the EZN.A-TM Soil DNA Kit
should be considered as the most suitable procedure for
the SW fermentation samples.

Microbial composition analysis based on sequencing
reads and assembled contigs

We analyzed the microbial community composition of the
BE library using MEGAN and mapped individual reads

BEY BE-1 BE-2 BE-3 BE (total)
Number of reads 551,339 738,005 781,293 761,304 2,280,601
Number of bases 197,514,392 266,781,751 218,761,141 161,838,822 647,369,218
Average read length (bp) 358 362 280 212.58 283
Number of large contig (>500nt) 11897 17,933 10,861 7,354 37,276
Number of all contig 24,052 33,750 20,281 17,860 118,433
Max contig length 18,435 35,598 35,601 11,781 158,075
Number of bases in all contigs 16,193,286 25,185,216 16,441,312 11,362,543 76,759,543
Assembled bases % 8.2% 9.44% 7.5% 7% 11.9%
N50 (large contigs) (bp) 1105 1204 1440 1231 1712

The BE and BEY sequences were assembled separately by using GS de novo assembler.
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first. Figure 3 shows the statistics of the total assigned
reads and their annotations for the popular genera and
phyla. The reads assigned to the superkingdoms Bacteria
(~9.8%) and Archaea (~0.5%) were accounted for approxi-
mately 10.3% of the total reads, whereas 88.4% of the total
reads obtained have no hit in the present database,
indicating that there are still an immense amount of
unknown/uncultured species in this complex anaerobic
biogas-producing sample (Figure 3A).

Based on single-read assignments (Figure 3B), the most
prevalent bacterial taxa at the phylum level are Firmicutes

(39.0% of hit-reads), followed by Proteobacteria (17.3% of
hit-reads) and Bacteroidetes (7.0% of hit-reads), which are
responsible for biomass degradation and fermentation.
The 4™ most abundant taxon is Euryarchaeota (4.3% of
hit-reads), involved in methane synthesis and taking a
small fraction of the community. In addition, massive
bacterial taxa are distributed in phyla Thermotogae
(2.4% of hit-reads), Actinobacteria (2.2% of hit reads),
Chloroflexi (1.2% of hit-reads), Cyanobacteria (0.4% of
hit-reads), Chlorobi (0.3% of hit-reads), and Fusobacteria
(0.3% of hit-reads), and the result again indicates that there
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Figure 3 The statistics for the reads assigned (A), the number of reads/contigs for the 11 most prevalent phyla (B), and the number of reads/
contigs of 15 most prevalent genera in bacteria and the 3 most prevalent genera in archaea (C) obtained in the taxonomic classification
analysis using BLASTN/BLASTX tools against the GenBank NT/NR database with a E-value cutoff of 10 based on total reads/contigs.

are more complex microbial components residing within
this system and that some of the components may reflect
their original environments rather than characteristic of
the SW feeds in general.

At the class level, the prevalent reads are distributed
over Clostridia (66,455 reads, 27.2% of hit-reads), Bacilli
(16,767reads, 6.9% of hit-reads), Gammaproteobacteria
(19,085 reads, 7.8% of hit-reads), Bacteroidetes (11,765
reads, 4.8% of hit-reads), and Methanomicrobia (9180
reads, 3.8% of hit-reads), which belong to phyla Firmi-
cutes, Proteobacteria, Bacteroidetes, and Euryarchaeota,
respectively (Table 4).

At the genus level, there are 429 genera of bacterial and
39 genera of archaeal origins. The six most prevalent gen-
era for bacteria are Clostridium (17,975 reads, 7.4% of hit-
reads), Aminobacterium (11,870 reads, 5.2% of hit-reads),

Psychrobacter (7,823 reads, 4.9% of hit-reads), Anaerococ-
cus (6,544 reads, 2.7% of hit-reads), Bacteroides (5,655
reads, 2.3% of hit-reads), and Syntrophomonas (4698 reads,
1.9% of hit-reads). For archaeal species, the three most
prevalent genera are Methanosarcina (6,522 reads, 2.7%),
Methanoculleus (1,102 reads, 0.5%), and Methanosaeta
(750 reads, 0.3%), which all belong to class Methanomicro-
bia of Euryarchaeota (Table 4, Figure 3C).

At the species level (Figure 4), although Clostridium is
the predominant genus, the three most abundant bacte-
rial species are Aminobacterium colombiense DSM 12261
(11,868 reads, 5.2%), Anaerococcus prevotii DSM 20548
(6,507 reads, 2.9%), Syntrophomonas wolfei subsp. Wolfei
str. Goettingen (4,685 reads, 1.9%), while the dominant
Clostridium species were identified as C. thermocellum
ATCC 27405 (4,204 reads, 1.7%), C. tetani E88 (1,378
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Table 4 The 21 most prevalent genera of taxonomic classification of sample BE based on read counts
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Phylum Class Order Family Genus Counts of reads
Firmicutes Clostridia Clostridiales Clostridiaceae Clostridium 17,975
Clostridia Clostridiales Syntrophomonadaceae Aminobacterium 11,870
Clostridia Clostridiales Peptostreptococcaceae Anaerococcus 6,544
Clostridia Clostridiales Syntrophomonadaceae Syntrophomonas 4,698
Clostridia Clostridiales Clostridiaceae Alkaliphilus 2,637
Bacilli Lactobacillales Enterococcaceae Enterococcus 1,948
Bacilli Lactobacillales Streptococcaceae Streptococcus 2462
Clostridia Clostridiales Syntrophomonadaceae Thermanaerovibrio 1,123
Bacilli Bacillales Bacillaceae Bacillus 1,282
Clostridia Thermoanaerobacteriales Thermoanaerobacteriaceae Thermoanaerobacter 2,302
Bacilli Lactobacillales Lactobacillaceae Lactobacillus 1,907
Bacteroidetes Bacteroidetes Bacteroidales Bacteroidaceae Bacteroides 5655
Bacteroidetes Bacteroidales Porphyromonadaceae Parabacteroides 1,295
Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Psychrobacter 7,823
Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 2,850
Gammaproteobacteria Enterobacteriales Enterobacteriaceae Enterobacter 1,339
Chloroflexi Chloroflexi Chloroflexales Chloroflexaceae Roseiflexus 968
Thermotogae Thermotogae Thermotogales Thermotogaceae Kosmotoga 1,738
Euryarchaeota Methanomicrobia Methanosarcinales Methanosarcinaceae Methanosarcina 6,522
Methanomicrobia Methanomirobiales Methanomicrobiaceae Methanoculleus 1,102
Methanomicrobia Methanosarcinales Methanosaetaceae Methanosaeta 750

# Read counts matched to the 21 most abundant microbial genera. The results were obtained from the best BLASTx hits by searching the nucleotide sequence

database of NCBI GenBank.

reads, 0.6%), C. kluyveri (1,100 reads. 0.5%), and C. phyto-
Sfermentans 1SDg (607 reads, 0.3%). In archaea, the three
most prevalent species are Methanosarcina barkeri str.
Fusaro (2,611 reads, 1.1%), Methanoculleus marisnigri JR1
(1,101 reads, 0.5%), Methanosaeta theromphila PT
(724 reads, 0.3%).

Meanwhile, we also analyzed microbial community
compositions based on the assembled contigs, with
BLASTN (version 2.2.13) against the NT and NR data-
bases with E-value cutoff of 10°. Among a total of
118,433 contigs, 26,332 of them (22.2%) were assigned to
356 taxa (genus), containing 330 bacterial genera and 26
archaeal genera. Comparable to the taxonomic structure
generated from the output of BLAST based on reads, our
analysis showed that Firmicutes (32.2%), followed by Pro-
teobacteria (14.1%), Bacteroidetes (3.8%), and Euryarch-
aeota (5.5%), are most dominant (Figure 3B, Additional
file 1: Table S1). The dominant classes in bacteria are Clos-
tridia (8,249 contigs), Gammaproteobacteria (1,972 con-
tigs), Bacilli (484 contigs), Bacteroidetes (315 contigs), and
those in archaea were mapped to Methanomicrobia (1,279
contigs). The 17 most prevalent genera and the 6 most
prevalent species are also consistent with the taxonomic
structure based on mapped reads (Figure 3C, Additional
file 1: Table S1).

Since 16S rDNA is widely used for taxonomic and phylo-
genetic studies due to its highly conserved sequences in
both bacteria and archaea and its hypervariable region can
also be used for accurate taxonomic evaluation, we
extracted 793 contigs (only 0.7% of total contigs) that con-
tain 16S rDNA sequences (an average length of 1,068 bp)
for further analysis. When submitted to the RDP database
(with 80% confidence), approximately 68.6% and 1.3% of
them were classified into bacteria and archaea, respectively.
At the class level, the dominant taxa include Clostridia,
Anaerolineae, Synergistia, Methanomicrobia, Bacilli, and
Gammaproteobacteria (Additional file 1: Table S2), mostly
from Firmicutes, Proteobacteria and Euryarchaeota. It is
noteworthy that the detection of classes Anaerolineae and
Synergistia to be the dominant taxa based on 16S rDNA
sequences differs from those based on reads and contigs.
The reasons are more complex. One of them may be infor-
mation loss in short contigs and sequence assemblies of
low-abundance species that are difficult to annotate based
on limited matches. Another may be due to the lower
matching rate for the 16S-associated contigs, where only
approximately 7% of the contigs were classified at the
genus level. Therefore, an even lower number of 16S
rDNA genes was detected and assigned to the profile with
significant certainty.
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Novel anaerococcus and psychrobacter and their
characteristics
We identified abundant reads assigned to two novel bacte-
rial genera in the fermentation, and among these, the genus
Anaerococcus of class Clostridia was identified, which was
represented by the second most abundant bacterial species,
A. prevotii DSM 20548 (also as A. prevotii PC1, Peptococcus
prevotii) (6,507 reads, 2.7%), an obligate anaerobic bacte-
rium. A. prevotii often presents in oral cavity, skin,
vagina, gut [31], and deep-seated soft tissue, causing
abscesses or anaerobic infections in humans [32]. Thus far,
in Anaerococcus, only this strain has been completely
sequenced due to its clinical significance, and the hit-reads
for Anaerococcus were all assigned to this strain. Therefore,
at the species level, the taxonomic prediction should be
treated with caution. Our taxonomic assignment depends
on the comparison of amino acid sequences deduced
from reads encoding protein sequences of known taxo-
nomic origin. Therefore, only previously sequenced species
can be identified and there are possibilities that other
Anaerococcus species do exist in the fermenter but
conformations from further studies are inevitable.
According to the literature, most species in Anaerococcus
are capable of fermenting several carbohydrates, although
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the fermentation power is weak [33]. However, the involve-
ment of abundant Anaerococcus species in anaerobic fer-
mentation has never been reported. The function of
abundant Anaerococcus species in the fermentation
remains unknown. Its existence in the fermentation
may be contaminations from kitchen wastes or variability
of the genus itself; although genetically identical, the species
possess significant discrepancies and are subject to adapta-
tion under certain fermentation conditions. In this study,
several important enzymes in the metabolic pathways for
methane synthesis were detected in association with
Anaerococcus based on the results of the KEGG analysis
(Figure 5, Additional file 1: Table S3), such as ackA
(acetate kinase, EC: 2.7.2.1), pta (phosphate acetyl-
transferase, EC: 2.3.1.8) and transporters/antiporters,
including NhaC and V-type ATPase subunit D (EC:
3.6.3.14), indicating that Anaerococcus species likely
contribute to the methane synthesis in the fermentation.
Therefore, it is necessary to isolate Anaerococcus species,
to characterize their phylogenetic relationships, and to
study their biological and ecological functions in SS-AD
and methanogenesis from SW in future studies.

The genus Psychrobacter (7,823 reads, 3.2%) of class
Gammaproteobacteria (phylum Proteobacteria) is primarily
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comprised of P. cryohalolentis (1,431 reads, 0.6%), P.
arcticus (425 reads, 0.2%), and Psychrobacter sp.
PRwf-1 (524 reads, 0.2%). Most species of this genus
can adapt to cold conditions, such as polar permafrost
and ice, and are capable of reproducing at temperatures
ranging from -10°C to 40°C [34]. The species can even be
found in the relatively thermophilic environment of the
digestion conditions. So far, Psychrobacter sp. have been
defined as aerobic and mesophilic bacteria. However,
some researchers have shown that some of their strains
were also able to grow in fermenting environments
[35-37] and anaerobic conditions, such as facultative
anaerobic bacteria [38]. The Psychrobacter species often
produce variable lipases (including phenylalanine dea-
minase, alkaline phosphatase, esterase (C4), esterase
lipase (C8), lipase (C14), leucine arylamidase, and
lecithinase [39,40]) and play essential roles in fat decom-
position reactions. They have been isolated from the facial
and body tissues of animals, poultry carcass, fermented
seafood [38,41-43], and groundwater, but the isolation of
Psychrobacter species has never been reported in biogas
fermentation samples. In this study, several important
enzymes in methane metabolism pathways associated with
this genus were also detected based on the KEGG analyses
(Figure 5, Additional file 1: Table S3), including ackA (ace-
tate kinase, EC: 2.7.2.1), pta (phosphate acetyltransferase,
EC: 2.3.1.8), acetyl-CoA synthetase (EC: 6.2.1.1) and trans-
porters/antiporters (such as NhaA and NhaC), and the
results indicate that these enzymes most likely participate
in fat hydrolysis in SW samples for methanogenesis,
particularly under mesophilic conditions.

Fat hydrolysis is the primary reaction of lipases. More-
over, lipases catalyze esterification, interesterification, aci-
dolysis, alcoholysis and aminolysis reactions in addition
to the hydrolytic activity on triglycerides [44]. Therefore,
cold-active lipases, largely distributed in psychrophilic
microorganisms and showing high catalytic activity at low
temperatures, are added to detergents for cold washing,
industrial food fermentation samples, environmental
bioremediation (digesters, composting, oil or xenobiotic
biology applications) and biotransformation processes [44].
Some cold-adaptive lipase genes from Psychrobacter sp.
had been previously cloned and expressed [45]. Therefore,
the abundance of Psychrobacter sp. in this fermenter
demonstrates great potential for use in SW treatment for
methane production or in other bio-energy conversion
processes based on fatty-rich substrates, particularly under
low temperature conditions, in northern China.

Other dominant bacterial species and their characteristics
The most frequently predicted species in this fermenter is
A. colombiense DSM 12261 (11,868 reads, 5.1%), primarily
isolated from anaerobic sludge and belongs to genus
Aminobacterium (Clostridia) [46]. A. colombiense DSM
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12261 and the relative species of Aminobacterium are both
syntrophic, capable of anaerobic degradation of amino
acids, particularly without saccharides and consistently
identified in anaerobic environment, such as sludge and
compost [46,9]. The abundance of such amino acid-
metabolizing organisms indicates high protein content in
the SW samples.

S. wolfei subsp. Wolfei str. Goettingen (4,685 reads,
1.9%) belongs to genus Syntrophomonas (Clostridia),
often isolated from anaerobic environments, such as
aquatic sediment or sewage sludge, growing together with
methanogens (such as Methanospirillum hungatii) and
other H,-using and/or formate-using microorganisms
[47]. S. wolfei subsp. Wolfei str. Goettingen participates in
anaerobic fatty acid degradation [48] through the degra-
dation of long-chain fatty acids into acetate and H, [49]
due to the activity of acyl-CoA dehydrogenase, CoA trans-
ferase, enoyl-CoA hydratase, and other related enzymes
[48], and this species plays a significant role in fatty acid
decomposition and methanogenesis.

The reads for genus Bacteroides (5,655 reads, 2.1%) were
mainly assigned to B. thetaiotaomicron VPI-5482 (1,406
reads, 0.6%), B. vulgatus ATCC 8482 (1,402 reads, 0.6%),
and B. fragilis YCH46 (183 reads, 0.1%). Bacteroides often
reside in human and animal intestines so that they exhibit
symbiotic relationship with E. coli and other species.
Bacteroides are involved in the fermentation of dietary
polysaccharides, utilization of nitrogenous substances, and
biotransformation of bile acids and other steroids in human
colon [50]. Most intestinal bacteria are saccharolytic
and obtain carbon and energy through hydrolysis of
carbohydrates.

The dominant Clostridium species was identified as C.
thermocellum (4,204 reads, 1.7%), which directly con-
verts cellulosic substrate into ethanol with high effi-
ciency and is a good candidate for the degradation of
cellulosic materials from plant biomasses [20,51-53].
In addition to plants, some Clostridium species can
also be isolated from animal feces and cultured with
Methanobacterium thermoautotrophicum [51]. The
tetanus-causing bacterium C. tetani (1,378 reads, 0.6%) is
an obligate anaerobe that relies on fermentation. It can be
found in manure-treated soil, animal feces, and fermenta-
tion samples from biogas-producing plant [20]. C. kluyveri
(1,100 reads. 0.5%) grows anaerobically, using ethanol and
acetate as sole energy sources to produce butyrate, cap-
roate, and H, [54]. C. kiuyveri is originally identified from
canal mud [55] and C. phytofermentans (607 reads, 0.3%)
is widely distributed in soil, capable of producing ethanol,
acetate, CO,, and H, through fermenting cellulose [56].
Therefore, in the initial steps of biomass digestion,
members of Clostridium produce a wide variety of
extracellular enzymes to degrade large biological molecules
(such as cellulose, xylans, proteins, and lipids into
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fermentable components) [6] and participate in acetogen-
esis—the pathway prior to methanogenesis—to create pre-
cursors for methane production [17].

Thermanaerovibrio acidaminovorans DSM 6589 (1,948
reads, 0.8%) (also known as strain Su883) is a thermophilic
anaerobic but air-tolerance organism [57]. This species is
versatile, grows on a variety of amino acids, and can be co-
cultured with Methanobacterium thermoautotrophicum
7245 to improve methane production [58]. The presence
of this species in the sample suggests amino acid
accumulation through protein and polypeptide deg-
radation, and it is also evidenced by the fact that
there are many genes assigned to the category of
“amino acid transport and metabolism” in the COG
and KEGG annotations (Figure 6).

Dominant archaeal species and their characteristics

The most prevalent archaeal species was assigned to
Methanosarcina barkeri fusaro (2,611 reads, 1.1%), which
is originally isolated from sediment obtained from Lago
del Fusaro, a freshwater coastal lagoon of West Naples,
Italy [59]. This reference species possesses a relatively
thick cell wall (composed of acidic heteropolysaccharide)
that forms a protective sheath, and it uses versatile
substrates for methane synthesis, making it more
adaptable to the environment as compared with its
relatives. In addition to its strong survival ability, M.
barkeri is capable of raising pH level in the surrounding
area [60]. Similar to landfill, solid-state fermentation also
accumulates acids produced by acetogens that make
the environment too acidic to host methanogens.
However, attributable to the M. barkeri accumula-
tion, a lesser acidic environment can be maintained
in the fermenter and other methanogens can benefit

from it. In addition, this microbe often makes trash
mound more compact and creates more room for
waste treatment [60].

The genus Methanosarcina includes many methano-
gens whose metabolic features are diverse and include
both acetotrophic and hydrogenotrophic pathways. In
particular, some strains in this genus are capable of util-
izing methanol [59]. Furthermore, most Methanosarcina
are immotile and mesophilic, exhibiting multiple meta-
bolic features with strong advantage in survival. It is pro-
posed that methanol is one of the major factors that
influence methanogenesis [61]. In SW treatments, there
are approximately 60% of the total mass containing
complex organic matters and products of hydrolysis and
acidogenesis are most likely multiple since members of
order Methanosarcinales have the widest substrate
range among methanogens [62]. The dominance of
Methanosarcina demonstrates the relatively abundant nu-
trient sources and various metabolic pathways within our
fermentation system.

The second dominant archaeal taxon is Methanoculleus
marisinigri JR1 (1,101 reads, 0.5%), an organism that
belongs to order Methanomirobiales and class Methano-
microbia. This species is capable of producing methane
through the reduction of CO, with H, and uses formate
and secondary alcohols as alternative electron donors
sometimes, i.e., the hydrogenotrophic pathway. However,
M. marisinigri JR1 cannot use acetate and methyl
group-containing compounds for methanogenesis, i.e.,
the acetotrophic pathway. M. marisinigri JR1 is rela-
tively small in cell dimensions and grows under mode-
rate conditions with temperature ranging from 10°C to
32°C and pH ranging from 6.8 to 7.3. M. marisinigri JR1 is
found in both thermophilic anaerobic digester [63] and
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the leachate of a full-scale recirculating landfill [64].
Particularly, in a metagenomic study of methanogens
residing in a biogas-producing plant in Germany, M.
marisinigri JR1 is found being the most abundant
species in the reactor [20].

The third abundant archaeal methanogen was identi-
fied as Methanosaeta theromphila (724 reads, 0.3%), a
member of Methanosaeta, which is the only genus of family
Methanosaetaceae. M. theromphila are non-motile, non-
sporulating, and thermophilic, which thrives at temperature
of 50°C or higher, though it only grows at near neutral pH.
M. theromphila is rod-shaped and capable of producing
acetate kinase that activates acetate to acetyl-CoA in the
first step of fermenting acetate to methane [65].

Gene function annotation and classification

To obtain a metabolic profile for this discrete bacterial
community, we annotated all sequences (total reads) using
BLASTX based on COG and KEGG database (Figure 6).
Approximately 28% of the total reads were assigned to one
or more COG functional categories. In the category
“metabolism”, a large amount of reads are distributed
among “carbohydrate transport and metabolism (G)”,
“amino acid transport and metabolism (E)”, “energy
production and conversion (C)” and “lipid transport
and metabolism (I)” (Additional file 1: Figure S3).
These metabolic activities are associated with the conver-
sion of biomass into methane during anaerobic fermenta-
tion. In the KEGG analysis, metabolism terms, including
purine, pyrimidine, amino sugar and nucleotide sugar,
glycolysis/gluconeogenesis and methane metabolisms
are among the top five most popular categories
(Additional file 1: Figure S4). Many of these metabolic
processes are involved in the conversion of carbohydrates
to simple compounds and the use of methane in the
absence of oxygen. For example, pyruvate:ferredoxin
oxidoreductase and related 2-oxoacid:ferredoxin oxi-
doreductases (COG0674, 2217 reads), Glycosidases
(COGO0366, 2632 reads), nucleoside-diphosphate-sugar
epimerases (COGO0451, 2219 reads), sugar permeases
(COGO0395, 2050 reads), and glucan phosphorylase
(COGO0058, 1211 reads) were all inevitably detected
in this system.

The enzymes involved in carbohydrate metabolism
were detected in reads assigned to “amino and nucleotide
sugar metabolisms (4,217 reads)”, “glycolysis/gluconeo-
genesis (4,212 reads)” and “starch and sucrose metabo-
lisms (3,170 reads)” as the three most dominant groups,
which are involved in processing of monosaccharides and
polyose, such as maltase-glucoamylase [EC: 3.2.1.20],
beta-glucosidase [EC: 3.2.1.21], glycogen-debranching
enzyme [EC: 2.4.1.25 3.2.1.33], levansucrase [EC: 2.4.1.10],
chitinase [EC: 3.2.1.14], and glucokinase [EC:2.7.1.2]. This
observation is consistent with the finding that many
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species in this fermentation sample are involved in
carbohydrate digestion and energy conversion.

There are also abundant reads that matched to
genes for “lipid metabolism” (4,385 reads), such as
fatty acid, glycerolipid, glyceropholipid, arachidonic
acid, and linoleic acid metabolisms. Many of the enzymes
detected in the processes, such as dihydroxyacetone kinase
[EC: 2.7.1.29], glycerate kinase [EC: 2.7.1.31], glycerol-
3-phosphate dehydrogenase (NAD(P)+) [EC:1.1.1.94],
glycerol-3-phosphate dehydrogenase [EC:1.1.5.3] and
acetyl-CoA acyltransferase [EC:2.3.1.16], are also
involved in methane metabolism. In addition, a significant
amount of reads were obtained for the processes involved
in the protein degradation pathway (1,820 reads), such as
ATP-dependent Clp protease proteolytic subunit [EC:
3.4.21.92] and ATP-dependent protease La [EC: 3.4.21.53],
EC: ATP-dependent protease HsIV [EC: 3.4.25]. Approxi-
mately 15% (v/v) of the kitchen waste in our fermenter
contain both fat and protein, and both lipid hydrolysis and
peptide degradation provide fermentation substrates for
the downstream methanogenesis.

Moreover, total contigs with lengths longer than
500 bp were also analyzed against the KEGG database
based on the BLAST tools. Non-eukaryotic contigs
ranging from 10 to 60 kbp were extracted from the
BLAST output files, and the contigs with identities lower
than 80% or with alignment lengths shorter than 100 bp
were filtered out. For each contig, we selected the best-
hit sequences based on the highest score. The functional
annotations of the large contigs (Additional file 1: Table S4)
showed that there are 16 contigs with hits to genetic infor-
mation processing pathway, 12 contigs for environmental
information processing, 9 contigs for cellular processes, and
8 contigs for nucleotide metabolism. For amino acid,
carbohydrate, and energy metabolism, the numbers of
large contigs with best-hits were 4, 4, and 3, respectively.
Larger contig suggests higher sequencing-read coverage.
Therefore, the abundant microorganisms are always the
active participants in the degradation of organic materials
and energy exchange under the fermentation conditions.

Metabolic pathway analysis in the SW fermentation

The two distinct methanogenic pathways are from H,/CO,
to methane (hydrogenotrophic pathway) and from acetate
to methane (acetotrophic pathway). Methanogenesis has
also been shown to use carbon from other small organic
compounds, such as formate, methanol, methylamines,
dimethyl sulfide, and methanethiol, which are usually
classified intermediates or substrates of the H,/CO,-
to-methane pathway. Figure 5 shows the elements of
the two methanogenesis pathways detected in our
study. Many large contigs (20 contigs in a total length of
76,331 bp; Additional file 1: Table S3), such as contigl7513
(10,585 bp) for the formate dehydrogenase (EC: 1.2.1.2)
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and contig06034 (10,805 bp) for the formylmethanofuran
dehydrogenase (fwdA/fmdA, EC: 1.2.99.5), which are
involved in the initial step of the hydrogenotrophic path-
way (Figure 5, blue box), were detected in the sample. In
addition, mtd, mer (EC: 1.5.99.9), frhB (EC: 1.12.98.1), ftr
(EC: 2.3.1.101) and mch (EC: 3.5.4.27), which are also
involved in the hydrogenotrophic pathway, were present.
Moreover, a significant number of contigs (17 contigs, total
length 38,078 bp, in Additional file 1: Table S3) were
mapped to the acetotrophic pathway (Figure 5, green
boxes). In this pathway, acetyl-CoA synthetase (acs,
EC: 6.2.1.1) plays a key role in the synthesis of acetyl-CoA
from acetate. Acetyl-CoA synthetase is involved in the
acetyl-CoA  decarbonylase/synthase complex (ACDS;
composed of CdhA1, CdhB, CdhD, CdhE and CdhC) and
cleaves C-C/C-S bonds in the acetyl moiety of acetyl-CoA
to oxidize the carbonyl group into CO, and to transfer the
methyl group to tetrahydrosarcinapterin.

Methanogens use 2-mercaptoethanesulfonate (CoM;
coenzyme M) as the terminal methyl carrier in methano-
genesis. Tetrahydromethanopterin S-methyltransferase
(mtr, EC: 2.1.1.86), methyl coenzyme M reductase
(mcr, EC: 2.84.1) and reductase heterodisulfide reductase
(Hdr, EC: 1.8.98.1), which are required for the final reaction
steps of both methanogenic pathway, were also identified
in our sample (Figure 5 and Additional file 1: Table S3).
Furthermore, the finding of critical enzymes, such as
phosphosulfolactate synthasein (coma, EC: 4.4.1.19),
2-phosphosulfolactate phosphatase (comb, EC: 3.1.3.71),
and (R)-2-hydroxyacid dehydrogenase (EC: 1.1.1.272), for
coenzyme M biosynthesis (data not shown in Figure 5 but
in Additional file 1: Table S3) provides insights into the
SW fermentation process. Moreover, our pathway analyses
defined a variety of transporters/antiporters involved in
the methanogenic pathways, such V-type H + —transpor-
ting ATPase and Na+:H + antiporter (nha) (not shown in
Figure 5 but in Additional file 1: Table S3). Therefore,
both hydrogenotrophic and acetotrophic pathways for
methanogenesis occur almost equally in our fermenter,
and the conclusion is strongly supported by the evidence
from our data and consistent with the metabolic charac-
teristics of the dominant archaeal species and complex
components of the microbial communities in the SW
fermentation.

Conclusions

Using high-throughput pyrosequencing and optimized
DNA extraction protocols, we characterized microbial
communities of mesophilic SS-AD fermentation and
their related metabolic pathways in biomass degradation
and methane synthesis. First, we aligned the reads and
assembled contigs separately to the related databases
and found that bacteria and archaea took 91.5% and
4.4% of the hits from the sequencing reads, respectively.
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Members from Firmicutes, Clostridia and Bacilli, are
mostly enriched, followed by phyla Proteobacteria and
Bacteroidetes. Particularly, the species from genera
Aminobacterium, Psychrobacter, Anaerococcus, Clostridium,
Syntrophomonas, and Bacteroides play key roles in the
initial degradation of protein, fat, cellulose, and other
polysaccharides. These results were further supported
by gene functional annotation where we detected many
enzymes involved in “protein degradation”, “lipid
metabolism”, and “carbohydrate metabolism”.

Second, the dominant methanogens present in this
fermenter were from Methanomicrobia. The most preva-
lent species appears to be Methanosarcina barkeri fusaro,
which uses versatile substrates and contains both aceto-
trophic and hydrogenotrophic pathways for methane
synthesis [62]. M. marisinigri JR1 and M. theromphila
with either hydrogenotrophic or acetotrophic pathways
for methanogenesis appear less abundant.

Third, the Psychrobacter (class Gammaproteobacteria)
and Anaerococcus (class Clostridia) species are obviously
abundant in the fermenter, but they have seldom been
reported in other biogas fermentation samples. The
Psychrobacter species adapt to extremely cold climates
and produce cold-adaptive lipases [34] and have great
potential to be used in low-temperature fermentation, par-
ticularly in northern China. However, Anaerococcus species
exhibit weak fermentation capability [33] but abundant in
SS-AD, playing roles in biomass degradation efficiency
and methane yield. Our findings indicate that it is
important to identify these species and to characterize
them for their ecological and biological functions
under SS-AD conditions, particularly for the rational
design of microbial community structures to improve
biogas production in solid-state fermentation under
low-temperature conditions.

Methods

Sample preparation for DNA extraction

The samples for total DNA extraction were obtained from
an anaerobic digester with a 2-liter working capacity. The
digester was loaded with multi-component substrates,
including kitchen waste (15%, v/v over the total solid
added), pig manure (42.5%) and excess sludge (42.5%),
and the initial total solid content was 20% (v/v for the total
container volume). The anaerobic digestion was operated
at 35+ 1°C. The samples were collected from the digester
when biogas production entered a steady phase. On the
sampling day, the biogas yield was 72% biomethane at
pH 7.0.

Total DNA extraction

The liquid content of samples (0.25 g fresh weight) was
removed by centrifugation at 13,000 rounds per minute
(rpm) for 10 min at 4°C. Subsequently, five different
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protocols (Protocols E, EY, F, P, and S) were used to ex-
tract total DNA according to the manufacturer’s instruc-
tions and laboratory manuals. 30-pul double distilled (dd)
H,O were used to dissolve the DNA at the final step re-
gardless what stated in the various protocols.

Protocol E: the E.ZN.A.TM Soil DNA Kit (Omega
Bio-Tek, Inc., USA) was used with minor modifications.
Briefly, in the lysis step, vortexing was replaced by hand
shaking for approximately 10 min to dissolve the pellet.

Protocol EY: The sample (0.25 g) was washed twice
with 1.5 ml of TENP buffer [66], vortexed for 10 min,
collected through centrifugation (12000 rpm, 5 min),
neutralized with 1 ml of PBS buffer, and subjected to
Protocol E for DNA extraction.

Protocol F: the FastDNA Spin Kit (for soil DNA extrac-
tion, MP Biomedicals, Heidelberg, Germany) was used
with small adjustment in the lysis step as in Protocol E. In
the purification step, the Spin Filter was washed twice
with 500 pl SEWS-M buffer for better DNA purity.

Protocol P: the Mo-Bio PowerSoil DNA Isolation Kit
(MoBio Laboratories, Carlsbad, CA, USA) was used with
minor modifications. The original lysis time was changed
to 15 min with maximum intensity, and the sample was
centrifuged for longer time (12000 rpm, 2 min) to com-
pletely degrade cell walls. In the purification step, the
Spin Filter was washed twice with 500 pl of solution C5
for better DNA purity.

Protocol S: the sample (0.25 g) was pre-washed as
done in Protocol EY before DNA extraction according
to modified method of Zhou et al. (1996) [67]. Briefly,
after adding 0.25 g glass beads (d =1 mm) and 0.75 ml
DNA extraction buffer (100 mM Tris, 100 mM EDTA,
200 mM NaCl, 0.01 g/ml PVP, 2% CTAB, pH =8.0) to
the pretreated pellet, the sample was vortexed for 5 min.
Subsequently, 0.75 ml SDS buffer (100 mM Tris,
200 mM NaCl, 2% SDS, pH = 8) was added and mixed
with hand-shaking for 5 min. The sample was incubated
at 65°C for 10 min and inverted every 10 min for a total of
5 times. After centrifugation at 12000 rpm for 15 min at
room temperature, the middle-layer liquid was collected,
extracted with an equal volume of chloroform-isoamyl
alcohol (24:1, v/v), precipitated with isopropanol, and
washed with 70% ethanol.

DNA quantification

The total DNA yield and quality were determined
spectrophotometrically (NanoDrop 3300, Thermo Fisher
Scientific Inc. USA), followed by electrophoresis on 0.8%
agarose gels.

T-RFLP analysis

The 16S rDNA was PCR amplified using the univer-
sal bacterial primer set containing 8 F-FAM (5'-
AGAGTTTGATCMTGGCTCAG-3) and 1492R (5-
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GGTTACCTTGTTACGACTT-3)) [68] and the archaeal
domain-specific primer set containing Arc109F-FAM (5'-
ACKGCTCAGTAACACGT-3') and Arc 915R (5-
GTGCTCCCCCGCCAATTCCT-3') [69], respectively.
The 5'-ends of primers 8 F and Arc109F were labeled with
6-carboxyfluoresceinphosphoramidite (FAM). The PCR
reactions were performed with an rTaq-polymerase
(TAKARA biotechnology (Dalian) Co., Ltd., Japan.)
for 25 cycles and the annealing temperature was 60°C
for bacteria and 55°C for archaea. The PCR products were
subsequently purified using the QIAquick PCR purification
kit (QIAGEN China Co., Ltd., Germany), and a 50-ul
aliquot of each PCR product was digested with the restric-
tion enzymes Mspl and 7Tagl (New England Biolabs
(Beijing) Co., Ltd. USA), respectively, for 2 h and subjected
to the gene scan analysis on an ABI 3730 DNA Analyzer at
Shanghai GeneCore BioTechnologies Co., Ltd. China prior
to terminal restriction fragment length polymorphism
(T-RFLP) analysis.

Pyrosequencing of total DNA

Total DNA from fermentation samples was sheared and
sized to produce DNA whole-genome-shotgun library
according to the manufacturer’s protocol from GS FLX
Titanium General Library Preparation Kit (Roche Applied
Science, USA). DNA Sequencing was performed on a 454
GS FLX Titanium platform at the Beijing Institute of
Genomics, Chinese Academy of Sciences.

Statistics of the biogas-metagenome sequencing data
The shotgun sequences were assembled by using the GS
de novo assembler. Raw and statistical sequencing data
were summarized according to the assembly output. Both
raw reads and contigs were used for further analysis.

Classification of sequencing data

The classification of the total data was performed by
using the BLASTN/BLASTX tools against GenBank
NT/NR databases with an E-value cutoff of 10 based
on total reads and contigs.

The species richness analysis was performed by using
MEGAN based on total sequencing reads [70]. The
MEGAN platform uses the lowest common ancestor
(LCA) algorithm to classify reads to certain taxa based
on their blast hits. The LCA parameters were set as Min
Score 35.0, Top Percent 50, and Min Support 2.

In addition, the 16S rDNA contigs with hits were
extracted from the results of BLASTN analysis against the
NT database and submitted to the Ribosomal Database
Project (RDP) database [71] for classification with 80%
confidence.

A rarefaction curve was generated for all reads, except
unassigned and no-hit reads. The results of the total read
classification were constructed into a rooted taxonomic
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tree where each clade (leaf) represents a taxon. The clades
(leaves) in this tree were subsequently used as operational
taxonomic units (OTUs) in the rarefaction analysis. The
program randomly and incrementally chooses a tenth of
the reads as a subset until all the reads are chosen. For
each random subset, the number of leaves is determined
independently.

Functional annotation of total contigs

To obtain gene profile characteristic for the anaerobic
microbial community, the total sequencing reads were
annotated based on BLASTX analysis against the database
of Clusters of Orthologous Groups of proteins (COG) [72]
with an E-value cut-off of 10~°. The sequencing reads were
functionally annotated and assigned to the COG categories
according to their best hits.

The metabolism analysis was performed on KEGG
Orthology (KO)-identifiers by using KAAS tool (KEGG
Automatic Annotation Server) with bi-directional best hit
of total contigs, a default threshold (60), and prokaryotes
as a representative set. Gene annotation was based on
Enzyme Commission (EC)-numbers based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) Orthology
database. Metabolic pathway maps were drawn according
to the list of unique EC numbers.

Additional file

Additional file 1: Table S1. Top 17 genera of taxonomic classification
based on contig-counts. Table S2. Analysis of bacterial and archaeal
16S-TDNA contigs based on the Ribosomal Database Project Classifier
(RDPQ). Table S3. Large contig function annotation. Table S&. The list of
contigs detected in methanogenesis pathways. Figure S1. The histogram
shows the distribution of the GC percentage for BE-1 sample. Each
position represents the number of sequences within a GC percentage
range. The data used in these graphs is based on raw upload and post
quality-control sequences. Figure S2. Comparison of microbial
community structures between BE-1 and BEY. The taxonomic trees of BE-
1 and BEY on rank family for archaea and on rank class for bacteria were
constructed respectively on MEGAN. A, archaea of BE-1. B, archaea of BEY.
C, bacteria of BE-1. D, bacteria of BEY. Figure S3. Popular terms in
metabolism based on KEGG analysis. The Y-axis refers to the percentage
of reads within the reads mapping to metabolism terms. Figure S4.
Popular terms in the functional secondary category of metabolism based
on KEGG analysis.
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buffer: Phosphate buffered saline; CTAB: Cetyltrimethylammonium bromide;
EDTA: Ethylene diamine tetraacetie acid; PVP: Polyvinylpyrrolidone;

SDS: Sodium dodecy! sulfate; rom: Rounds per minute; FAM: 6-
Carboxyfluoresceinphosphoramidite; T-RFLP: Terminal restriction fragment
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