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Abstract

Background: Bacterial cellulose (BC) is a highly crystalline and mechanically stable nanopolymer, which has excellent
potential as a material in many novel applications, especially if it can be produced in large amounts from an inexpensive
feedstock. Waste fiber sludge, a residue with little or no value, originates from pulp mills and lignocellulosic biorefineries.
A high cellulose and low lignin content contributes to making the fiber sludge suitable for bioconversion, even without
a thermochemical pretreatment step. In this study, the possibility to combine production of BC and hydrolytic enzymes

Fiber sludge

from fiber sludge was investigated. The BC was characterized using field-emission scanning electron microscopy and
X-ray diffraction analysis, and its mechanical properties were investigated.

Results: Bacterial cellulose and enzymes were produced through sequential fermentations with the bacterium
Gluconacetobacter xylinus and the filamentous fungus Trichoderma reesei. Fiber sludges from sulfate (SAFS) and sulfite
(SIFS) processes were hydrolyzed enzymatically without prior thermochemical pretreatment and the resulting
hydrolysates were used for BC production. The highest volumetric yields of BC from SAFS and SIFS were 11 and 10 g/L
(DW), respectively. The BC yield on initial sugar in hydrolysate-based medium reached 0.3 g/g after seven days of
cultivation. The tensile strength of wet BC from hydrolysate medium was about 0.04 MPa compared to about 0.03 MPa
for BC from a glucose-based reference medium, while the crystallinity was slightly lower for BC from hydrolysate
cultures. The spent hydrolysates were used for production of cellulase with T. reesei. The cellulase activity (CMCase
activity) in spent SAFS and SIFS hydrolysates reached 5.2 U/mL (87 nkat/mL), which was similar to the activity level
obtained in a reference medium containing equal amounts of reducing sugar.

Conclusions: It was shown that waste fiber sludge is a suitable raw material for production of bacterial cellulose and
enzymes through sequential fermentation. The concept studied offers efficient utilization of the various components in
fiber sludge hydrolysates and affords a possibility to combine production of two high value-added products using
residual streams from pulp mills and biorefineries. Cellulase produced in this manner could tentatively be used to
hydrolyze fresh fiber sludge to obtain medium suitable for production of BC in the same biorefinery.
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Background

Production of high value-added materials from residual
streams originating from renewable feedstock is an
interesting possibility, which has the prospective of be-
coming an integral part of existing pulp mills and
lignocellulosic  biorefineries. One such material is

* Correspondence: leifjonsson@chem.umu.se; fhong@dhu.edu.cn

TEqual contributors

'China-Sweden Associated Research Laboratory in Industrial Biotechnology,
College of Chemistry, Chemical Engineering and Biotechnology, Donghua
University, Shanghai 201620, China

2Department of Chemistry, Umea University, SE-901 87, Umed, Sweden

Full list of author information is available at the end of the article

( BiolMed Central

bacterial cellulose (BC), which is a nano-structured ma-
terial produced by various species of acetic acid bacteria
[1]. BC is mainly built up by microfibrils, which are
around 2—-4 nm in diameter and which in turn build up
fibers with an approximate size of less than 100 nm [2].
The fine and well-ordered structure of BC offers several
advantages when it is used in matrices with other
materials, such as low thermal expansion and superior
reinforcement [3]. Already today, BC has reached a wide
array of applications, such as health food, cosmetics,
pharmaceutical and biomedical products, reinforcement
of high-quality papers, diaphragms for electro-acoustic
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transducers, paint additives, coatings, reinforcement for
optically transparent films, and proton-conducting
membranes of fuel cells [1,3-7]. The future potential for
BC is even wider than the already existing applications,
especially if it can be produced in large amounts from
an inexpensive feedstock, and may include areas such
as specialty textiles [8], advanced functional materials,
and packaging.

Production of bacterial cellulose from agricultural
products and residues, which include konjak glucomannan
[9], wheat straw [10,11], and cotton-based waste textiles
[12], has previously been demonstrated. An advantage of
using agricultural or industrial residual streams as feed-
stock for production of bacterial cellulose is the low cost
of the raw material. When lignocellulosic feedstocks are
pretreated at high temperature and high pressure they
give rise to inhibitory compounds due to breakdown of
polysaccharides and lignin. In the studies of Hong and
Qiu [9] and Hong et al. [10], the hydrolysates obtained
through acid hydrolysis of konjak glucomannan and
wheat straw had to be detoxified using overliming in
order to enable bacterial growth and production of BC.

Waste fiber sludge is a residual material originating
from pulp mills and lignocellulosic biorefineries. Fiber
sludge consists mainly of cellulose and hemicellulose,
and usually has a low content of lignin (< 5%). Due to
their composition and structure, fiber sludges are usually
easy to be hydrolyzed enzymatically without prior
thermochemical pretreatment, and could potentially
yield hydrolysates with high glucose concentrations and
low content of inhibitory compounds. A low content of
inhibitory compounds should be advantageous for the
bacterial strains used for production of BC. There are,
however, drawbacks associated with enzymatic hydroly-
sis, especially the high cost for the hydrolytic enzymes
used in the process.

The objectives of this study were to investigate the
appropriateness of waste fiber sludge for production of
BC, and the possibility to combine the production of
BC with production of hydrolytic enzymes useful for
degradation of lignocellulose. The fiber sludges used in
this study were originated from a pulp mill using a
sulfate-based process (kraft pulping) and from a
lignocellulosic biorefinery using a sulfite-based process.
In addition, we investigated the metabolic preferences
of the bacterium, Gluconacetobacter xylinus, used for
the production of bacterial cellulose and the filament-
ous fungus, Trichoderma reesei (Hypocrea jecorina),
used for enzyme production by analyzing the con-
sumption of different components in the culture
medium. Sequential production of BC and enzyme
would potentially give two high value-added products
from a residual stream of very low or no value. Produc-
tion of BC and enzyme could tentatively also be
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integrated with biofuel manufacture, which would benefit
from production of high value-added co-products and
from on-site production of hydrolytic enzymes.

Results and discussion

Fiber sludges collected from mills operating sulfate- and
sulfite-based processes were characterized chemically
and subjected to enzymatic hydrolysis without any
thermochemical pretreatment. The dry-matter content
of the SAFS was 51.7%, while it was 43.7% for the SIFS.
Compositional analysis (Table 1) indicates that SAFS
consisted mainly of glucan (69.1%) and xylan (15.4%).
SIES consisted mainly of glucan (89.7%) and contained
very low levels of other carbohydrates, such as mannan
(2.7%) and xylan (1.7%). The content of lignin was low
in both SAFS and SIFS (Table 1).

The first experimental series in which G. xylinus was
grown on fiber sludge hydrolysates showed that it was
advantageous to dilute the hydrolysates in order to facili-
tate BC production (Figure 1). The bacterium grew well
in all diluted media. The results indicate that G. xylinus
consumed similar amounts of reducing sugars in all of
the experiments, namely around 20 g/L of reducing
sugar during seven days of cultivation. The pH value of
the media decreased during the cultivations, from
around pH 5 to around pH 3.

The volumetric yield of BC (DW) in undiluted hydrol-
ysate was about 2 g/L for both SAFS and SIFS. A two-
fold dilution of the hydrolysate increased the volumetric
BC vyield to 11 g/L for SAFS and 10 g/L for SIFS, which
represents a five-fold increase compared to undiluted
hydrolysates (Figure 1A). When the hydrolysate was
diluted three-fold, the volumetric yield of BC decreased
slightly to around 9 g/L for both SAFS and SIFS. A four-
fold dilution resulted in a BC yield of around 8 g/L
(Figure 1A). The volumetric yield of BC (g/L) was not
that different in the experiments with diluted
hydrolysates. However, the BC vyield on the initial
amount of reducing sugar (g/g) increased with increas-
ing dilution (Figure 1B). The two-fold dilution resulted
in a BC yield of around 0.20 g/g, while the three-fold di-
lution resulted in an improvement to around 0.22 g/g.
The four-fold dilution resulted in the highest yields,
around 0.30 g of BC per g initial reducing sugar. The
yield of BC on consumed reducing sugar was 0.5-0.6 g/g
for the different dilutions of the SAFS hydrolysate. For

Table 1 Composition (% w/w) of sulfate (SAFS) and sulfite
(SIFS) fiber sludges

Fiber Arabinan Galactan Glucan Mannan Xylan Lignin Ash
sludge

SAFS 03 02 69.1 33 154 35 36
SIFS <0.02 0.1 89.7 27 16 08 17
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Figure 1 Yields of bacterial cellulose (BC) after seven days of cultivation of G. xylinus. The top graph (A) shows the volumetric yield
[g BC (DW) per L] and the bottom graph (B) shows the yield on the initial amounts of reducing sugar [g BC (DW) per g initial sugar].

the different dilutions of the SIFS hydrolysate, the yield
of BC on consumed reducing sugar was about 0.4 g/g.
After evaluating the initial results, the four-fold dilu-
tion was selected for further experiments. The second
attempt of production of BC was performed in larger
scale and 100 mL of hydrolysate was used instead of
30 mL. Furthermore, a glucose reference with similar
sugar content was included for comparison and the in-
cubation time was increased to 14 days, after which the
BC was collected through filtration and its properties
were investigated in order to assess the outcome of the
experiments. The results are summarized in Table 2.
Surprisingly, the volumetric BC yield (DW) from the
SAFS hydrolysate, 6.23 g/L, was higher than for the
reference cultivation, which reached 4.90 g/L. The culti-
vation in SIFS hydrolysate gave 4.65 g/L, a slightly lower
volumetric yield than for the reference. The water-
holding capacity of the BC membranes was almost iden-
tical (Table 2). When the thickness of the strips was
measured, the results were found to be different. The
thickest BC strips, 3.11 mm, were found in the reference
medium, which can be compared to 2.83 mm for the
SAFS hydrolysate and 2.59 mm for the SIFS hydrolysate.

The thickness of BC membranes is, however, less im-
portant than the tensile strength, since the thickness can
be influenced by several factors, such as surface area and
the amount of water held by the membrane. The BC
membranes from SAFS and SIFS hydrolysates had a ten-
sile strength of around 0.04 MPa (Table 2). This was
considerably higher than for membranes produced in

Table 2 Properties of BC produced in different media
with a four-fold dilution of hydrolysate and after 14 days
of fermentation

Property/Culture medium SAFS SIFS Reference
hydrolysate hydrolysate medium

Volumetric yield of BC (g/L)  623+0.14 465+0.15 490+ 0.58

Water-holding capacity of BC 995+ 1.0 994+20 99.5+0.1

(%)

Thickness of BC strips (mm)  2.83+0.20 259+0.20 3114022

Tensile force (N) (wet sheet) 048 +0.09 041+0.08 039+ 005

Tensile strength (MPa) 0042+0012 0040+0020 0031+£0011

(wet sheet)
Degree of crystallinity (%) 60.6 66.3 780

1l Calculations were based on the empirical method found in [26].
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the reference medium, which exhibited resistance up to
around 0.03 MPa. Similar results were found previ-
ously in a study of BC production from cotton-based
waste textiles [12]. The fact that the tensile strength of
BC produced in glucose-based medium was lower than
that of BC produced in hydrolysates is perhaps due to
the lower thickness of the BC pellicles from the hy-
drolysate media. The BC in the hydrolysate media
would be able to form a more compact network than
in the reference medium.

The degree of crystallinity of the BC membranes
differed depending on the cultivation medium. A higher
degree of crystallinity gives rise to a more stable cellu-
lose polymer when it comes to resistance to digestion
and breakdown of the polymer. Hence, more crystalline
cellulose polymers are also more difficult to solubilize
and add functional groups to, which would be required
if the cellulose is to be used for many of the potential
applications for BC. The analysis of the different
membranes showed that the most crystalline cellulose
was found in BC from cultures with reference medium,
where the degree of crystallinity was around 78%. The
cellulose from SAFS hydrolysate had a crystallinity of
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around 61%, while the cellulose from SIFS hydrolysate
had a crystallinity of around 66%. These results are fur-
ther supported by scanning electron microscope (SEM)
images, which display the structure of the cellulose
membranes at a magnification of 20,000 times. Field-
emission scanning electron micrographs (FESEM) of
freeze-dried BC pellicles prepared from reference
medium and from SIFS and SAFS hydrolysates are
shown in Figure 2A-C. The fracture surface morphology
of the BC pellicles from different media is essentially the
same and the histograms (Figure 2a-c) based on the
FESEM images illustrate a small average diameter and a
relatively narrow diameter distribution for the nanofibers
of the BC pellicles. The fiber distribution data indicate
that most of the fibers were in the range 15 to 70 nm,
with an average width of 35 to 40 nm.

In the experiment in which the cultures were
harvested after 14 days, the yield of BC on consumed re-
ducing sugar was 0.50 g/g for the SAFS hydrolysate and
0.31 g/g for the SIFS hydrolysate. The BC yield from
the cultures with reference medium was only 0.28 g/g.
The yield of BC on the initial concentration of redu-
cing sugar was 0.22 g/g for the SAFS hydrolysate,
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0.17 g/g for the SIFS hydrolysate, and 0.18 g/g for the
reference medium.

The results obtained in our study compare well to
results achieved in other studies where various
substrates have been used for production of BC. Keshk
and Sameshima [13] studied the ability of G. xylinus
ATCC10245 to produce BC using sixteen different carbon
sources including monosaccharides, polysaccharides, and
alcohols. Only four of these carbon sources turned out to
be useful for production of BC. The highest BC yield on
the consumed amount of carbon source, 0.287 g/g, was
achieved with glycerol [13]. Fructose, glucose, and inositol
gave BC yields amounting to 0.153 g/g, 0.087 g/g, and
0.078 g/g, respectively. The high yield achieved with gly-
cerol could be attributed to the low consumption rate for
this carbon source. Thompson and Hamilton [14]
compared two different G. xylinus strains, ATCC10821
and ATCC23770, and their ability to grow on various car-
bon sources, such as potato effluents, cheese whey perme-
ate, and sugar beet raffinate. Their results indicated that
the highest yield for ATCC10821 was achieved after seven
days of incubation, while ATCC23770 gave better yield
after 14 days. The best results were achieved with potato
effluents (starch) and ATCC23770, which gave a BC yield
on consumed glucose of 0.27 g/g after 14 days, nearly the
same yield as that obtained from a cultivation on optimized
glucose medium [14]. This can be compared to our study,
where the yields on consumed reducing sugars for the
cultivations on SAFS (0.50 g/g) and SIFS (031 g/g)
hydrolysates were higher than that of the cultivation on
glucose-based reference medium (0.28 g/g). This suggests
that BC production from residual low-value streams from
forest biorefineries performs well compared to BC produc-
tion from residues originating from the agricultural sector.

The analysis of monosaccharides is summarized in
Table 3. The results indicate that glucose was the main
nutrient source and that it was consumed efficiently in
all cultivations. The analysis also suggests that some of
the xylose was consumed. The utilization of xylose by
G. xylinus is not well understood but it is suggested in
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the literature that most G. xylinus strains have poor
ability to utilize xylose [15,16]. The metabolic pathway
presented by Ross et al. [17] suggests that G. xylinus
has the ability to utilize xylose. It has been proposed
that xylose is mainly used as a source of energy for
the bacterium, as it is consumed by G. xylinus through
conversion into glyceraldehyde-3-phosphate, which in
turn ends up in the tricarboxylic acid cycle (TCA) as
acetyl Co-A after several other reactions [17]. Our
study of complex fermentation media composed of fiber
sludge hydrolysates further supports the suggestion that
G. xylinus does convert xylose. The analysis of the media
before and after fermentation with G. xylinus indicates
that the consumption of xylose was around 2 g/L during
14 days of fermentation (Table 3).

The concept of sequential fermentation has previously
been successful for production of ethanol and enzymes
from lignocellulosic feedstock [18] and waste fiber
sludge [19]. This concept offers several potential
advantages. These include efficient utilization of the
various components in the cultivation medium by two
different microorganisms. In the present study, the pos-
sibility to produce two value-added products, BC and
enzymes, was also investigated, and 7. reesei was used in
the second step rather than Aspergillus niger (A. niger),
which was used in previous studies [18,19]. With the pro-
duction of enzymes in the second fermentation step, the
need of external supply of enzymes for hydrolysis of fiber
sludge would decrease, as enzymes could tentatively be
supplied through on-site enzyme production. The results
achieved in this study indicate that the spent SAFS hy-
drolysate served as a good medium for enzyme produc-
tion with 7. reesei. The cellulase activity after 6 days of
fermentation reached 5.2 U/mL (87 nkat/mL) (Figure 3).
T. reesei seemed to grow well in the medium despite its
low content of easily accessible monosaccharides that the
fungus could use as carbon source (cf. Table 3). How-
ever, in addition to monosaccharides and acetic acid
(Table 3), the medium may also contain disaccharides,
oligosaccharides, and other substances that the fungus

Table 3 Analysis of media used for cultivation of G. xylinus

A. Prior to fermentation with G. xylinus and with a four-fold dilution of the hydrolysates.

Media/Composition Glucose (g/L) Xylose (g/L) Arabinose (g/L) Galactose (g/L)

Mannose (g/L)

Acetic acid (g/L)

SAFS hydrolysate 141+03 33+0.1 < 0.1 < 0.1
SIFS hydrolysate 176+0.2 02+0.1 <01 <01
Reference medium 183+03 - - -

< 0.1
< 0.1

<01
< 0.1

B. After 14 days fermentation with G. xylinus (with a four-fold dilution of the hydrolysates).

Media/Composition Glucose (g/L) Xylose (g/L) Arabinose (g/L) Galactose (g/L)

Mannose (g/L)

Acetic acid (g/L)

SAFS hydrolysate <01 18+0.1 <01 <01
SIFS hydrolysate <01 02+0.1 <01 <01

Reference medium 06+0.1 - - -

< 0.1
<01

<01
<01
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could utilize as carbon source. The glucose-based
reference medium and the spent SAFS hydrolysate
supplemented with fresh sulfate fiber sludge produced
almost equal levels of cellulase activity (Figure 3).
Cultivations in  glucose-based reference medium
supplemented with sulfite fiber sludge did exhibit higher
activity (Figure 4) than the cultivations in reference
medium with sulfate fiber sludge or spent SAFS hydrol-
ysate medium (Figure 3), but the cultivations in spent
SIFS did not result in any substantial enzyme activity
(Figure 4). These results were somewhat surprising, since
it is not clear that the media contained compounds that
inhibit 7. reesei. Analysis of the raw material showed that
none of the fiber sludges contained any detectable
concentrations of sulfite [<5 mg/kg (DW)]. Both fiber
sludges contained some sulfate, namely 100 mg/kg (DW)
for the SAFS and 200 mg/kg for the SIFS. As only very
small amounts (2% w/v) of the sludges were added as
supplement to the cultivation media used for enzyme
production, the sulfate content is unlikely to have had

any negative effect on the microorganism. Since reducing
sugar was consumed and the pH changed (Figure 4), the
problem may instead be related to cellulase production.

An attempt was made to improve enzyme production
by T. reesei by dilution of the spent SIFS medium. With
a two-fold dilution with water, addition of 2% (w/v) SIFS,
and adjustment of the level of reducing sugars to 10 g/L
using glucose, T. reesei produced a cellulase activity level
of 5.2 U/mL (Figure 5) after 4 days of cultivation, the
same level of activity that was obtained using spent
SAFS medium. More research is needed to elucidate
why undiluted spent SIFS medium inhibited or failed to
induce enzyme production.

Several other studies have been performed with T. reesei
Rut C-30 and complex carbon sources derived from ligno-
cellulose. Shin et al. [20] investigated several different
cellulose-based media. In one of these experiments, a
mixture of milled newspaper (2%) and lactose (1%) was
used as substrate for enzyme production and the highest
activity reached was 30 nkat/mL (1.8 FPU/mL). The same
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Figure 4 Cultivations of T. reesei in SIFS spent hydrolysate and reference medium supplemented with 2% waste fiber sludge (SIFS).
The figure shows the concentration of reducing sugar and the pH value (left) and the cellulase (CMCase) activity (right).
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Figure 5 Cellulase (CMCase) activity in cultivations of T. reesei

in SIFS spent hydrolysate with and without dilution of
the medium.

study reported about experiments performed with fiber
residues from hydrolyzed office paper (2%), in which the
highest enzymatic activity was 45 nkat/mL (2.7 FPU/mL).
Furthermore, pretreated newspaper (1%) and pretreated
oak wood (2%) were also used for enzyme production in
the same study. In experiments with newspaper and oak
media, the cellulase activity reached levels of 25 nkat/mL
(1.5 FPU/mL) and ~72 nkat/mL (4.3 FPU/mL), re-
spectively. Pretreated wood has been used for enzyme
production with 7. reesei Rut C-30 in other studies as
well. Szengyel et al. [21] used steam-pretreated willow
as substrate and achieved 30 nkat/mL (1.8 FPU/mL)
as the highest activity. This was obtained in
experiments where 50% fibrous pretreated willow was
mixed with 50% of concentrated filtrate (liquid). The
medium contained around 20 g/L of carbohydrate
[21]. Softwood has also been used for enzyme produc-
tion in a similar manner. Szengyel et al. [22] used
steam-pretreated spruce as the carbon source. Several
different experiments were performed and 2% washed
steam-pretreated spruce gave the highest activity,
namely ~13 nkat/mL (0.8 FPU/mL). Although it is
evident that a variety of cellulosic media can be used
for enzyme production with T. reesei, our study differs
from the others by the utilization of a waste stream
(spent hydrolysate) and by that the enzyme produc-
tion step was preceded by a BC production step,
which makes the enzymes a secondary product.

Conclusions

In conclusion the results of this study show that there is
a great potential in utilizing waste fiber sludge for co-
production of bacterial cellulose and enzymes. Fiber
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sludge serves as a low cost and abundant raw material
which is easily hydrolyzed to sugars without pretreat-
ment. The results also indicate that production of BC
from fiber sludge hydrolysates gives a cellulose polymer
displaying superior properties compared to the one
produced from a glucose-based reference medium.
Conditioning of hydrolysates and optimization of the
cultivation conditions are likely to result in higher volu-
metric yields than what reported here and deserve atten-
tion in future studies.

Methods

Fiber sludges

The waste fiber sludges that were used in this study were
kindly provided by two different European mills, one pulp
and paper mill using a sulfate-based process (SAFS) and a
lignocellulosic biorefinery using a sulfite-based process
(SIFS). The characterization and analysis of the feedstocks
and the content of monosaccharides, lignin and ash was
performed by MoRe Research (Ornskéldsvik, Sweden).

Enzymatic hydrolysis

The hydrolysis of the fiber sludges was performed
enzymatically without any prior thermochemical pre-
treatment. Initially, 290 g of moist SAFS with a dry-
weight content of 51.7% were mixed with 693.8 g of
citrate buffer (0.05 M, pH 5.0), while 343 g of moist
SIFS with a dry-weight content of 43.7% were mixed
with 640.8 g of the citrate buffer. The fiber sludges
were mixed in 2-L shake flasks, the final dry-matter
content was 15% (w/w), and the total content per
shake flask was 1 kg. The enzyme preparation used for
hydrolysis was Cellic CTec2 (Novozymes, Bagsvaerd,
Denmark). The enzyme preparation was added to a
final concentration of 1.6% (w/w) of the reaction mix-
ture, which corresponded to 10 FPU/g biomass (dry
weight of waste fiber sludge). The flasks were
incubated with orbital shaking (Ecotron, Infors AG,
Bottmingen, Switzerland) at 50°C and 150 revolutions
per minute (rpm) for 48 h. The glucose level during hy-
drolysis was monitored using a glucometer (Glucometer
Elite XL, Bayer Healthcare, Leverkusen, Germany).
After hydrolysis, the slurries were centrifuged (Allegra
X-22R, Beckman Coulter, Brea, CA, USA) at 4°C and
4,200 g for 10 min to recover the liquid fractions. The
pH of the liquid fractions was adjusted to 2.0 with sul-
furic acid, and they were then stored in a freezer be-
fore further processing.

Production of bacterial cellulose

Production of BC was performed using Gluconacetobacter
xylinus (Acetobacter xylinus) ATCC 23770 (American Type
Culture Collection, Manassas, VA, USA). A series of
100-mL flasks were filled with 30 mL fiber sludge
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hydrolysate and supplemented with 5 g/L yeast extract
and 3 g/L tryptone. Fiber sludge hydrolysates were ei-
ther undiluted or diluted two-fold, three-fold and four-
fold. The flasks were autoclaved at 105°C for 30 min in
order to sterilize the growth media. The flasks were
inoculated with 10% (v/v) G. xylinus inoculum, which
was pre-grown for 24 h in a synthetic medium (25 g/L
D-glucose, 5 g/L yeast extract and 3 g/L tryptone,
pH 5.0). The flasks were incubated statically at 30°C for
7 days, after which the yield of BC and the pH value
were measured. Samples of the culture fluid were taken
for analysis of the monosaccharide content.

A second series of experiments consisted of four-fold
diluted fiber sludge hydrolysates and a glucose reference
with similar monosaccharide content. The experiments
were performed as described above but with 100 mL of
medium in 250-mL flasks. The time of incubation was
increased from 7 days in the first experiment to 14 days.
After 14 days of static incubation, the BC membranes
were collected by filtration and were then dried to con-
stant weight at 105°C. After that, the BC was weighed
for calculation of the yield.

The yield of BC on initial reducing sugar (g/g) was
calculated by dividing the volumetric yield of BC with
the initial concentration of reducing sugar. The yield of
BC on consumed sugar (g/g) was calculated by using the
following equation:

BC yield on consumed sugar (g/g)

BC(¢)
Initial reducing sugar — residual sugar (g)

For characterization of BC membranes, the cellulose
pellicle was soaked in a 0.1 M solution of sodium hy-
droxide (60 min, 80°C) to remove impurities, such as
culture medium and trapped bacterial cells. A second
wash was performed with deionized water at the same
temperature and for the same period of time. The BC
pellicle was then washed with deionized water until the
pH of washing water was neutral.

Production of cellulase

Enzyme production with Trichoderma reesei Rut C-30 was
performed by using spent hydrolysates obtained after BC
production, and with the addition of 2% (w/v) of the
corresponding dried waste fiber sludge. Reference medium,
which was used as a control, was based on glucose (10 g/L)
with 2% (w/v) additional waste fiber sludge. Separate
cultures with reference medium were used for SAFS and
SIES. Each of a series of 500-mL flasks contained 100 mL
spent hydrolysate supplemented with 0.1% (w/v) tryptone,
0.05% citric acid, 2% Vogel’s media [23], and 0.015% Tween
80. The flasks containing the media were autoclaved at
110°C for 30 min. The flasks were then inoculated with
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10% (v/v) of a suspension of T. reesei pellets from a culture
with glucose-based reference medium that was pre-grown
at 30°C for 36 h. The cultivations were carried out at 28°C
and 160 rpm for the following 8 days.

Enzyme activity assay

The cellulase activity was measured using a reducing
sugar assay developed for determination of xylanase ac-
tivity and based on dinitrosalicylic acid (DNS) [24], but
with 1% (w/v) of carboxymethyl cellulose (CMC) as
substrate instead of xylan, and using a buffer consisting
of 50 mM citric acid (pH 5.0). A mixture containing
0.9 mL substrate solution and 0.1 mL enzyme sample
was incubated at 50°C for 10 min. Blanks containing
(A) enzyme but no substrate and (B) substrate but no
enzyme were included with all assays of enzyme activ-
ity, and the values obtained for the samples were
corrected using the blank values. One unit of cellulase
activity equals formation of 1 pmol glucose from CMC
per min at pH 5.0 and 50°C. The activity of the culture
fluids were calculated as the volumetric activity (U/mL)
[one unit (U) equals 16.67 nkat].

Analysis of sugars and acetic acid

The concentrations of arabinose, galactose, glucose, xylose,
and mannose were determined using high-performance
anion-exchange chromatography (HPAEC). The system
used was an ICS-3000 from Dionex (Sunnyvale, CA, USA)
with an electrochemical detector. The separation was
performed with a CarboPac PA20 (3 x 150 mm) separation
column equipped with a CarboPac PA20 (3 x30 mm)
guard column (Dionex). Elution was performed with a
2 mM solution of NaOH during 25 min, followed by re-
generation at 5 min with 100 mM NaOH, and equilibra-
tion for 15 min with 2 mM NaOH (Sodium hydroxide
solution for IC, Sigma-Aldrich, Steinheim, Germany). The
flow rate was 0.4 mL/min.

The concentration of acetic acid was determined with
HPAEC by using the ICS-3000 system and its conductiv-
ity detector. The separation was performed with an
IonPac AS15 (4 x 250 mm) separation column equipped
with an IonPac AG15 (4x50 mm) guard column
(Dionex). The mobile phase consisted of a 35 mM solu-
tion of NaOH (Sodium hydroxide solution for IC,
Sigma-Aldrich), and the flow rate was 1.2 mL/min.

Tensile strength of wet BC membranes

The washed BC pellicle was cut into 40 mm long and
10 mm wide strips for analysis of tensile strength. The ten-
sile strength of the wet BC was measured by using a uni-
versal testing machine (H5K-S, Hounsfield Test Equipment
Ltd., UK) operating at a crosshead speed of 50 mm/min.
All data for determination of tensile strength were
collected under the same conditions. The tensile strength
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(in megapascal, MPa, or N/mm?) was calculated by divid-
ing the tensile force by the area of the cross section of the
BC strips. Each test was performed by using 10 samples
and mean values of the strength of BC are given.

Electron microscopy

The purified BC pellicle was dried by using a vacuum
freeze dryer (LyoQuest-55 Plus, Telstar, Spain) and the
samples were then coated with gold (E-1045, Hitachi,
Tokyo, Japan). Analysis of the structure of the BC was
performed by using a Field-Emission Scanning Electron
Microscope (FESEM) (S-4800, Hitachi) at 15, 25 or
35 kV. The amplification was 20,000. The analysis of the
diameter of 100 fibers was performed by using the soft-
ware Image] [25].

Degree of crystallinity of BC

X-ray diffraction (XRD) was used to examine the crystal-
linity of freeze-dried BC after alkaline washing. XRD
spectra were recorded by using a D/Max-2550PC dif-
fractometer (Rigaku, Tokyo, Japan) at 40 kV and
200 mA. Angular scanning was performed at 5-60° (20)
and 1°/min. Calculations of the degree of crystallinity
were based on the empirical method of Segal et al. [26].
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