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Abstract

Background: Cost-effective production of lignocellulosic biofuels remains a major financial and technical challenge
at the industrial scale. A critical tool in biofuels process development is the techno-economic (TE) model, which
calculates biofuel production costs using a process model and an economic model. The process model solves mass
and energy balances for each unit, and the economic model estimates capital and operating costs from the
process model based on economic assumptions. The process model inputs include experimental data on the
feedstock composition and intermediate product yields for each unit. These experimental yield data are calculated
from primary measurements. Uncertainty in these primary measurements is propagated to the calculated yields, to
the process model, and ultimately to the economic model. Thus, outputs of the TE model have a minimum
uncertainty associated with the uncertainty in the primary measurements.

Results: We calculate the uncertainty in the Minimum Ethanol Selling Price (MESP) estimate for lignocellulosic
ethanol production via a biochemical conversion process: dilute sulfuric acid pretreatment of corn stover followed
by enzymatic hydrolysis and co-fermentation of the resulting sugars to ethanol. We perform a sensitivity analysis on
the TE model and identify the feedstock composition and conversion yields from three unit operations (xylose from
pretreatment, glucose from enzymatic hydrolysis, and ethanol from fermentation) as the most important variables.
The uncertainty in the pretreatment xylose yield arises from multiple measurements, whereas the glucose and
ethanol yields from enzymatic hydrolysis and fermentation, respectively, are dominated by a single measurement:
the fraction of insoluble solids (fIS) in the biomass slurries.

Conclusions: We calculate a $0.15/gal uncertainty in MESP from the TE model due to uncertainties in primary
measurements. This result sets a lower bound on the error bars of the TE model predictions. This analysis highlights
the primary measurements that merit further development to reduce the uncertainty associated with their use in TE
models. While we develop and apply this mathematical framework to a specific biorefinery scenario here, this
analysis can be readily adapted to other types of biorefining processes and provides a general framework for
propagating uncertainty due to analytical measurements through a TE model.
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Introduction
Economically-viable production of renewable transporta-
tion fuels from lignocellulosic biomass remains a signifi-
cant technical challenge at the industrial scale. The
near-term routes for renewable fuel production include
biochemical conversion to ethanol [1-9], pyrolysis [10-
12], and gasification [8,13,14], along with newer options
that reduce sugars to higher alcohols and hydrocarbon
fuels [15-19] or use novel solvents to fractionate the
plant cell wall constituents [20-23]. A near-term route to
achieve commercially-viable lignocellulosic biomass con-
version to ethanol is mild chemical pretreatment fol-
lowed by enzymatic hydrolysis and fermentation. This
route is generally classified as biochemical conversion
[2,8]. Within biochemical conversion, there exist multiple
options for each of the three primary steps. For example,
there are multiple reaction media for the chemical pretreat-
ment step [24-26], including hot water or steam explosion
[25,27], dilute sulfuric acid [2], ammonia-fiber explosion
[28,29], and lime treatment [30]. In addition, there are sev-
eral possible process configurations for conducting enzym-
atic hydrolysis and fermentation simultaneously or
separately and with different fermentation organisms [3,7].
These process options are currently under intense develop-
ment with several plants operating worldwide, and it is not
yet known which combinations will be the most
economically-viable at scale.
While there is substantial motivation to shift worldwide

fuel supplies toward renewable resources, the transition will
require enormous investment and development over
several decades. To minimize the risk associated with in-
dustrial commercialization and deployment of lignocellulo-
sic ethanol and other advanced biofuels, the US
Department of Energy has committed significant resources
to demonstrate ethanol production via biochemical and
thermochemical conversion routes at a price competitive
with gasoline at the pilot scale by 2012. A key component
of this cost demonstration target is the use of a techno-
economic (TE) model of lignocellulosic ethanol production
[1]. These types of models typically consist of two comple-
mentary parts: a process model and an economic model.
TE models are crucial to compare biofuel production
options, and have been employed in several comparative
analyses conducted to date [5,8,9,11].
In typical biochemical conversion processes for ligno-

cellulosic ethanol [1], the process model consists of three
main unit operations: pretreatment, enzymatic hydrolysis,
and fermentation. The inputs to the process model are the
composition of the feedstock and reaction yields for all
reactions in each unit operation. For example, the yield of
glucose from cellulose in enzymatic hydrolysis and the yield
of ethanol from glucose during fermentation are both
inputs in the TE model. These reaction yields are based on
the results of laboratory- and pilot-scale experiments and
are calculated from measurements of the chemical compo-
sition of reactant, intermediate, and product streams. For
example, the yield of xylose from xylan during a pretreat-
ment experiment is calculated by measuring the compo-
sition of the input biomass feedstock and the biomass
slurry after pretreatment. A representative yield expression
is illustrative. Equation 1 shows the yield of xylose from a
batch pretreatment experiment.

YX ¼ mf 1−fISð Þ=ρLCX

mixX

MWxylan

MWxylose
ð1Þ

The numerator of the first term is the mass of soluble
xylose in the system, the product of the final slurry mass
(biomass plus water plus acid), the mass fraction of soluble
solids in the final slurry (converted to volume with the
density) and the concentration of xylose in the soluble frac-
tion. The denominator in this equation is the product of
the initial mass of biomass and the mass fraction of xylan in
the sample; the initial amount of xylan in the system. The
second term is a conversion factor for xylose (MW = 150)
and xylan (MW = 132). Since each of the measured vari-
ables (mf, mi, xX, fis, rl, CX) have some uncertainty, they all
contribute to the uncertainty in the yield expression. Over-
all, the outputs of the process model are mass and energy
balances across each unit operation and across the entire
biomass-to-ethanol process. The economic model estimates
capital and operating costs given the mass and energy bal-
ances from the process model and a number of assump-
tions regarding capital and operating costs. The main
output of the TE model is the minimum ethanol selling
price (MESP) [1,2], which is defined as the price of ethanol
at the plant gate where ethanol revenue balances its pro-
duction cost.
The uncertainty in MESP for a given TE model is due

to uncertainties in both the process model and the eco-
nomic model. For example, uncertainty in the feedstock
composition will propagate to the uncertainty in the
mass and energy balances in the process model, which
will in turn propagate to the uncertainty in the eco-
nomic model. Conversely, uncertainty in the capital
costs of the process equipment will directly yield uncer-
tainty in the total plant capital cost in the economic
model. Because there are few lignocellulosic ethanol pro-
duction facilities in the world, estimating the uncertainty
in capital and operating expenses is likely to be unreli-
able, making it difficult to quantify the impact on MESP
uncertainty. However, there has been significant work to
date regarding the other two contributors to MESP
uncertainty: feedstock composition [31-34] and process
measurements from pilot-scale operation at "National
Renewable Energy Laboratory (NREL)" [35-38]. Here we
quantify the lower bound on the MESP uncertainty for a
biochemical conversion process by propagating the effects of
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uncertainty from feedstock composition and primary mea-
surements to the uncertainty in the economic model. We
focus only on the process model portion of the TE model,
leaving uncertainty in the economic assumptions for later
work.
The manuscript is organized as follows: first, we describe

the process model examined here, which is taken from the
NREL 2011 Biochemical Conversion Design Report [39].
We discuss the origin of the experimental data used in this
work. We define absolute and relative uncertainties. We
then convert the yield calculations for pretreatment, enzym-
atic hydrolysis, and fermentation to analytical relationships
from which the uncertainty expressions are developed.
Using these relationships, we describe the calculations for
yield uncertainties for the important reactions in each unit
operation and present the fractional contribution of each
input uncertainty to the yield uncertainty. We then describe
the Monte Carlo simulations conducted to quantify the
lower bound on precision in MESP propagated from the
yield uncertainties from the process model. Finally, we dis-
cuss the utility of this approach and its generality for esti-
mating cost uncertainties in TE models for lignocellulosic
biomass conversion to fuels.

Process model
The process model used for this study is from the 2011
Design Report for biochemical conversion of lignocellu-
losic biomass to ethanol [39]. We examine the feedstock
composition and three unit operations: a mild chemical
pretreatment with dilute sulfuric acid, enzymatic hy-
drolysis, and co-fermentation of pentose and hexose
sugars to ethanol.

Feedstock composition
The feedstock composition includes structural carbohy-
drates (glucan, xylan, arabinan, mannan, galactan), lignin,
soluble carbohydrates, ash, protein, and extractable
materials not otherwise specified. The structural and sol-
uble carbohydrates are used to produce ethanol. The lignin
in the feedstock is burned to provide heat and power. The
protein, ash, and unspecified extractable material are
included to complete the mass balance but are not used to
produce ethanol or energy.

Pretreatment
The pretreatment unit converts hemicellulose into sol-
uble monomers and oligomers via dilute sulfuric acid
hydrolysis. The products are primarily monomeric and
oligomeric xylose, arabinose, galactose, and a small
amount of glucose. The idealized reaction scheme in the
pretreatment unit consists of 21 reactions [39]. Only 5
of these reactions involve xylan, three of which produce
xylose; the other two produce undesirable byproducts.
The remaining 16 reactions involve the conversion
of the other structural carbohydrates to oligomeric and
monomeric sugars and unwanted byproducts. The
required inputs to this unit operation are the
composition of the biomass feedstock, the flowrates of
feedstock and dilute acid, and the yields of all 21
reactions.

Enzymatic hydrolysis
In the process model, the enzymatic hydrolysis unit
follows the pretreatment unit. The primary reactions in
the enzymatic hydrolysis unit are the conversion of cel-
lulose to cellobiose (a glucose dimer) and cellobiose to
glucose. The idealized reaction scheme in the enzymatic
hydrolysis unit consists of 4 reactions occurring in each
of two reactor vessels in series. Thus, the model includes
a total of 8 reactions, all of which involve cellulose or
cellobiose [39]. The required inputs to this unit oper-
ation are the yields of the 8 reactions. The composition
of the pretreated slurry entering the reactor is calculated
in the previous unit operation.

Fermentation
The fermentation unit follows the enzymatic hydrolysis
unit and converts the sugar monomers to ethanol. The
idealized reaction scheme in the process model for the
fermentation unit consists of 31 different reactions in-
volving five different sugars: glucose, xylose, arabinose,
mannose, and galactose. Five of these reactions produce
ethanol, while the other 26 reactions produce either un-
desirable side products (lactic acid, succinic acid) or are
used by the fermentative organism to produce additional
cell mass. The required inputs to this unit operation are
the yields of all 31 reactions [39].

Experimental data
The compositional analysis data are from recent studies
discussing the history and typical uncertainties of
standard biomass compositional analysis methods
[33,34]. Experimental data for pretreatment are from a
1-ton-per-day continuous-flow pretreatment reactor
(unpublished results). Experimental data for enzymatic
hydrolysis and fermentation are from batch laboratory-
scale experiments (unpublished results). The experimen-
tal data used in this analysis are provided in full in the
Supplementary Material (Additional File 1).

Results
The overall methodology in this study is shown in
Figure 1. A process model, developed in Aspen Plus (Bur-
lington MA), is used to integrate simulations of the three
main unit operations. Within each unit, the model calcu-
lates mass and energy balances based on a slate of possible
reactions and yield values, which are based on
experimentally-determined yields. To simplify and focus



Figure 1 (a) Summary of the techno-economic (TE) model used in this study. Primary measurements of feedstock and process intermediate
composition are used to calculate experimental yields for each unit operation. These calculated yields as well as the feedstock composition are
used in the process model to determine mass and energy balances which are in turn used by an economic model (along with economic
assumptions) to calculate the minimum ethanol selling price (MESP). (b) Detailed methodology to calculate MESP uncertainty. In Step 1, we
determine the normalized sensitivity by quantifying the normalized response in MESP to changes in each variable. These sensitivity values are
used as inputs to the uncertainty analysis in Step 2 to determine the uncertainties in calculated yield values based on pilot- and laboratory-scale
experimental data. In Step 3 we perform Monte Carlo simulations of the TE model using distributions of the key variables based on the
uncertainties calculated in Step 2. Calculated values are shown in blue.
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the uncertainty analysis, we have performed a preliminary
sensitivity analysis to determine how the MESP value
changes in response to changes in each conversion. This
analysis highlights those conversions whose uncertainty is
most important to the overall model. The results of the
sensitivity analysis motivate the derivation of analytical
expressions to calculate the uncertainty of only those
yields that have proven (in terms of sensitivity) to be im-
portant for precise calculation of MESP. Finally, the set of
yield uncertainties is used in a Monte Carlo analysis of the
MESP to provide an estimate of the uncertainty in calcu-
lated MESP values due to uncertainty in feedstock com-
position and primary measurements.

Selection of reactions and yields from sensitivity analysis
The process model has a total of 64 variables associated
with feedstock composition and reaction yields in the three
unit operations: 14 for composition, 21 for pretreatment, 8
for enzymatic hydrolysis, and 31 for fermentation. Prelimin-
ary sensitivity analyses were performed for all of these vari-
ables using an older version of the process model [1]. The
results identify a small set of composition and yield
variables with the greatest effect on the MESP value. We
performed sensitivity analyses for just these variables using
the current process model [39]. Because the primary differ-
ences in the two process models are centered on updates to
reactor design choices, pretreatment neutralization strategy,
and wastewater treatment design, we anticipate that there
will be little to no differences in the primary variables that
affect MESP uncertainty. Figure 2 shows the results of the
second set of calculations, delineated by unit operation. All
values of normalized sensitivity for these variables are nega-
tive, meaning that an increase in the variable results in a
decrease in MESP.



Figure 2 Normalized sensitivity of minimum ethanol selling price (MESP) to key variables in the process model: biomass composition
and reaction yields in pretreatment, enzymatic hydrolysis, and fermentation. All values are negative, indicating that the MESP decreases
when feedstock composition and reaction yields increase.
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The glucan and xylan content of the feedstock are the
most important composition variables, with lignin being
much less important. In the pretreatment step, the yield
of xylose from xylan is most important, with the yield of
arabinose from arabinan a distant second. In the
enzymatic hydrolysis step, the yield of glucose from cel-
lulose is most critical, and the yields of ethanol from the
major sugars glucose and xylose are the most important
in the fermentation step.

Results of uncertainty analysis
We performed an uncertainty analysis for the five yield
expressions identified from the sensitivity analysis and
presented in Figure 2: xylose from xylan and arabinose
from arabinan in pretreatment, glucose from cellulose in
enzymatic hydrolysis, and ethanol from glucose and xy-
lose in fermentation.
For the pilot-scale experimental pretreatment data, the

calculated yield of xylose from xylan is 56.4 %, and the
uncertainty is calculated to be 2.8 %. Thus the yield can
be reported as 56.4 ± 2.8 %. Figure 3 shows the contribu-
tion of the key primary measurements to the total un-
certainty. The main contributors to uncertainty are
fraction insoluble solids (fIS) of the pretreated slurry, the
feedstock flow rate, the pretreated slurry flow rate, and
the xylan and glucan content in the feedstock. The un-
certainty in these four measurements drives over 90% of
the overall uncertainty. Of these four process variables,
fIS, the feed flow rate, and the feedstock composition are
directly measured, while the slurry flow rate is derived
from other measurements. Further details can be found
in the Supplementary Material (Additional File 2).
For the laboratory-scale enzymatic hydrolysis data, the
calculated yield of glucose from cellulose is 77.8 % with
an uncertainty of 6.4 %, such that the conversion can be
reported as 77.8 ± 6.4 %. Figure 4 shows that this
uncertainty is overwhelmingly driven by the uncertainty
in the fIS measurement. The uncertainties in the feed-
stock composition, glucose concentration in the liquor,
and liquor density are much less important. Further
details can be found in the Supplementary Material
(Additional File 3).
For the laboratory-scale fermentation data, the calcu-

lated yields of ethanol from the major sugars glucose
and xylose as well as the minor sugar fructose are not
independent. Since sugars can be converted to ethanol,
undesirable byproducts, or cell mass, it is impossible
to determine specific ethanol yields for each sugar. The
values for yield of ethanol from glucose and fructose
are assumed to be 95 %, and the ethanol yield from xy-
lose is calculated based on this assumed value and
knowledge of the beginning and ending concentrations
of ethanol and the sugars. Furthermore, the current
model does not account for the yields of ethanol from
galactose or arabinose. Therefore, the uncertainty ana-
lysis has been performed only for the xylose-to-ethanol
reaction, with the understanding that the resultant un-
certainty also applies to the yield for the glucose-to-
ethanol reaction. The calculated yield of xylose to etha-
nol based on the laboratory data is 86.2 % with an un-
certainty of 3.7 %, and thus can be reported as 86.2 ±
3.7 %. The decomposition of this uncertainty into its
components reveals that the fIS measurement is the
main driver of this uncertainty, as shown in Figure 5.



Figure 3 Contributions to the uncertainty in the calculated yield of xylose from xylan based on pilot-scale pretreatment data. The
uncertainty in the measured feed flow contributes approximately half of the total uncertainty, with measurements of the slurry flow, feedstock
composition, and fraction insoluble solids (fIS) contributing the other half.
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The uncertainty in the concentrations of glucose,
xylose, fructose, and ethanol are much less important.
Further details can be found in the Supplementary Ma-
terial (Additional File 4).

MESP uncertainty – Monte Carlo simulation results
The Monte Carlo results summarize a total of 5,000
Aspen Plus simulation runs that sample parameters
from normal distributions of the yields examined in the
Figure 4 Contributions to the uncertainty in the calculated yield of g
hydrolysis data. The uncertainty in the calculated glucose yield is almost
(fIS) measurement.
uncertainty analysis. The baseline values are from the
NREL 2011 Biochemical Conversion Design Report [39].
The standard deviations are set equal to the uncertain-
ties calculated in this work. The distributions of the in-
put variables and the calculated MESP values are shown
in Figure 6. Some of the input yield distributions are dis-
tinctly asymmetric, since the maximum values of these
yields were fixed. The resulting MESP distribution is
more symmetric, but still positively skewed. The
lucose from cellulose based on laboratory-scale enzymatic
completely driven by the uncertainty in the fraction insoluble solids



Figure 5 Contributions to uncertainty in the calculated yield of ethanol from xylose based on laboratory-scale fermentation data. The
uncertainty in ethanol yield is almost completely driven by the uncertainty in the fraction insoluble solids (fIS) measurement.
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distribution has a mode of $2.17/gal and a mean value
of $2.21/gal. The mode value is in excellent agreement
with the 2011 Design Report value of $2.15/gal. We cal-
culated a probability interval (p = 0.95) of the resulting
MESP distribution to be $2.09-$2.39/gal. Using principal
component analysis, we apportioned this uncertainty
among the three unit operations as follows: 30% appor-
tioned to fermentation, 60% to enzymatic hydrolysis,
and 5% each to pretreatment and feedstock composition
(Figure 7).

Discussion
Our results highlight the central concept of this type of
analysis: uncertainties in input parameters to models can
have widely varying impacts on the uncertainties in the
model outputs. The results of each combined sensitivity
and uncertainty analysis can guide the future develop-
ment of individual unit operation models and the overall
process model. From this study, we can highlight the
measurements most crucial to the development of a pre-
cise estimate of product conversions and, to a certain ex-
tent, of plant cost.

Sensitivity analysis
The results of the sensitivity analysis summarized in
Figure 2 are as expected. The key feedstock composition
variables are the major structural carbohydrates glucan
and xylan, which are the major plant cell wall compo-
nents converted to ethanol. Increasing the amount of ei-
ther of these carbohydrates causes a decrease in MESP.
MESP is particularly sensitive to these components be-
cause they both directly impact the amount of ethanol
produced from the feedstock. The lignin content is
much less critical; the process model uses the lignin to
produce steam and electricity, but these co-products are
much less valuable than ethanol. The most important
calculated yield variables are xylose from pretreatment,
glucose from enzymatic hydrolysis, and ethanol from
glucose and xylose in fermentation.
While both glucan and xylan are converted to ethanol,

the MESP is approximately 1.5 times more sensitive to
glucan than it is to xylan. The difference in sensitivity is
likely caused by three key factors. First, the ethanol con-
tent of glucose is two, meaning that one mole of glucose
produces two moles of ethanol. The ethanol content of
xylose is only 1.67. Second, the pretreatment conver-
sions of glucan to glucose and xylan to xylose are diffe-
rent. Third, the fermentation conversions of the
monomers are not the same. As a result of these factors,
a 1 % change in the glucan content changes the ethanol
production by a larger magnitude than a 1% change in
the xylan content.

Uncertainty analysis
The results for the pretreatment unit show no extreme
values in terms of relative uncertainties and there is no
single measurement that overwhelms the uncertainties
of the calculated yield values. For the enzymatic hydroly-
sis and fermentation units, however, the uncertainty in
the fIS measurement dominates the uncertainty in calcu-
lated yield values. This measurement is defined as the
mass fraction of the slurry that is solid; it differs from
the “total solids” measurement in that it excludes all
components soluble in the water phase; for biomass



Figure 6 Distribution of input yield variables and calculated minimum ethanol selling price (MESP) values from the Monte Carlo
analysis of the techno-economic (TE) model. A total of 5000 runs were performed. The mode of the distribution is $2.17/gal and the 95%
confidence interval is $2.09-2.39/gal. Thus, the uncertainty in the MESP calculation caused by the uncertainty in primary measurement variables is
half this range, or $0.15/gal.
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slurries, the soluble “solids” are principally dissolved car-
bohydrates (e.g., glucose, xylose, and minor sugars). For
dilute acid pretreated biomass slurries, typical values of fIS
are 15-30%. The fIS value of biomass slurries historically
has been measured in multiple ways, and a recent publica-
tion estimated the uncertainty in this measurement to be
approximately 3.0% by comparing the results from two dif-
ferent methods [40]. This suggested magnitude of the fIS
uncertainty, however, is inappropriately large. Subse-
quent work by our group has shown that the uncer-
tainty in the fIS measurement is no more than 1.0 %.
This revised estimate includes contributions from both
sample collection and sample analysis (data not shown).
This work uses a 1.0 % uncertainty for fIS. This work
demonstrates that the measurement uncertainty in fIS is
the major driver of the uncertainty in glucose yields
from enzymatic hydrolysis and ethanol yield from xylose
in fermentation. Clearly there is a need for an improved
fIS measurement in terms of both accuracy and preci-
sion. We are currently performing experiments to ad-
dress this issue.
Additionally, we note the difference in the measure-

ment uncertainties between pretreatment relative to
enzymatic hydrolysis and fermentation (Figures 3, 4
and 5). These results suggest that uncertainty in pre-
treatment yield is not overwhelmed by the fIS measure-
ment, but rather is affected by a set of mass flows,
composition measurements, and fIS without a single
parameter being dominant. This is in part because pre-
treatment depends on mass flow parameters, as it is



Figure 7 Contributions to uncertainty in the estimate of minimum ethanol selling price (MESP). Uncertainty in fermentation yields
contributes approximately 30% to the total uncertainty; uncertainty in enzymatic hydrolysis contributes approximately 60% to the total
uncertainty; and uncertainty in pretreatment and feedstock composition contribute approximately 10%.
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operated in a continuous fashion whereas enzymatic
hydrolysis and fermentation are operated in batch
mode. In addition, the yields from enzymatic hydroly-
sis and fermentation require two fIS measurements,
whereas the pretreatment unit yield only requires a
single fIS measurement.
MESP uncertainty
The Monte Carlo analysis of the TE model provided a dis-
tribution of MESP values with a mode of $2.17/gal and a
95% confidence interval of $2.09-2.39/gal (Figure 6). We
interpret this confidence interval as the uncertainty asso-
ciated with estimation of the MESP due to uncertainty in
primary measurements entered in to the process model.
These measurements come from experiments designed to
determine yields for the three major unit operations: pre-
treatment, enzymatic hydrolysis, and fermentation. While
the utility of a TE model is to compare and contrast
different technical and economic scenarios, any results
from such studies should be viewed in the context of this
work; the minimum significant difference in MESP predic-
tions is half the 95% confidence interval, or approximately
$0.15/gal.
Almost 30 % of the total MESP uncertainty is asso-

ciated with fermentation, 60 % from enzymatic hydroly-
sis, and 5% each for pretreatment and feedstock
composition. The large influence of enzymatic hydroly-
sis yield uncertainty is due to a combination of two fac-
tors: the sensitivity of MESP to this yield (Figure 2) and
the magnitude of the uncertainty of this measured value
(Figure 4). This suggests that future efforts to improve
analytical methods should focus on improving yield cal-
culations for enzymatic hydrolysis first, then fermenta-
tion, and lastly pretreatment. Since the fIS measurement
is the key driver of uncertainty in these yield measure-
ments, it is likely that efforts to reduce the uncertainty
of fIS measurement will provide the most benefit.
Conclusions
We have demonstrated a robust and versatile framework
for evaluating the impact of measurement uncertainties
on the precision of outputs of a process model for the
conversion of lignocellulosic biomass to ethanol. This
generalized framework can be readily deployed to other
TE models for various biorefinery scenarios, and will aid
in the prioritization of research efforts by focusing atten-
tion on the most important variables for reduction of
measurement uncertainty. Here, we first used a sensitivity
analysis to identify the input parameters in the process
model that have the greatest impact on the MESP calcu-
lated by the overall TE model. These input parameters in-
clude feedstock composition and calculated yields for the
three unit operations (pretreatment, enzymatic hydrolysis,
and fermentation). We identified the experimental mea-
surements that determine the precision of these calculated
yields and then performed an uncertainty analysis on
these yields. We decomposed the results to highlight the
individual contributions of each primary measurement
involved in a given yield calculation. We then performed a
Monte Carlo analysis of the overall techno-economic (TE)



Table 1 Input parameters to the Monte Carlo analysis of
minimum ethanol selling price (MESP) uncertainty

Parameter Base value
(%)

Maximum value
(%)

Uncertainty Source

Feedstock composition

Glucan 35.1 – 0.53 [34] Table 1

Xylan 19.5 – 0.34

Lignin 15.8 – 0.17

Pretreatment yield

Xylan to
Xylose

90.0 95.0 2.7 this work

Arabinan
to

Arabinose

90.0 95.0 7.6

Enzymatic Hydrolysis yield

Cellulose
to Glucose

90.0 95.0 5.2 this work

Fermentation yield

Glucose to
Ethanol

95.0 100.0 3.00 this work

Xylose to
Ethanol

85.0 95.0 3.00

The base values for all parameters were taken from the 2011 Design Report
[39]. Uncertainties for feedstock composition were taken from [34].
Uncertainties in calculated yield values are from this work. Using normal
distributions of these feedstock composition and calculated yield values, we
estimate a mode of $2.17/gal for the MESP with an uncertainty of $0.15/gal.
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model using normal distributions of the key input para-
meters that have standard deviations equal to the uncer-
tainties of these parameters. The Monte Carlo analysis
allowed us to estimate the uncertainty in MESP due solely
to uncertainties in experimental data used to calculate
yields in the three major unit operations. We estimate the
uncertainty in the MESP to be $0.15/gal of ethanol. This
sets a lower bound on the error bars of the TE model;
competing model scenarios with MESP estimates that dif-
fer less than this value are essentially equivalent.

Methods
The overall methodology, shown in Figure 1, includes a pre-
liminary sensitivity analysis to determine how the MESP
value changes in response to changes in each feedstock com-
position and process yield value, the derivation of analytical
expressions to calculate the uncertainty of those yields based
on uncertainty in primary measurement values, and a Monte
Carlo analysis of the MESP to provide an estimate of the un-
certainty in calculated MESP values.

Sensitivity analysis of TE model
A normalized global sensitivity calculation relates the

relative change in MESP to the relative change of a given
variable. Mathematically, it is defined as:

Normalized Sensitivity ¼ ΔMESP=MESPð Þ
ΔX=X

¼ d lnMESP
d lnX

ð2Þ

where X is the variable subjected to perturbation. In an al-
ternative form, the normalized sensitivity is equal to the
slope of the line relating ln(MESP) to the ln(X). The
results are interpreted as follows: if the resulting sensitivity
value is 1.5, it means that a 1% change in variable X
results in a 1.5% change in relative MESP. If the sensitivity
is positive, then the relative MESP increases when X
increases; if sensitivity is negative, the MESP decreases
when X increases. The range of perturbation is set to be
15% above and below the base case value of X. The “base
case” refers to the set of variable values that most
accurately describes the state of the process at the time of
analysis. For this work, the base case values were taken
from the NREL Design Report default cases [39]. In some
cases, multiple reactions use the same starting material, so
the perturbation range must be modified to maintain a
physically-relevant result (i.e. to maintain mass closure).
For example, in the fermentation unit, there is a group of
reactions that describe the conversion of glucose to etha-
nol. The total yield of these reactions is 99.7%, so certain
reaction yields cannot be increased to 15% above their
base case values without producing an unphysical result.
In this case, the range of perturbation is −15% to 0% of
the base case value.

Uncertainty analysis of yield expressions
The uncertainty analysis presented here is based on the
approach recommended by the International Standards
Organization (ISO) [41]. We estimate the uncertainty of a
calculated output variable by identifying all sources of un-
certainty in the measured input variables, specifying their
relationship to the output variable, estimating their uncer-
tainty, and then calculating the uncertainty of the output
variable using the following expression:

U2
e ¼ ∑

n

i¼1

∂e
∂ki

� �2

U2
ki ð3Þ

where e is the calculated output variable, k is a measured
“input” variable, and i is an index for the input variables.
Therefore, ki is the i

th measured input variable used to cal-
culate the output variable e, and Uki is the uncertainty in
this measurement. Ue is the uncertainty of e. In general,
the expression for yield uncertainty is derived from the
yield expression itself. The yield expression will contain
primary measurements, derived quantities, and constants.
A derived quantity is a term that is not measured expli-
citly; it is calculated from other primary measurements.
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The uncertainty of a derived quantity is also calculated
according to Equation 3. This uncertainty is then used in
the yield uncertainty calculation. A sample calculation is
provided in the Supplementary Material (Additional File
5).
Monte Carlo analysis of MESP from TE model
The uncertainties in the calculated yield values and the
feedstock composition were used in a Monte Carlo ana-
lysis of the economic model to produce an uncertainty for
the MESP estimate. A total of 5,000 combinations of input
parameters have been tested using the baseline values
from the design report and normal distributions of the im-
portant variables with standard deviations set to the un-
certainties calculated in this work. The distributions have
been confined to +/− two standard deviations. The sam-
pling distributions have been constrained such that the
distributions of yield values have been limited to values
less than 100%. The details of these distributions are
shown in Table 1.
Additional files

Additional file 1: Information about Uncertainty Input Data. This
spreadsheet documents all of the measured uncertainties used as inputs
for this uncertainty analysis and their experimental sources.

Additional file 2: Pretreatment Uncertainty Calculations. This
spreadsheet documents the calculation of uncertainty values in the
pretreatment operation of the process. It highlights the input
uncertainties and relevant parameters, as well as the resulting
uncertainties presented in several formats.

Additional file 3: Enzymatic Hydrolysis Uncertainty Calculations.
This spreadsheet documents the calculation of uncertainty values in the
enzymatic hydrolysis operation of the process. It highlights the input
uncertainties and relevant parameters, as well as the resulting
uncertainties presented in several formats.

Additional file 4: Fermentation Uncertainty Calculations. This
spreadsheet documents the calculation of uncertainty values in the
fermentation operation of the process. It highlights the input
uncertainties and relevant parameters, as well as the resulting
uncertainties presented in several formats.

Additional file 5: Example of Uncertainty Expression Derivation.
This document explains in detail the derivation of an analytical
expression for yield uncertainty, starting with the yield expression itself.
The example discussed is the yield of glucose from cellulose. This
reaction takes place in the enzymatic hydrolysis unit. The yield itself is
calculated from two measured values and one derived quantity. The
uncertainties of the measured values are measured experimentally. The
uncertainty of the derived quantity is calculated from the uncertainties in
the primary measurements that are used to calculate the value of the
derived quantity. The final analytical expressions are presented, as well as
intermediate steps.
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