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Abstract

Background: The recent discovery of accessory proteins that boost cellulose hydrolysis has increased the
economical and technical efficiency of processing cellulose to bioethanol. Oxidative enzymes (e.g. GH61) present in
new commercial enzyme preparations have shown to increase cellulose conversion yields. When using pure
cellulose substrates it has been determined that both oxidized and unoxidized cellodextrin products are formed. We
report the effect of oxidative activity in a commercial enzyme mix (Cellic CTec2) upon overall hydrolysis, formation
of oxidized products and impact on 3-glucosidase activity. The experiments were done at high solids loadings

using a lignocellulosic substrate simulating commercially relevant conditions.

Results: The Cellic CTec2 contained oxidative enzymes which produce gluconic acid from lignocellulose. Both
gluconic and cellobionic acid were produced during hydrolysis of pretreated wheat straw at 30% WIS. Up to 4% of
released glucose was oxidized into gluconic acid using Cellic CTec2, whereas no oxidized products were detected
when using an earlier cellulase preparation Celluclast/Novozym188. However, the cellulose conversion yield was
25% lower using Celluclast/Novozym188 compared to Cellic CTec2. Despite the advantage of the oxidative
enzymes, it was shown that aldonic acids could be problematic to the hydrolytic enzymes. Hydrolysis experiments
revealed that cellobionic acid was hydrolyzed by (-glucosidase at a rate almost 10-fold lower than for cellobiose,
and the formed gluconic acid was an inhibitor of the 3-glucosidase.

Interestingly, the level of gluconic acid varied significantly with temperature. At 50°C (SHF conditions) 35% less
gluconic acid was produced compared to at 33°C (SSF conditions). We also found that in the presence of lignin, no
reducing agent was needed for the function of the oxidative enzymes.

Conclusions: The presence of oxidative enzymes in Cellic CTec2 led to the formation of cellobionic and gluconic acid
during hydrolysis of pretreated wheat straw and filter paper. Gluconic acid was a stronger inhibitor of 3-glucosidase than
glucose. The formation of oxidized products decreased as the hydrolysis temperature was increased from 33° to 50°C.
Despite end-product inhibition, the oxidative cleavage of the cellulose chains has a synergistic effect upon the overall
hydrolysis of cellulose as the sugar yield increased compared to using an enzyme preparation without oxidative activity.
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Background

The use of renewable resources for the production of fuels
and chemicals has been a continuing topic of interest. The
bioconversion process involves the use of enzymes to con-
vert cellulose into fermentable sugars, which are then sub-
strate for further processing into mainly ethanol. The core
pool of enzymes, known generally as cellulases, makes up a
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well established system of action divided in two groups:
cellobiohydrolases and endoglucanases, plus a third com-
ponent known as the -glucosidase [1].

Despite significant progress in this field, the enzymatic
deconstruction of the lignocellulosic biomass is not yet
fully understood, especially regarding the action of non-
hydrolytic enzymatic activities [2]. Cellulose-degrading
microorganisms also produce accessory proteins that are
co-regulated and co-expressed with the cellulase enzymes.
These auxiliary proteins do not hydrolyze cellulosic
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material per se, but play a significant role in enhancing the
yield by increasing the access of cellulases to the substrate
and opening the crystalline structure: such enzymes are
the swollenins and expansins [3]. A novel auxiliary enzyme
activity capable of an oxidative cleavage of the glycosidic
bond is currently classified in the Glycoside Hydrolase
family 61 (GH61) [4]. Since Vaaje-Kolstad et al. [5] identi-
fied the oxidative process as a result of enzymatic activity,
a variety of GH61-like proteins from different fungi as well
as bacteria (GH61D from P. chrysosporium [6], GH61A
from T. auranticus [7,8], several from N. crassa [9] and
CelS2 (CBM33) from S. coelicolor [10]) have been isolated
and studied. Notwithstanding the key role of GH61, the
correct placing on the lignocellulosic degradation scenario,
especially in relation to the classical cellulases, still remains
ambiguous. Although a final model mechanism of action
has not yet been found, some common features can be
generalized: i) GH61s are metallo-enzymes that need a bi-
valent metal ion to act, and copper seems to be the metal
ion coordinated in the active site; ii) since the oxidation of
the glycosidic bond is the main activity, all GH61s need a
reductant cofactor that works as an external electron
donor: gallate, ascorbate, and the enzyme CDH (often up
regulated and expressed together with GH61s [8]) are indi-
cated to enhance the GH61s activity; iii) as substrate,
aggregated cellulose is preferred: no activity was detected
on soluble cellodextrines; iv) finally but most important,
mass spectrometry and HPAEC analysis of reaction pro-
ducts of GH61s show a variety (different DP) of native as
well as oxidized cellodextrines as a result of the glycosidic
bond cleavage. Even though the oxidation may take place
at several carbons in the glucose ring structure (C1, C4 or
C6), the C1 oxidized (aldonic) cellodextrines are the most
represented [5-10].

During enzymatic deconstruction of lignocelluloses,
the presence of exocellulase and p-glucosidase enzymes
rapidly degrade native as well as oxidized cellodextrines
into di- and monosaccharides. We suppose that cellobio-
hydrolases also hydrolyze those cellodextrines carrying a C1
oxidized glucose thereby releasing cellobiose and cellobionic
acid as products. Similarly, we suppose that cellobionic acid
is also one of the substrates for -glucosidase. Thus the final
products expected in a hydrolysate are native glucose and
intermediate cellobiose, as well as their oxidized forms glu-
cono-8&-lactone/gluconic acid and cellobio-8-lactone/cello-
bionic acid respectively as shown in Figure 1. Once C1
oxidized cello-oligosaccharides are produced in solution,
there exist a chemical equilibrium between their lactone
and aldonic acid forms which is dependent on pH,
temperature, and concentration [11]. The lactone form can
hydrolyze non-enzymatically to the aldonic acid form.
The rate of aldonic acid formation can be increased by
lowering the pH, but lactonization as well as its reverse
reaction does not alter the acidity of the solution [12].
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Figure 1 Oxidized C1 products from glucose.

During the enzymatic hydrolysis process at a pH of
about 5, equilibrium tends to shift toward the aldonic
acids. The presence of gluconic acid is relevant from an
industrial bioconversion point of view because it has
been proven to be a B-glucosidase inhibitor [13] and is
also a non-fermentable sugar for S. cerevisiae [14], which
in turn means that part of the potential glucose is lost as
gluconic acid, that cannot be fermented into ethanol.

The boosting and synergetic effect of oxidative enzymes
such as GH61 on lignocellulosic hydrolysis is well recog-
nized [5,15] and oxidative enzymes are now present in
commercially available cellulase preparations to improve
the conversion yields [16]. An example is Novozymes Cel-
lic CTec2 (used in this work) as opposed to its predecessor,
the combined Celluclast 1.5 L/Novozym 188 mixture
(Novozymes A/S, Bagsveerd, Denmark). Despite the pres-
ence of two genes encoding for the GH61 family enzymes
in Trichoderma reesei [17,18], oxidized products are gener-
ally not found in cellulose and lignocellulosic hydrolysate
using commercial T. reesei cellulolytic systems [19].

Most of the papers cited above show the production of
oxidized products by GH61 activity under ideal conditions
using pure cellulose or PASC (phosphoric acid swollen cel-
lulose) as substrate at low dry matter concentration and
boosted by an externally added electron donor. In this
work we wanted to study the action of oxidative enzymes
(GH61) in commercial enzyme preparations during hy-
drolysis of an industrially relevant substrate at conditions
as close as possible to a setup for bioethanol production.
The substrate used was hydrothermally pretreated wheat
straw at very high dry matter concentration (30% water in-
soluble solids, WIS), with lignin present and without the
addition of electron donors as normally used in studies of
oxidative enzymes. The work focused on the production of
oxidized products at various process conditions, especially
the impact on the B-glucosidase activity.
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Results and discussion

Methods for the quantification of oxidized products by
liquid chromatography

In previous work on elucidating the mechanism for how
GH61 enzymes are acting on cellulose, various methods
including e.g. MALDI-TOF, LC-MS and HPAEC have
been used to detect the reaction products [10]. In most of
the previous work, the focus was on detection of oxidized
mono- and oligosaccharides but with less or no focus on
quantifying the reaction products. In this work, the aim
was to quantify the reaction products in a combined oxi-
dative and hydrolytic breakdown of cellulose. To simplify
this, the emphasis was on quantifying the final reaction
products, mainly gluconic acid and cellobionic acid.

Based on previous work by Forsberg et al. [10], a method
for separation of gluconic acid, cellobiose and cellobionic
acid was investigated using a HPAEC system coupled with
pulsed amperometric detection (PAD). Various modifica-
tions of the eluent composition and gradient profile were
tested. Figure 2A shows that cellobiose is eluted prior to
gluconic acid and cellobionic acid respectively. The method
was focused mainly on the quantification of oxidized
monomers and dimers as these are eventually the products
that can be expected in the hydrolysate due to the presence
of cellobiohydrolases and -glucosidases.

Another HPLC method widely used for the quantifica-
tion of monosaccharides and ethanol from hydrolysis and
fermentation samples is based on the use of ion exclusion
columns such as Bio-Rad HPX-87 H or Phenomenex
Rezex ROA. The detection and quantification of oxidized
products was thus tested on an HPLC system equipped
with a Phenomenex Rezex ROA column (Figure 2B and
2C). Mono and oligosaccharides can only be detected on a
refractive index (RI) detector, whereas oxidized sugars ex-
hibit UV absorption and can be detected using a UV-
detector at 200 nm. As shown in Figure 2B and 2C, oxi-
dized sugars have the same retention time as their respect-
ive unoxidized native form when separated on this system.
The slight shift in retention time between the RI and UV
signal is due to the time delay because the detectors are
connected in series. A summary of the cellobionic acid
and gluconic acid elution times on both HPLC systems is
given in Table 1. From a practical point of view, care
should therefore be taken when analyzing hydrolysis sam-
ples on this type of system; if oxidative enzymes are
present, glucose values will be overestimated due to the
co-elution with gluconic acid. The glucose data have to be
corrected by subtracting the gluconic acid values obtained
from the UV-detector. As will be shown later, the amount
of gluconic acid can in some cases make up a significant
part of the glucose released from cellulose.

Both methods gave similar quantification results (in
the range of 5% deviation), but the data presented in this
work were reported using the HPAEC methods.
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B-glucosidase activity in the presence of oxidized sugars
One reaction product formed after the combined action of
oxidative enzymes such as GH61 and cellobiohydrolases
will be cellobionic acid. Cellobiose is an inhibitor of the
cellobiohydrolases, and to alleviate this product inhibition
additional pB-glucosidase activity is supplemented to many
cellulase preparations, e.g. Celluclast. Similarly, cellobionic
acid needs to be hydrolyzed to glucose and gluconic acid
by B-glucosidase. The enzymatic hydrolysis of cellobionic
acid by different commercial enzyme preparations (Novo-
zym 188, Celluclast and Cellic CTec2) was measured. The
Cellic CTec2 and Novozym 188 preparations were dosed
based on the B-glucosidase activity to give 8 U/ml (Table 2)
and were left to hydrolyze a solution containing a mix of
8 g/l of cellobiose and cellobionic acid. Under these condi-
tions and at a temperature of 50°C, more than 6 hours was
required for complete hydrolysis of cellobionic acid to glu-
cose and gluconic acid (Figure 3). On the contrary, cello-
biose was quickly hydrolyzed to glucose in less than
30 minutes. These results were similar for both enzyme
preparations (Cellic CTec2 and Novozym 188). The rate of
hydrolysis of cellobionic acid was also tested in a setup
with the presence of Avicel cellulose, thereby mimicking
the constant production of cellobiose from cellulose (data
not shown). In this case, it was found that hydrolysis of cel-
lobionic acid was even slower, 12 hours compared to
6 hours when cellobiose was only present initially. This
confirms that -glucosidase have preference for hydrolyz-
ing the cellobiose.

Moreover, the known inhibitory effect of gluconic acid
and glucose on the P-glucosidase activity [13] was tested
for Cellic CTec2 and Novozym 188. The [-glucosidase ac-
tivity was assayed using p-nitrophenyl-p-D-glucopyranoside
as substrate and in the presence of increasing levels of glu-
conic acid up to 100 mM. In presence of 20 mM gluconic
acid (3.92 g/l), the p-glucosidase activity was inhibited by
50% of the initial activity measured without gluconic acid
(Figure 4); values close to 80% of inhibition of initial activity
were achieved with 60 mM of gluconic acid for both en-
zyme mixtures. For comparison, a similar experiment was
performed with glucose showing that at similar molar con-
centration, the inhibition by gluconic acid was higher than
for glucose (Figure 4).

Hydrolysis of hydrothermally pretreated wheat straw at
high solids content

Hydrothermally pretreated wheat straw from a pilot scale
facility was used for investigating the formation of oxidized
sugars during deconstruction of a lignocellulosic substrate
at high solids content (30% W1IS), which is relevant for in-
dustrial conversion. The results in Figure 5 show the pro-
duction of gluconic acid along with the degree of
conversion during the time course of the hydrolysis using
Cellic CTec2 and Celluclast supplemented with Novozym
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Figure 2 Separation of sugars and oxidized sugars with HPAEC and HPLC systems. Chromatograms from HPAEC with PAD (A) and HPLC
equipped with both RI (B) and UV (C) detector connected in series. In all chromatograms are shown separation of a standard sample containing
cellobionic acid, cellobiose, gluconic acid and glucose (dotted line) and a sample from hydrolysis of pretreated wheat straw (solid line). The
pretreated wheat straw sample was hydrolyzed for 48 hours at 50°C with Cellic CTec2 at enzyme loading of 10 mg/g DM of biomass at 30% of
WIS. GIcGlcA: cellobionic acid, GIcA: gluconic acid, GlcGlc: cellobiose, Glc: glucose.

188. Both enzyme preparations were dosed to give a filter
paper activity of 7.5 FPU/g DM. After 144 hours, Cellic
CTec 2 yielded 85% cellulose conversion and 4.1 g/l of glu-
conic acid. By comparison the Celluclast-Novozym 188
mixture resulted in 60% conversion and no gluconic acid
was detected with this enzyme. In both experiments, no

cellobionic acid was detected in a quantifiable amount
during the hydrolysis, although traces were observed at
high values of cellulose conversion or at long hydrolysis
times using Cellic CTec2. This shows that under the given
conditions the level of -glucosidase activity is enough to
ensure conversion of cellobionic acid although the
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Table 1 Retention time and detection range of cellobionic
acid and gluconic acid

Aldonic acid Cellobionic acid Gluconic acid
HPLC-UV HPAEC HPLC-UV  HPAEC
Retention time (minutes) 8.1 185 10.2 14.7

Detection range (g/1) 0.5-10 0.05-0.5 05-10 0.05-0.5

enzymes also have to hydrolyze cellobiose. The results
clearly show that the latest cellulase preparations are sup-
plemented with an oxidative enzyme, most likely from the
family GH61 [16] and that in earlier preparations these
enzymes are deficient or not active. From the experiment
it was found that under conditions close to industrial set-
tings, approximately 4.1% of the glucose released ended up
as gluconic acid. Since work showing the oxidative effect
of the CDH enzymes during lignocellulosic hydrolysis was
recently published [19], we tested the possible presence of
such proteins in the enzymatic preparations (data not
shown). The CDH enzyme is capable of oxidizing cello-
biose to cellobionic acid, but no gluconic acid was found
when a solution containing only cellobiose was hydrolyzed
with Cellic CTec2. The oxidation observed with Cellic
CTec2 seems therefore not to be due (or partly due) to
CDH enzymes. The proposed main activity of GH61
enzymes is the oxidative cleavage of endo-glycosidic bonds
in cellulose, thus the amount of gluconic acid is at least
equal to the number of new entry sites created in the cellu-
lose backbone due to the action of GH61. Considering that
4.1% of the glucose released from the cellulose ends up as
gluconic acid and that cellobiohydrolase activity also con-
tributes to the yield of glucose, then a considerable number
of the endo-glycosidic bonds must have been oxidatively
cleaved by GH61 and not by endoglucanases. Thus, the in-
clusion of GH61 enzymes in the latest generations of cellu-
lase preparations has a large impact upon the number of
entry sites for hydrolytic enzymes. Further exploration of
the dynamics and interactions between cellulose oxidases
and hydrolases may improve the performance of the en-
zyme preparations even more. From an industrial point of
view it should also be considered if the level of gluconic
acid produced is acceptable since it might not be metabo-
lized into the desired product of fermentation.

Gluconic acid production: Effect of temperature
The formation of gluconic acid was investigated at two dif-
ferent temperatures: 50°C and 33°C corresponding to

Table 2 Properties of commercial enzyme preparations

enzyme protein content FPA B-glucosidase
preparation (mg/ml) (FPU/ml) (U/mlI)
Celluclast 1.5 L 127 62.0 150

Novozym 188 220 n/a 231

Cellic CTec 2 161 1205 2731
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typical temperatures used for SHF and SSE, respectively.
Pretreated wheat straw and filter paper were used as sub-
strates. In the filter paper experiments ascorbic acid was
added as a reducing agent needed for the activity of GH61
enzymes [5-7,9,10]. There is a clear difference in gluconic
acid production at the two temperatures (Figure 6), and
less gluconic acid was produced from both substrates
when performing hydrolysis at 50°C compared to 33°C.
For pretreated wheat straw the final gluconic acid concen-
tration after 108 hours was found to be 3.9 g/l and 6.1 g/l
using 50°C and 33°C, respectively. For filter paper, at 83%
of glucose conversion, the concentration of gluconic acid
was 1.36 g/l and 0.7 g/l using 33°C and 50°C, respectively;
the amount of gluconic acid was 0.1 g/l when no ascorbic
acid was added to Cellic CTec2 and the hydrolysis was run
at 50°C with same conversion of glucose of the latter. Nor-
malizing the data by weight of cellulose in the two sub-
strates, it can be calculated that from 100 grams of
cellulose, 2.1 and 2.5 grams of gluconic acid was produced
from filter paper and pretreated wheat straw at 50°C re-
spectively, and at 33°C the yields were 3.4 and 3.9 grams of
gluconic acid by the same materials, respectively. Thus the
yield of gluconic acid from filter paper in the presence of
ascorbic acid was almost the same as that of wheat straw
without reducing agents being added. We suggest that in
the case of lignocellulosic materials, lignin can supply the
electrons needed for the oxidation step by behaving as a
reducing agent. This is well in accordance with previous
observations suggesting that lignin in general is part of
redox cycles [20]. The difference observed between 33°
and 50°C may indicate that GH61 enzyme(s) are not stable
at the higher temperature or that the activity of the cello-
biohydrolases and endoglucanases decrease more than the
activity of the GH61 enzymes when the temperature is low-
ered. The latter mechanism is more likely as the rate of
gluconic acid formation is proportional to the rate of glu-
cose formation throughout the hydrolysis (Figure 6).
From an industrial point of view it is interesting to note
that operating the high solids hydrolysis of lignocellulo-
sic material following an SHF (50°C) configuration leads
to less gluconic acid produced (2.8% of glucose released)
compared to the SSF (33°C) giving 4.1% of glucose
released. Therefore, by choosing a SHF process, less glu-
cose will end up as gluconic acid which cannot be fer-
mented to ethanol by e.g. S. cerevisiae and there will be
a lower level of inhibition of the -glucosidase enzymes
by gluconic acid. The choice of operating conditions is
therefore not only a matter of optimizing the perform-
ance with respect to the rate of hydrolysis and overall
process time but also by-products yield.

Conclusions
Oxidative enzymes such as GH61 increase the overall
yield of hydrolytic enzyme preparations. In this work we
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found that under commercially relevant conditions,
around 4.1% of the glycosidic bonds in cellulose were oxi-
datively cleaved by presumably GH61 enzymes, which pro-
vides new entry sites for the hydrolytic enzymes if
aggregate or crystalline cellulose is the only substrate.
Then, accounting for other oxidized forms of glucose such
as 4-ketoaldoses resulting from C4 oxidation (not quanti-
fied in this work) [21], then the final contribution to the
total pool of entry sites created by GH61s could be even
higher. Moreover, the results show that the B-glucosidase

enzymes contained in the Cellic Ctec2 mixture are able to
hydrolyze cellobionic acid but at a rate much slower com-
pared to cellobiose. For such enzyme preparations contain-
ing GH61 enzymes, the classical model of action of
cellulolytic enzymes should be modified to include the hy-
drolysis of cellobionic acid by p-glucosidases. We also
found that in substrates where lignin is present, no added
reducing agent is needed for GH61 to function. This indi-
cates a link between the oxidative breakdown of cellulose
and redox cycles in lignin through electron transport
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Figure 5 Cellulose conversion and gluconic acid production during hydrolysis of pretreated wheat straw using Cellic CTec2 and
Celluclast-Novozym 188. Cellulose conversion (solid line) and gluconic acid concentration (dotted line) during hydrolysis of pretreated wheat
straw using Cellic CTec2 (A) and Celluclast-Novozym 188 (m). The hydrolysis was performed using an enzyme loading of 7.5 FPU/g DM at 50°C
and a solids loading of 30% WIS.

mechanisms. Moreover, the data presented in this work
revealed that a significant amount of glucose was oxidized
into non-fermentable gluconic acid and its effect as an in-
hibitor of the B-glucosidases was documented. Depending
on temperature, at least 4—6 g/l of gluconic acid was pro-
duced (higher concentration at lower temperature), and
this amount was sufficient to result in 50% inhibition of the
[B-glucosidase activity in the enzyme preparations. Further-
more, this work will be relevant for the characterization of
the metabolic effects of gluconic acid at such concentra-
tions on the glucose uptake and fermentation of the yeast
S. cerevisiae.

Methods

Chemical oxidation of cellobiose

Cellobiose (Sigma Aldrich, USA) was oxidized using a mild
oxidation method that has been shown to selectively
oxidize the hemiacetal carbon (C1) of carbohydrates to
generate aldonic acids. The experiment was performed fol-
lowing the method described by Forsberg et al. [10]. The
quantification of cellobionic acid obtained after the oxi-
dation was done indirectly by measuring the quantity of
gluconic acid and glucose generated by p-glucosidase
hydrolysis from Aspergillus niger (Novozym 188, Novo-
zymes A/S, Bagsveerd, Denmark).

Wheat straw pretreatment and compositional analysis

Wheat straw (Triticum aestivum 1.) was pretreated at the
Inbicon A/S pilot plant in Skeerberg, Denmark, with an
average residence time of 185 min in a hydrothermal

reactor with a temperature of 195°C. A washing and press-
ing step was applied prior the enzymatic hydrolysis to elim-
inate the soluble molecules hydrolyzed and generated
during the pretreatment e.g. pentose sugars as xylose mainly
and toxicants as furfural, HMF and acetic acid; a final dry
matter content of 32,5% was achieved [22]. No chemicals
were added during the pretreatment. The composition of
the solid material was analysed by strong acid hydrolysis
using a modified version of the TAPPI standard procedure
[23], the modification being that the standard curve samples
were treated similarly to the samples to correct for sugar
degradation. Before analysis the material was washed
with water to remove soluble sugars by repeated centri-
fugation and suspending in deionized water. The solids
were then dried at 60°C over night. The monosaccharides
D-glucose, D-xylose, L-arabinose, D-mannose and D-gal-
actose (standards from Sigma Aldrich, USA) were mea-
sured on a Dionex ICS5000-system equipped with a
CarboPac-PA1 column and using PAD-detection (Dionex,
Sunnyvale, CA, USA). The flow rate was 1.0 ml/min and
the eluent was MilliQ-water for 35 min followed by an
increase to 200 mM NaOH for 10 min and a final
equilibration with MilliQ-water for 10 min. To improve
detection post-column mixing with 200 mM NaOH at
0.5 ml/min was used. The chemical composition of fil-
ter paper and wheat straw is shown in Table 3.

Enzymes mixture
Cellulolytic enzyme complex from Trichoderma reesei in
the form of a commercial mixture (Celluclast 1.5 L),
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cellulases with addition of GH61from a genetically modified
strain of T. reesei (Cellic CTec2), and [B-glucosidase from
Aspergillus niger (Novozym 188), were all obtained from
Novozymes A/S, Bagsveerd, Denmark. The filter paper ac-
tivity was determined according to Ghose et al. [24];
the p-glucosidase activity was measured using 5 mM
p-nitrophenyl-B-D-glucopyranoside (Sigma Aldrich) as
substrate [25]. Protein content was measured using the
Ninhydrin assay with BSA as protein standard [26]. A
summary of the results is shown in Table 2.

Hydrolysis of wheat straw
Hydrolysis of pretreated wheat straw (120 grams) was
performed in 500 ml blue cap bottles. Water was added

to adjust the solid loading to 30% WIS. The pH was
adjusted to 5.0 by addition of 1 ml of 13.5 M aqueous
NaOH. The material was mixed using a roller bottle re-
actor system [27]. The enzyme loading was 7.5 FPU/g
DM (10 mg/g DM) of Cellic CTec2 preparation, and
Celluclast mixed with Novozym 188 (with a ratio of 5:1,
final enzymatic loading 17.7 mg/g DM); the temperature
was set at 33°C and 50°C. The experiment set at 33°C
was designed to emulate the temperature during a SSF
process, and a pre-hydrolysis step at 50°C was applied
until the achievement of liquefaction (16 hours), after
which the material was cooled to 33°C and hydrolyzed
for 128 hours. The experiment at 50°C was hydrolyzed
for 96 hours. The samples were taken directly from the
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Table 3 Chemical composition of pre-treated wheat straw
and filter paper analyzed using the two-stage acid
hydrolysis method

Structural Pre-treated Wheat Filter paper
component straw % DM % DM
Cellulose

Glucan 53.69 84.00
Hemicellulose 4.18 4.28
Xylan 353 144
Mannan 049 202
Arabinan 0.06 033
Galactan 0.10 049
Klason lignin 341 0

Ash 6.07 0.74
Total 98.04 94.42

reactor during hydrolysis, and then were prepared
according to Kristensen et al. [28] due to the higher
density of the hydrolysate (final density equal to 1.12)
AT 30% of WIS with respect to water. The analytes were
quantified in weight/weight (g/Kg) unit of measure, then
converted to weight/volume units (g/L) multiplying by
the density factor measured at every time point. A boil-
ing step of 10 minutes at 105°C was applied prior to
weighing the material and diluted with the appropriate
amount of milli-Q water to the final concentration of
carbohydrates, and finally centrifuged.

Hydrolysis of filter paper

The hydrolysis of filter paper (2.5 grams) was done in
100 ml blue cap bottles using an incubator with orbital
shaker set at 150 rpm, the temperature was 50°C as well
as 33°C and hydrolysis length of 96 hours. The solid
loading was 5% (w/w) and the experiment was done with
and without ascorbate (20 mM) in 50 mM Na-citrate
buffer at pH 4.8. The enzymatic loading was 4 FPU/g of
filter paper for both enzymatic preparations: Cellic
CTec2 (5.3 mg/g of biomass), and Celluclast plus Novo-
zym 188 (mixed with a ratio of 5:1, final enzymatic loading
9.44 mg/g DM).

Hydrolysis of cellobiose and cellobionic acid

The hydrolysis of cellobiose and cellobionic acid (synthe-
sized in this work) was done using a solution containing
8 g/l of both compounds. The enzymes (Cellic CTec2 and
Novozym188) were dosed based on p-glucosidase activity
to give 8 U/ml. The reaction was performed at 33°C in
Eppendorf tubes with constant shaking. The samples were
boiled for 10 minutes to stop the reaction, filtered
through a 0.45 pum pore size filter, then analyzed with
HPAEC chromatography (ICS5000 equipped with Car-
boPac PA1l column, Dionex, CA, USA). The inhibition
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of the B-glucosidase activity was assayed including dif-
ferent concentration of inhibitors (glucose and gluconic
acid, from 2 to 200 mM) in a solution containing 5 mM
p-nitrophenyl-B-D-glucopyranoside as substrate. The quan-
tity of p-nitrophenol released in presence or absence of
inhibitors was measured by UV-absorbance (405 nm) in
alkaline environment upon inhibition of the enzymes; the
activity assays was done at 50°C for 15 minutes in 50 mM
Na-citrate buffer at pH 4.8.

Analysis of carbohydrates and oxidized products

The quantification of D-glucose, D-cellobiose, gluconic acid
(Sigma Aldrich, USA) and cellobionic acid (synthesized in
this work), was done on two different HPLC instruments: i)
UltiMate 3000 HPLC (Dionex, Germering, Germany)
equipped with refractive index detector (Shodex, Japan)
and UV detector at 200 nm (Dionex). The separation was
performed in a Phenomenex Rezex ROA column at 80°C
with 5 mM H,SO, as eluent at a flow rate of 0.6 ml/min.
The results were analyzed using the Chromeleon software
program (Dionex). ii) ICS5000 HPAEC coupled with PAD
(Dionex, Sunnyvale, CA, USA). The separation was per-
formed using a Dionex CarboPac PA1 analytical column.
In this system only D-cellobiose, gluconic acid and cello-
bionic acid were separated and quantified. The column was
operated at a flow of 1 ml/min and maintained at 30°C.
The eluent was 0.1 M NaOH, and a solution of 0.2 M of
NaOH was applied post column prior to the detector at
0.5 ml/min. Several programs with a stepwise linear gradi-
ent with increasing concentration of sodium acetate were
applied. A well defined peak separation was obtained when
applying the following elution gradient: 0.1 M NaOH for
5 minutes, then a linear increase from 0.1 M NaOH to
0.1 M NaOH with 0.3NaOAc in 35 minutes, then to 0.1 M
NaOH/1 M NaOAc in 5 minutes. The column was recon-
ditioned with 0.1 M NaOH for 5 min before next sample.
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