
RESEARCH Open Access

DeviceEditor visual biological CAD canvas
Joanna Chen1,2, Douglas Densmore1,2,3, Timothy S Ham1,4, Jay D Keasling1,2,5,6 and Nathan J Hillson1,2*

Abstract

Background: Biological Computer Aided Design (bioCAD) assists the de novo design and selection of existing
genetic components to achieve a desired biological activity, as part of an integrated design-build-test cycle. To
meet the emerging needs of Synthetic Biology, bioCAD tools must address the increasing prevalence of
combinatorial library design, design rule specification, and scar-less multi-part DNA assembly.

Results: We report the development and deployment of web-based bioCAD software, DeviceEditor, which
provides a graphical design environment that mimics the intuitive visual whiteboard design process practiced in
biological laboratories. The key innovations of DeviceEditor include visual combinatorial library design, direct
integration with scar-less multi-part DNA assembly design automation, and a graphical user interface for the
creation and modification of design specification rules. We demonstrate how biological designs are rendered on
the DeviceEditor canvas, and we present effective visualizations of genetic component ordering and combinatorial
variations within complex designs.

Conclusions: DeviceEditor liberates researchers from DNA base-pair manipulation, and enables users to create
successful prototypes using standardized, functional, and visual abstractions. Open and documented software
interfaces support further integration of DeviceEditor with other bioCAD tools and software platforms. DeviceEditor
saves researcher time and institutional resources through correct-by-construction design, the automation of tedious
tasks, design reuse, and the minimization of DNA assembly costs.

Keywords: bioCAD, Visual design abstraction, Correct-by-construction design, Design specification rules, Combina-
torial library, DNA assembly

Background
The development of bioCAD software is paramount to
our future capacity to rapidly design increasingly com-
plex biological systems for the predictable and reprodu-
cible production of biofuels and bio-based chemicals [1].
When considering a DNA construction task, researchers
must choose from a rapidly expanding list of candidate
gene orthologs and expression systems. BioCAD tools
(reviewed in [2-4]) make it possible to automatically
query parts repositories for putative design components
[5] and model the performance of candidate component
combinations [6-9]. These software tools can also
address design workflow bottlenecks by providing can-
vases for abstractly visualizing and arranging genetic
components [10] and automating the design and execu-
tion of the DNA assembly process [11,12] (reviewed in
[13,14]).

However, despite the growing utility of bioCAD soft-
ware, three critical design automation needs within the
Synthetic Biology community remain unmet: 1) software
integration, 2) combinatorial library design visualization,
and 3) user-specifiable design rules. First and foremost,
the end-to-end design process is crippled by the lack of
integration among individual software tools that specia-
lize in modelling, DNA assembly, or genetic component
(e.g., ribosomal-binding site (RBS) [15]) design. It is
hoped that emerging data exchange standards such as
the Synthetic Biology Open Language (SBOL) [16],
along with open and well-documented software inter-
faces, will enable future bioCAD platforms and mini-
mize tool redundancy. Second, combinatorial libraries of
fusion proteins and metabolic pathways have become
increasingly utilized for optimizing biofuel and bio-
based chemical production [17-19], yet no visual bio-
CAD tools currently support the combinatorial library
design process. Algorithms have been developed to
automate the enumeration of all combinations of genetic

* Correspondence: njhillson@lbl.gov
1Fuels Synthesis Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA
Full list of author information is available at the end of the article

Chen et al. Journal of Biological Engineering 2012, 6:1
http://www.jbioleng.org/content/6/1/1

© 2012 Chen et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:njhillson@lbl.gov
http://creativecommons.org/licenses/by/2.0

components that meet a given set of design specifica-
tions [12,20], but the input of the DNA sequence infor-
mation and the execution of these algorithms is not
visually intuitive. More useful would be an interface that
captures a familiar design workflow, such as the ubiqui-
tous dry-erase whiteboard, to facilitate the spatial
arrangement of components to be combined. Third,
while bioCAD tools have been developed to visualize
specification-compliant designs [21] or exploit composi-
tion grammars to guide the visual arrangement of parts
[10], the underlying specifications and grammars must
be defined within a programming-like language [20,22]
or remain opaque by being neither viewable nor modifi-
able by the user [10].
Towards addressing these unmet design needs, we

have developed DeviceEditor, a bioCAD canvas that
enables researchers to spatially organize abstractions of
biological components. DeviceEditor assists the aggrega-
tion and arrangement of the DNA sequences of genetic
components (e.g., ribosomal-binding sites, promoters
and terminators, and metabolic pathway genes) to be
assembled towards a desired functionality. DeviceEditor
ensures that designs are “correct-by-construction”,
because within its confines researchers are prevented
from performing invalid operations (e.g. referencing
DNA base-pair 500 within a 100 base-pair sequence).
To the best of our knowledge, DeviceEditor is the first
bioCAD tool that visualizes combinatorial DNA library

design, provides a graphical user interface for the crea-
tion and modification of design specification rules, and
is directly integrated with scar-less multi-part DNA
assembly design automation. Taken together, these
innovations benefit researchers and their institutions
through correct-by-construction design, the automation
of tedious tasks, design reuse, and the minimization of
DNA assembly costs.

Results
The DeviceEditor bioCAD canvas provides a web-based
visual design environment (Figure 1) that mimics the
familiar whiteboard design process practiced in biologi-
cal laboratories. An online user’s manual [23] provides
an introduction to bioCAD, an overview of DeviceEditor
functionality, and step-by-step how-to video
demonstrations.

DeviceEditor design process
To begin the process, the genetic components or biolo-
gical “parts” that will comprise the design are defined.
This is accomplished by first selecting a standardized
icon from the Synthetic Biology Open Language Visuali-
zation extension (hereafter SBOLv) [25] palette to repre-
sent a given component (e.g., promoter, 5’ UTR,
terminator). If no icon in the SBOLv palette fully cap-
tures the essence of a part (e.g., the pBbS8c-rfp back-
bone consists of more than just an “Origin of

Figure 1 DeviceEditor design canvas. Screenshot of the browser-based DeviceEditor user interface [24]: (top left) buttons for activating the j5
controls dialog box and setting DeviceEditor properties, (left panel) palette of standardized SBOLv part icons, (center) drag-and-drop design
canvas with part icons and a collection object (white oval with vertical lines demarking bins), and (right panel) information detail for the
selected part or collection.

Chen et al. Journal of Biological Engineering 2012, 6:1
http://www.jbioleng.org/content/6/1/1

Page 2 of 12

Replication”, Figure 2), the most appropriate option or a
blank generic icon can be selected. While visually evoca-
tive, from the outset the icons do not contain actual
information. A DNA sequence is then mapped to the
part icon (Figure 2), either copied from third party soft-
ware or retrieved from a sequence file. DNA sequences
in DeviceEditor do not need to be “packaged” in any
particular format, such as the BioBricks format [26].
Each part is then set to either “Forward” (default) or
“Reverse” to indicate the desired orientation of the part
in the resulting construct. Once all of the desired com-
ponent part icons have been defined, they are arranged
from left to right in a “collection” to match their 5’ to 3’
order in the target DNA construct (Figure 3A, B; Addi-
tional file 1). For combinatorial designs, interchangeable

component icons are arranged in the same vertical col-
lection “bin” (Figure 3C, D; Additional file 2). The
design is then specified to produce a “Circular” (default)
or “Linear” DNA construct (Figure 1, top right).
To limit the total number of times a part may appear

in a given construct, to prevent any two parts from
appearing together in the same construct, or to ensure
that two given parts always appear together in the same
construct, Eugene design specification rules [20] may be
added. These rules can ensure that two parts always
appear together in the same construct, prevent two
parts from appearing together in the same construct,
and limit the total number of times a part may appear
in a construct. For example, if prior research demon-
strated that the short linker sequence must be used with

1) Create new part icon 2) Copy desired portion of sequence

3) Paste selection onto part icon 4) Part icon now named and mapped to sequence

Figure 2 Mapping a DeviceEditor part icon to an annotated DNA sequence. A new part icon on the design canvas (top left) is created by
clicking on the desired SBOLv icon (here “Origin of Replication”) in the left panel of the user interface (Figure 1). At this point, a DNA sequence
has yet to be mapped to the part icon. In a separate browser-tab or software application, the desired portion of a DNA sequence (here the
pBbS8c-rfp backbone [27] spanning from XhoI to EcoRI) is selected and copied (top right) to the clipboard. Third-party software (here
VectorEditor) may embed meta-data (including jbei-seq format [28] sequence data) into the clipboard along with the plain-text DNA sequence
selection (see Methods). Returning to DeviceEditor, the copied DNA sequence is pasted (mapped) from the clipboard onto the part icon.
Clipboard meta-data provides DeviceEditor with the selected start and stop base pairs (here 1934 to 1215) within the circular source sequence,
along with the source’s name (here pBbS8c-rfp), entire sequence, and feature annotations (displayed in the “Source Data” field; bottom left). If
the third-party software (e.g. ApE [29]) does not embed this meta-data, the sequence annotations are not transferred to DeviceEditor, and the
user must specify the source name and the selected start and stop base-pairs within the copied sequence. The user may alternatively map a
Genbank-format sequence file to the part icon, which preserves the source name and feature annotations. The name for the part icon (here
“pBbS8c_EcoRI_XhoI_vector_backbone”) is specified, along with whether the part is associated with the reverse complement of the selected
sequence. The “Done” button is clicked, the part icon has now been named, and the desired annotated DNA sequence has been mapped to
the part icon (bottom right).

Chen et al. Journal of Biological Engineering 2012, 6:1
http://www.jbioleng.org/content/6/1/1

Page 3 of 12

the tag sig1 (Figure 3C) to achieve proper GFPuv locali-
zation, Eugene rules can be specified (Figure 4; Addi-
tional file 3) to ensure that the short linker is always
constructed together with sig1. This would eliminate
two (of the eight possible) combinations that have the
short linker following the tag sig2. For metabolic path-
way library designs that vary enzyme ortholog selection
and gene ordering [30,31], Eugene rules can ensure that
orthologs and individual enzymes are not repeated in
the same construct. The application of just 9 Eugene
rules to the design shown in Figure 5A eliminates 1632
undesirable combinations that do not constitute com-
plete pathways, out of 1728 total possible combinations.
Also, the set of “desirable” combinations may evolve
with additional experimental information, for example, if
evidence arises that two particular enzyme orthologs do

not operate well together in E. coli. A key point is that
this additional information only requires the modifica-
tion of a few design rules to update the desirable set of
combinations, rather than complete re-designs. This is
important because toggling a few design rules enables
researchers to re-use designs as they switch between
microbial hosts and as they gain experimental insight.
For selection-based experiments exploiting pooled-
library designs [32], Eugene rules can ensure that each
vector backbone is always constructed together with its
one-to-one corresponding user-specified DNA barcode
(Figure 5B), facilitating and reducing the cost of
sequence-identifying top performers.
To integrate physical implementation (i.e. DNA assem-
bly) strategy into the DeviceEditor design process, the
means by which the parts should be assembled together

gfpuv_sig.pep gfpuv_sig.pep gfpuv_sig.pep
RBS

PBAD

dbl term

oriSC101

t0

PBAD

araC

camR

E X ☆ ☆

pBbS8c-rfp

PBAD

dbl term

oriSC101

t0

PBAD

araC

camR

rfp

E Bg Ba X

RBS

rfp rfpfpBbS8c-c-rrpBbS8cBbS8bbS8bSBbBb
oriSC101 icamR

c
ori

araC

gg

RBSSRBSSRBS

RBS

pBbS8c

EcoRI/XhoI

vector backbone

gfpuv

sig.pep

5’

XhoI

silent

mutation

gfpuv

sig.pep

middle

gfpuv

sig.pep

3’

BamHI

silent

mutation

SBOLv

gfpuv_sig.pep

pGFPuv_sig.pep

Ba X

__ ig..____sig...sigvvvvvvvvv___vvvvvgfpuvvvvvvvvvvvvgfp ppppppeppp p

DNA assembly

dbl term

oriSC101

t0

araC

camR

gfpuv_sig.pep

☆ ☆

RBS

PBAD

pNJH00010

RBS RBS
_sig.fpuvvv .pep

DN

oriSC101i

N-terminal

signal

peptide

Gly/Ser

linker gfpuv

ssrA

tag 5’

or or X

standard

enhanced

or

long

short

sig1

sig2

X X gfpuv

☆ ☆ ☆☆

pNJH00010

vector

backbone

X

ssrA

tag 3’

X dbl term

oriSC101

t0

araC

camR

RBS

PBAD

pNJH00010

A B

C

D

Figure 3 Example biological designs rendered on the DeviceEditor canvas. (A) pNJH00010 [12] consists of seven components: the pBbS8c-
rfp backbone spanning from XhoI to EcoRI (blue highlight, bottom left), the RBS sequence from pBbS8c-rfp (purple highlight, bottom left), gfpuv
from its 5’ end to its XhoI site (blue highlight, bottom right), a silent mutation in gfpuv’s XhoI site (star), gfpuv between its XhoI and BamHI sites
(purple highlight, bottom right), a silent mutation in gfpuv’s BamHI site (star), and gfpuv_sig.pep from its BamHI site to its 3’ end (blue highlight,
bottom right). These components are arranged from left to right in their 5’ to 3’ order in pNJH00010 (top). The corresponding SBOLv icon is
presented immediately above each component. (B) To reconstitute the design in (A), each of the component sequences is mapped to a part
icon (as in Figure 2), and arranged from left to right in 5’ to 3’ order as in (A) in a 7-bin collection object (white oval with vertical blue lines
demarking bins), with each part icon in its own bin. This DeviceEditor design has been saved in Additional file 1. (C) The combinatorial design
for plasmids pRDR000001-pRDR000008 [12] consists of nine components, including the pNJH00010 backbone, two N-terminal signal peptides
(sig1 and sig2), two Gly/Ser linkers (long and short), the gfpuv mutant from pNJH00010, two 5’ ssrA tags (standard and enhanced), and a 3’ ssrA
tag. These components are arranged from left to right from 5’ to 3’, with interchangeable components arranged from top to bottom. (D) Each
of the component sequences in (C) is mapped to a part icon, and these part icons are then arranged from left to right as in (C) in a 6-bin
collection object, with interchangeable part icons in the same bin. Each bin, now demarcated with purple lines indicating a combinatorial
design, is then named according to the category of parts it contains (bottom) This DeviceEditor design has been saved in Additional file 2.

Chen et al. Journal of Biological Engineering 2012, 6:1
http://www.jbioleng.org/content/6/1/1

Page 4 of 12

(i.e. “forced assembly strategies”) may optionally be pre-
scribed for each part (Figure 4A, top right). Part icons
with forced assembly strategies are visually distinguished
with a blue rectangle indicator light at the top left (Fig-
ure 4A, left). Additional aspects of DNA assembly strat-
egy may be further customized in the “Collection Info”
panel (Figure 1, right). For any given bin in a collection,
a “direct synthesis firewall” may be set to “true” to pre-
vent the extension of DNA synthesis through the assem-
bly junction [12] to the right of the bin, as visually
indicated by a red vertical line between bins (Figure
3D). The optional “forced relative overhang/overlap”
position for each bin prescribes the overhang/overlap
position of the assembly junction [12] to the right of the

bin. Finally, the forced assembly strategy for each bin is
displayed but is not directly modifiable, as it is deter-
mined by the forced assembly strategies of the parts that
the bin contains. To automate DNA assembly, DeviceE-
ditor submits the design contained within the collection
to j5, a web-based software tool for designing cost-opti-
mized, scar-less, multi-part, DNA assembly protocols
[12] (Figure 6, top). Part icons peripheral to the collec-
tion are not submitted as part of the design to j5. Once
users have visually verified that the desired constructs
are correctly designed, DeviceEditor can also direct j5 to
design downstream automation processes, such as con-
densing multiple assembly files and distributing PCR
reactions by annealing temperature (Figure 6, bottom).

A

B

Figure 4 Adding Eugene design specification rules. (A) Graphical user interface for creating and modifying rules. A part icon (here “short”,
bottom left) on the design canvas is clicked, followed by the “Add Rule” button in the right panel of the user interface (bottom right). The
name for the rule (here “rule3”) is specified, and one of three Eugene operators (NOTMORETHAN, WITH or NOTWITH) is selected (here “WITH”).
For the NOTMORETHAN operator, the maximum number of times the part may be present in a single construct is specified. For the WITH or
NOTWITH operators, the other part icon on the design canvas (Operand 2, here “sig1”) that should or should not be present in a single
construct, respectively, with the selected part icon (Operand 1, here “short”) is chosen. The list of Eugene rules associated with the selected part
icon is shown in the right panel of the user interface (right). Part icons with associated Eugene rules are visually identified on the design canvas
by an orange circle indicator light at bottom right, and part icons with specified forced assembly strategies are distinguished with a blue (bin
consensus-matching assembly strategy) or a red (bin consensus-breaking assembly strategy) rectangle indicator at top left. (B) Importing Eugene
rules from a file. From the “File” pull-down menu of the user interface (Figure 1, top left), “Import Eugene Rules” is clicked and a Eugene rules file
(e.g. Additional file 3) is selected. The Eugene Rules Import dialog displays imported rules in green, rules identical to current rules in black,
imported rules with names conflicting with current rules displayed in red (alternative names are auto-generated for the imported rules to resolve
conflicts), and ignored rules (e.g. comment lines or rules with invalid operators or operands not present in the current design) in light grey.
Importing a set of Eugene rules facilitates the batch creation of multiple rules for complex designs (Figure 5).

Chen et al. Journal of Biological Engineering 2012, 6:1
http://www.jbioleng.org/content/6/1/1

Page 5 of 12

Design process acceleration and correct-by-construction
design
DeviceEditor accelerates the design process by relieving
the user of tedious routine tasks. For example, sequence
annotations and other meta-data are retained when
sequences are copied via a compatible clipboard format
(see Methods) and pasted onto part icons (Figure 2), or
mapped from Genbank format sequence files, obviating
the need to re-annotate sequences post-assembly. Part
icons can be copied and pasted between concurrent
DeviceEditor sessions, enabling the re-use of previously
defined parts. Also, DeviceEditor provides hyperlink
shortcuts to view j5-assembled design sequences in Vec-
torEditor [33,34] (Figure 6) for rapid visual design
feedback.

The DeviceEditor correct-by-construction design pro-
cess prevents common mistakes. Within the confines of
DeviceEditor, the user is not able to perform invalid design
modifications. For example, icons for repeated parts are
internally linked together (Figure 5A), so that when one
instance of a part is modified, all instances are updated in
unison, precluding the persistence of obsolete information
or the introduction of inconsistencies between repeated
parts. DeviceEditor’s correct-by-construction features also
benefit j5 DNA assembly design automation [12]. The j5
web-form interface [35] requires the user to upload several
comma-separated value (CSV) input files. When manually
preparing these CSV input files with spreadsheet software
(e.g. Excel, Open Office), there are no safeguards against
mistyping start and stop base-pair numbers, or placing a

A

B

Figure 5 Hypothetical combinatorial DeviceEditor designs. (A) Metabolic pathway library: 29 bins and 19 unique part icons (several repeated
through the design). Clicking on a repeated part icon, here “RBS_pET29_5’” (top left), highlights all replicates with thick blue outlines. (B) Gene
over-expression library (rotated 90° counter-clockwise): 8 bins and 156 part icons (none repeated). Note that there are only 38 barcodes (sixth
bin) that correspond one-to-one with the 38 vector backbones (first bin). This design allows for a single short sequencing read spanning the end
of gene 2 (fourth bin) through the barcode and the beginning of gene 3 (eighth bin) to uniquely identify a plasmid combination. As a result,
there is not a unique barcode required for each of the 383 = 54,872 possible plasmid combinations. Zoom in with PDF display software to
improve legibility.

Chen et al. Journal of Biological Engineering 2012, 6:1
http://www.jbioleng.org/content/6/1/1

Page 6 of 12

direct synthesis firewall at an unintended assembly junc-
tion. Since spreadsheet software does not constrain the
user’s input, j5 design parameters may be specified out of
their acceptable ranges, part names may incorporate typo-
graphical errors or prohibited characters, and sequence
file names may be mistakenly entered instead of sequence
display IDs (a subtle, yet common point of frustration). In
contrast with the manual preparation of CSV input files,
the DeviceEditor interface for j5 ensures that design para-
meters fall within their acceptable ranges (Figure 6), vali-
dates the uniqueness and correctness of part names,
automatically extracts sequence display IDs, prevents start
and stop base-pair numbering mistakes (Figure 2), and
visualizes the selected placement of direct synthesis fire-
walls (red vertical lines in Figures 3D and 5B). DeviceEdi-
tor’s correct-by-construction features can optionally

prevent the user from moving a part icon with a
“DIGEST” forced assembly strategy to the first collection
bin, as this would be problematic for downstream j5 DNA
assembly design [12]. Finally, DeviceEditor pre-empts sub-
stantially increased DNA assembly costs by visually alert-
ing the user if two parts in the same bin have disparate
forced assembly strategies, which greatly limits the combi-
natorial re-use of assembly fragments [12]. Part icons with
forced assembly strategies differing from their bin are
visually distinguished by a red rectangle indicator light at
top left (Figure 4A, left).

Graphical user interface for creating and modifying
Eugene biological design specification rules
Several bioCAD tools (e.g. Clotho [8,36] and GenoCAD
[10,37]) harness biological specification rules and

2) Set j5 design parameters

4) Verify assembly products are as desired 5) Run j5 to design downstream automation) j g) Verify

1) Open j5 controls

3) Run j5 to design DNA assembly

Figure 6 Running j5 from within DeviceEditor. The j5 button at the top left of the user interface (Figure 1) is clicked to open the j5 controls
dialog box (top left). The j5 design parameters [12] may be customized or returned to their default values by clicking the “from parameters” link
at the top right of the “Run j5 on Server” tab (top left), which opens the j5 Parameters dialog box (top right). Otherwise, the user’s latest set of
design parameters (stored on the j5 server) will be employed. Similarly, the user’s latest lists of plasmids, oligos, and direct syntheses will be used
(shown here), unless empty or alternate lists are specified. For single construct designs (Figure 3B), the assembly method may be either “SLIC/
Gibson/CPEC” or “Golden-gate”. For combinatorial designs (Figure 3D), the assembly method may be either “Combinatorial SLIC/Gibson/CPEC” or
“Combinatorial Golden-gate” (shown here). After the “Run j5” button is clicked, DeviceEditor submits the design contained within the collection
to the j5 server (see Methods) and provides links to the resulting assembled sequences. Clicking on one of these links (here “pj5_00003.gb”) will
open the corresponding sequence in VectorEditor (bottom left) so that it may be easily verified (here, the N-terminal signal peptide, Gly/Ser
linker, gfpuv, and ssrA tag (Figure 3C, D) are confirmed to be in-frame). The “Condense Assembly Files” and “Downstream Automation” tabs in the
j5 controls dialog box (bottom right) provide access to j5 downstream automation design.

Chen et al. Journal of Biological Engineering 2012, 6:1
http://www.jbioleng.org/content/6/1/1

Page 7 of 12

expression grammars to constrain designs, but the
underlying rules and grammars are not viewable or
modifiable through the design tools themselves. This
can be problematic for design specification rule lan-
guages such as Eugene [20] that currently rely on name-
matching for part identification, since simple typogra-
phical errors can result in referencing incorrect or non-
existing parts, and identical names (e.g., “vector_back-
bone”) for distinct parts can result in the misapplication
of rules. DeviceEditor’s graphical user interface for
creating and modifying design specification rules (Figure
4A) and its Eugene rules file import feature (Figure 4B)
prevent typographical mistakes by constraining new
rules to supported operators (e.g. WITH) and operands
(i.e. part icons) presently on the design canvas. Part
icons associated with Eugene rules are visually identified
by an orange circle indicator light at bottom right (Fig-
ure 5A). DeviceEditor also prevents the misapplication
of rules by 1) not allowing distinct parts to have the
same name and 2) displaying all rules that specifically
apply to the selected part icon (Figure 4A), precluding
the need to search through thousands of unrelated
rules. While DeviceEditor currently only supports a sub-
set of Eugene rules (NOTMORETHAN, WITH, and
NOTWITH), future development will expand this list
towards more complete coverage.

Mechanisms for integration with other bioCAD software
While bioCAD enables the de novo design or selection
of existing component parts to achieve a given biological
activity, many of these tools (e.g. the RBS Calculator
[15] and GLAMM [5]) specialize in a subset of genetic
components (e.g. RBS sequences or metabolic enzyme
genes) and are not directly integrated with downstream
DNA assembly design automation. DeviceEditor assists
the aggregation and arrangement of DNA sequences
arising from disparate sources. There are three mechan-
isms to transfer component information from other bio-
CAD tools to DeviceEditor: copying and pasting
(mapping) components into DeviceEditor (Figure 2),
CSV and sequence files (i.e. Genbank format) (Figure 7),
and DeviceEditor design files (see Methods). The latter
two mechanisms are preferable for transferring multiple
components to reconstitute complex designs (Figure 5),
since copying and pasting is currently limited to one
component at a time. CSV and sequence files are advan-
tageous in that they are straightforward for third-party
software to generate, although they convey less informa-
tion (e.g. CSV files omit SBOLv icon selection informa-
tion, Figure 7) than DeviceEditor design files. SBOL
[16], a promising emerging data exchange standard, is
an anticipated fourth mechanism for integrating Devi-
ceEditor with other bioCAD software. Further develop-
ment of DeviceEditor will support importing SBOL

XML once the XML serialization of SBOL has been
firmly established [38].

Discussion
DeviceEditor standardizes visual abstraction with SBOLv
icons. Consider the biological components as presented
in Figure 3C, such as the centrifugal arrows for N-term-
inal signal peptides, and sinusoidal squiggles for Gly/Ser
linkers. Those unfamiliar with these ad hoc visual
abstractions would need to rely on the corresponding
textual descriptions to determine what they actually
refer to. In contrast, the DeviceEditor design canvas, as
represented in Figure 3D, allows anyone familiar with
SBOLv to confidently interpret the design at the granu-
larity of the standardized icons, even without supple-
mentary text. The use of SBOLv icons is especially
compelling for rapid at-a-glance assessment of compo-
nent ordering and combinatorial variations within more
complex designs (Figure 5). Visual inspection of large
designs may also reveal design concepts, constraints, or
requirements that were previously unknown. While
SBOLv icons themselves are standardized, the user may
associate parts and icons in a non-standard, misleading
manner. To mitigate this risk, DeviceEditor could be
further developed to standardize the SBOLv icon selec-
tion process, with parts defying SBOLv categorization
represented by blank generic icons. Further DeviceEditor
development could also support user-added icons en
route to their formal SBOLv incorporation.
Data exchange standardization is vital to DeviceEditor

as part of an integrated Synthetic Biology design-build-
test cycle (Figure 8). Consider the simple operation of
copying an annotated DNA sequence selection and past-
ing it onto a part icon on the DeviceEditor design can-
vas (Figure 2). If only plain-text DNA sequence is
transferred (the most basic copy/paste operation,
employed when the source application does not support
copying sequence annotations), the start and stop base-
pairs of the selection, the name of the source sequence,
and the selection’s feature annotations are all lost in the
transaction. Manually supplying this missing data to
DeviceEditor leaves the process susceptible to typogra-
phical errors and places a laborious sequence re-annota-
tion burden on the user. On the other hand,
transmitting a full complement of sequence meta-data
precludes user-error and saves time, but demands that
the software tools agree upon the structure and content
of the information exchanged. While ad hoc data
exchange adapters can be developed for open and well-
documented software interfaces, as reported here for
DeviceEditor, standardizing data exchange across an
entire community of tools is a far more efficient
approach. SBOL is one such data exchange standard,
although how universally sufficient the specification will

Chen et al. Journal of Biological Engineering 2012, 6:1
http://www.jbioleng.org/content/6/1/1

Page 8 of 12

be for bioCAD has yet to be seen. For j5 in particular
(and by extension DeviceEditor), sequence context (e.g.
the DNA template in which a part resides) is important
for safeguarding against off-target DNA oligo priming.
However, SBOL currently omits this and other poten-
tially valuable design information (such as how DNA
components are to be arranged within a combinatorial
collection), just as SBOLv does not adequately capture
the essence of every part. The extent to which these
partial omissions can and should be resolved will be an
ongoing question for the Synthetic Biology community.
DeviceEditor provides an environment to further investi-
gate these issues through the targeted exploration of
specific design scenarios.
DeviceEditor’s correct-by-construction and design

visualization features serve as the first steps towards

process automation and can offer substantial time- and
resource-saving benefits. Consider a Eugene rule for a
part named “ispA” that is intended to limit ispA to one
copy per construct. In Figure 5A, since the ispA part is
instead named “ispA-O”, applying this “ispA” rule would
be ineffective and insufficient to prevent the construc-
tion of 112 undesired plasmid combinations that contain
two or three copies of ispA rather than complete meta-
bolic pathways. In DeviceEditor, these part name over-
sights are automatically prevented, since it would not be
possible to create Eugene rules for a part named “ispA”
for the design in Figure 5A. Furthermore, the lack of
Eugene rule indicator lights for the repeated “ispA-O”
parts on the design canvas would provide visual cues
that something was amiss. Next, consider a misplace-
ment of a direct synthesis firewall after gene 3 (eighth

1) Import j5 input files 2) Auto-generate minimal design

3) Customize spatial arrangements and icons

Figure 7 Auto-generation of a DeviceEditor design from CSV and zipped sequence files. Third-party software can transfer component
design and (combinatorial) arrangement information to DeviceEditor via spreadsheet (CSV) and zipped sequence files (i.e. a set of j5 files, see
Methods). From the “File” pull-down menu of the user interface (Figure 1, top left), “Load Design ® j5 Files” will open the j5 File Import dialog
box (top left). After the requisite files are selected, a minimal design is auto-generated on the DeviceEditor design canvas (top right). As evident
in the screenshot taken immediately after loading the design, there is no SBOLv icon information and some of the labels may be overlapping.
The precise spatial arrangements of the part icons, SBOLv icon selection, and the collection object dimensions may then be customized as
desired (bottom).

Chen et al. Journal of Biological Engineering 2012, 6:1
http://www.jbioleng.org/content/6/1/1

Page 9 of 12

bin) in Figure 5B, rather than before gene 3 as desired.
This mistake could result in the purchase of 1444
synthesized DNA fragments spanning the barcode to
gene 3 (all pair-wise combinations of barcode and gene
3 variants) rather than the intended 76 fragments (38
barcodes plus 38 gene 3 variants) [12]. While this would
be an easy mistake to make when preparing j5 input
files with spreadsheet software, DeviceEditor’s promi-
nent red firewall visualization makes an incorrect fire-
wall placement difficult to miss. Some benefits of
DeviceEditor correct-by-construction design are more
difficult to precisely estimate, but are nonetheless com-
pelling given the large potential downstream risks posed
by the errors they prevent. While incorrect start or stop
base-pair numbering (Figure 2) and inconsistent defini-
tions for repeated parts (e.g. the three repeats of “ispA-
O” in Figure 5A) may be extremely subtle (e.g. one
base-pair off), they may have dramatic negative conse-
quences (e.g. mRNA secondary structure disruption)
and require extensive detective work to resolve and
incur significant time and resource losses. Copying and
pasting visually selected DNA fragments from VectorE-
ditor in to DeviceEditor (Figure 2), along with internally
linked repeated parts (Figure 5A), pre-empt these costly
mistakes. These case-studies provide but a few represen-
tative design scenarios where DeviceEditor can offer sig-
nificant frustration, time and cost savings.

Conclusions
BioCAD tools assist the de novo design or selection of
existing biological component parts to achieve a speci-
fied function, as part of an integrated design-build-test
Synthetic Biology cycle (Figure 8). The DeviceEditor bio-
CAD canvas provides a web-based SBOLv-standardized
visual design environment (Figure 1) that mimics the
intuitive whiteboard design process practiced in

biological laboratories. DeviceEditor liberates users from
DNA base-pair level design, enabling a functional level
of visual abstraction that facilitates rapid prototyping.
DeviceEditor adds significant value to the design process
through automating routine yet tedious tasks, asserting
correct-by-construction design, and providing integra-
tion with downstream DNA assembly design automation
tools like j5. On-going DeviceEditor development aims
to facilitate submission of assembled designs to data-
bases, such as the JBEI-ICE [39] parts repository, yet
another time-saving benefit for the user. DeviceEditor’s
open and documented interfaces support further devel-
opment efforts towards integration with expression
grammar-checking tools (e.g. GenoCAD [10]) and spe-
cialized design tools (e.g. the RBS Calculator [15] and
GLAMM [5]).

Methods
DeviceEditor software license and availability
DeviceEditor is available at no cost to non-commercial
(e.g. academic, non-profit, or government) users, under
a Lawrence Berkeley National Lab end-user license
agreement [40]. The software is available through the
public j5 web-server [41], and is also available for down-
load upon request. Commercial use is available through
the Technology Transfer Department of Lawrence Ber-
keley National Laboratory (ttd@lbl.gov).

DNA sequence availability
DNA sequences (pGFPuv_sig.pep, pBbS8c-rfp,
pNJH00010 and pRDR00001-pRDR00008), along with
their associated information (annotated Genbank-format
sequence files, DeviceEditor design files, and j5 DNA
assembly design files, where appropriate) have been
deposited in the public instance of the JBEI Registry
[39].

DeviceEditor software implementation
DeviceEditor is web-based, available across computer
platforms via a common web-browser interface (Figure
1), and as such does not require the user to install or
update the software. Mediawiki software [42] coupled
with a PostgreSQL database [43] serves to automate the
creation and maintenance of user accounts on the pub-
lic j5 web-server [41]. A sequence meta-data clipboard
format developed at JBEI enables users to copy anno-
tated DNA sequences from software supporting the for-
mat and paste them onto DeviceEditor part icons
(Figure 2). DeviceEditor interacts with j5 (Figure 6,
right) through j5’s XML-RPC web-services interface
[12]. A server-side Perl-CGI [44] script provides an
interface for displaying DeviceEditor-designed assembled
sequence files with VectorEditor stand-alone software
[33] (Figure 6, bottom left). DeviceEditor utilizes the

Parts Repository

Automated
assembly

New part

Deposit in
repository

Selected component parts

BioCAD tools

Selected co

t

epository

osit in
sitory

Figure 8 Integrated Synthetic Biology design-implement-assay
cycle. The DeviceEditor BioCAD canvas (top right) assists the
specification, selection and arrangement of biological component
parts, and interfaces with upstream parts repositories (e.g. JBEI-ICE)
and downstream DNA assembly automation (e.g. j5).

Chen et al. Journal of Biological Engineering 2012, 6:1
http://www.jbioleng.org/content/6/1/1

Page 10 of 12

Adobe Flex [45], Degrafa declarative graphics [46], and
PureMVC [47] programming frameworks, and draws
upon the AS3 Zip [48], flex-object-handles [49], as3cor-
elib [50], and as3-rpclib [51] software libraries. Circus
Ponies Notebook software [52] was used to compose
and generate the online user’s manual, and QuickTime
software [53] was used to create the software video
demonstrations.
To enable third-party software developers to integrate

their software with DeviceEditor, the specifications for
the sequence meta-data clipboard format and the XML
schema for DeviceEditor design files are documented in
the user’s manual [54]. Similarly, the specifications for j5
CSV and zipped sequences input files (Figure 7) are
documented in the j5 user’s manual [55].

Additional material

Additional file 1: pNJH00010.xml - DeviceEditor design file (.xml)
for pNJH00010The DeviceEditor design file for the example shown
in Figure 3B.

Additional file 2: pRDR00001-8.xml - DeviceEditor design file (.xml)
for pRDR00001-8The DeviceEditor design file for the example
shown in Figure 3D.

Additional file 3: pRDR00001-8.eug - Eugene rules file (.eug) for
pRDR00001-8The Eugene rules file for the example shown in Figure
4B.

Abbreviations
BioCAD: Biological computer-aided design; RBS: Ribosomal-binding site;
SBOL: Synthetic biology open language; SBOLv: SBOL visualization extension;
CSV file: Comma-separated value file; XML file: Extensible markup language
file.

Acknowledgements
This work conducted by the Joint BioEnergy Institute was supported by the
Office of Science, Office of Biological and Environmental Research, of the U.
S. Department of Energy (Contract No. DE-AC02-05CH11231); the Berkeley
Laboratory Directed Research and Development Program (to NJH); and the
Synthetic Biology Engineering Research Center (SynBERC) through U.S.
National Science Foundation grant #0540879. The authors thank David
Pletcher, Steve Lane, Zinovii Dmytriv, Ian Vaino and William Morrell for
providing information technology support; Rafael Rosengarten for providing
the hypothetical designs shown in Figure 5; and Rafael Rosengarten, James
Carothers and Tim Thimmaiah for constructive comments on the
manuscript.

Author details
1Fuels Synthesis Division, Joint BioEnergy Institute, Emeryville, CA 94608,
USA. 2Physical Bioscience Division, Lawrence Berkeley National Lab, Berkeley,
CA 94720, USA. 3Department of Electrical and Computer Engineering, Boston
University, Boston, MA 02215, USA. 4Sandia National Laboratories, Livermore,
CA 94550, USA. 5Department of Chemical & Biomolecular Engineering,
University of California, Berkeley, CA 94720, USA. 6Department of
Bioengineering, University of California, Berkeley, USA.

Authors’ contributions
JC, DD, TSH and NJH designed the software. JC, DD and TSH developed the
software. JC and NJH wrote the software user’s manual. NJH created the
software demonstration video tutorials. JC, DD, JDK and NJH wrote the
manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare competing financial interests in the form of pending
software licenses whose values may be affected by the publication of this
article.

Received: 15 November 2011 Accepted: 28 February 2012
Published: 28 February 2012

References
1. Nielsen J, Keasling JD: Synergies between synthetic biology and

metabolic engineering. Nat Biotechnol 2011, 29:693-695.
2. MacDonald JT, Barnes C, Kitney RI, Freemont PS, Stan GB: Computational

design approaches and tools for synthetic biology. Integr Biol (Camb)
2011, 3:97-108.

3. Chandran D, Bergmann FT, Sauro HM, Densmore D: Computer-aided
design for synthetic biology. In Design and Analysis of Bio-molecular
Circuits.. 1 edition. Edited by: Koeppl H, Densmore D, di Bernardo M, Setti G.
New York, Springer-Verlag; 2011:203-224.

4. Lux MW, Bramlett BW, Ball DA, Peccoud J: Genetic design automation:
engineering fantasy or scientific renewal? Trends Biotechnol 2012,
30:120-126.

5. Bates JT, Chivian D, Arkin AP: GLAMM: Genome-Linked Application for
Metabolic Maps. Nucleic Acids Res 2011, 39:W400-W405.

6. Chandran D, Bergmann FT, Sauro HM: TinkerCell: modular CAD tool for
synthetic biology. J Biol Eng 2009, 3:19.

7. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle J, Kitano H: The ERATO
Systems Biology Workbench: enabling interaction and exchange
between software tools for computational biology. Pac Symp Biocomput
2002, 450-461.

8. Xia B, Bhatia S, Bubenheim B, Dadgar M, Densmore D, Anderson JC:
Developer’s and user’s guide to Clotho v2.0 A software platform for the
creation of synthetic biological systems. Methods Enzymol 2011,
498:97-135.

9. Hill AD, Tomshine JR, Weeding EM, Sotiropoulos V, Kaznessis YN: SynBioSS:
the synthetic biology modeling suite. Bioinformatics 2008, 24:2551-2553.

10. Cai Y, Wilson ML, Peccoud J: GenoCAD for iGEM: a grammatical approach
to the design of standard-compliant constructs. Nucleic Acids Res 2010,
38:2637-2644.

11. Leguia M, Brophy J, Densmore D, Anderson JC: Automated assembly of
standard biological parts. Methods Enzymol 2011, 498:363-397.

12. Hillson NJ, Rosengarten RD, Keasling JD: j5 DNA assembly design
automation software. ACS Synthetic Biology 2012, 1:14-21.

13. Ellis T, Adie T, Baldwin GS: DNA assembly for synthetic biology: from
parts to pathways and beyond. Integr Biol (Camb) 2011, 3:109-118.

14. Hillson NJ: DNA Assembly Method Standardization for Synthetic
Biomolecular Circuits and Systems. In Design and Analysis of Bio-molecular
Circuits.. 1 edition. Edited by: Koeppl H, Densmore D, di Bernardo M, Setti G.
New York, Springer-Verlag; 2011:295-314.

15. Salis HM, Mirsky EA, Voigt CA: Automated design of synthetic ribosome
binding sites to control protein expression. Nat Biotechnol 2009,
27:946-950.

16. Synthetic Biology Open Language standard. [http://www.sbolstandard.
org/].

17. Quan J, Tian J: Circular polymerase extension cloning for high-
throughput cloning of complex and combinatorial DNA libraries. Nat
Protoc 2011, 6:242-251.

18. Ramon A, Smith HO: Single-step linker-based combinatorial assembly of
promoter and gene cassettes for pathway engineering. Biotechnol Lett
2011, 33:549-555.

19. Shao Z, Luo Y, Zhao H: Rapid characterization and engineering of natural
product biosynthetic pathways via DNA assembler. Mol Biosyst 2011,
7:1056-1059.

20. Bilitchenko L, Liu A, Cheung S, Weeding E, Xia B, Leguia M, Anderson JC,
Densmore D: Eugene-a domain specific language for specifying and
constraining synthetic biological parts, devices, and systems. PLoS One
2011, 6:e18882.

21. Spectacles software. [http://2009.igem.org/Team:Berkeley_Software/
Spectacles].

22. Beal J, Lu T, Weiss R: Automatic compilation from high-level biologically-
oriented programming language to genetic regulatory networks. PLoS
One 2011, 6:e22490.

Chen et al. Journal of Biological Engineering 2012, 6:1
http://www.jbioleng.org/content/6/1/1

Page 11 of 12

http://www.biomedcentral.com/content/supplementary/1754-1611-6-1-S1.XML
http://www.biomedcentral.com/content/supplementary/1754-1611-6-1-S2.XML
http://www.biomedcentral.com/content/supplementary/1754-1611-6-1-S3.EUG
http://www.ncbi.nlm.nih.gov/pubmed/21822239?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21822239?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22001068?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22001068?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21624891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21624891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19874625?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19874625?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21601675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21601675?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18757873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18757873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20167639?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20167639?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21601686?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21601686?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19801975?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19801975?dopt=Abstract
http://www.sbolstandard.org/
http://www.sbolstandard.org/
http://www.ncbi.nlm.nih.gov/pubmed/21293463?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21293463?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21107654?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21107654?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21327279?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21327279?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21559524?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21559524?dopt=Abstract
http://2009.igem.org/Team:Berkeley_Software/Spectacles
http://2009.igem.org/Team:Berkeley_Software/Spectacles
http://www.ncbi.nlm.nih.gov/pubmed/21850228?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21850228?dopt=Abstract

23. DeviceEditor user’s manual. [http://j5.jbei.org/DeviceEditor_manual/index.
html].

24. DeviceEditor software. [http://j5.jbei.org/bin/deviceeditor.pl].
25. Synthetic Biology Open Language visual standard. [http://www.

sbolstandard.org/specification/extensions].
26. Shetty RP, Endy D, Knight TF Jr: Engineering BioBrick vectors from

BioBrick parts. J Biol Eng 2008, 2:5.
27. Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N, Lee SK,

Keasling JD: BglBrick vectors and datasheets: a synthetic biology
platform for gene expression. J Biol Eng 2011, 5:12.

28. jbei-seq sequence format XML schema. [http://gd-ice.googlecode.com/
git/docs/seq.xsd].

29. A plasmid Editor (ApE) software. [http://biologylabs.utah.edu/jorgensen/
wayned/ape/].

30. Redding-Johanson AM, Batth TS, Chan R, Krupa R, Szmidt HL, Adams PD,
Keasling JD, Lee TS, Mukhopadhyay A, Petzold CJ: Targeted proteomics for
metabolic pathway optimization: application to terpene production.
Metab Eng 2011, 13:194-203.

31. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O,
Phon TH, Pfeifer B, Stephanopoulos G: Isoprenoid pathway optimization
for Taxol precursor overproduction in Escherichia coli. Science 2010,
330:70-74.

32. Dunlop MJ, Dossani ZY, Szmidt HL, Chu HC, Lee TS, Keasling JD, Hadi MZ,
Mukhopadhyay A: Engineering microbial biofuel tolerance and export
using efflux pumps. Mol Syst Biol 2011, 7:487.

33. VectorEditor stand-alone software. [https://public-registry.jbei.org/static/
vesa/VectorEditor.html].

34. VectorEditor Project. [http://code.google.com/p/vectoreditor/].
35. j5 web-form interface. [http://j5.jbei.org/bin/j5_entry_form.pl].
36. Clotho website. [http://clothocad.org].
37. GenoCAD website. [http://genocad.org].
38. libSBOLxml library. [http://github.com/SynBioDex/libSBOLxml].
39. Public instance of the JBEI Parts Registry. [http://public-registry.jbei.org].
40. DeviceEditor end-user license. [http://j5.jbei.org/index.php/License].
41. Public j5 web-server. [http://j5.jbei.org].
42. Mediawiki software. [http://www.mediawiki.org].
43. PostgreSQL database software. [http://www.postgresql.org/].
44. Perl programming language. [http://www.perl.org/].
45. Adobe Flex framework. [http://www.adobe.com/products/flex.html].
46. Degrafa declarative graphics framework. [http://www.degrafa.org/].
47. PureMVC framework. [http://trac.puremvc.org/PureMVC].
48. AS3 Zip library. [http://nochump.com/blog/archives/15].
49. flex-object-handles library. [http://code.google.com/p/flex-object-handles/].
50. as3corelib library. [https://github.com/mikechambers/as3corelib].
51. as3-rpclib library. [http://code.google.com/p/as3-rpclib/].
52. Circus Ponies Notebook software. [http://www.circusponies.com/].
53. Apple QuickTime software. [http://www.apple.com/quicktime/].
54. DeviceEditor clipboard interface and XML design file specifications.

[http://j5.jbei.org/DeviceEditor_manual/pages/122.html].
55. j5 input file specifications. [http://j5.jbei.org/j5manual/pages/38.html].

doi:10.1186/1754-1611-6-1
Cite this article as: Chen et al.: DeviceEditor visual biological CAD
canvas. Journal of Biological Engineering 2012 6:1.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Chen et al. Journal of Biological Engineering 2012, 6:1
http://www.jbioleng.org/content/6/1/1

Page 12 of 12

http://j5.jbei.org/DeviceEditor_manual/index.html
http://j5.jbei.org/DeviceEditor_manual/index.html
http://j5.jbei.org/bin/deviceeditor.pl
http://www.sbolstandard.org/specification/extensions
http://www.sbolstandard.org/specification/extensions
http://www.ncbi.nlm.nih.gov/pubmed/18410688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18410688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21933410?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21933410?dopt=Abstract
http://gd-ice.googlecode.com/git/docs/seq.xsd
http://gd-ice.googlecode.com/git/docs/seq.xsd
http://biologylabs.utah.edu/jorgensen/wayned/ape/
http://biologylabs.utah.edu/jorgensen/wayned/ape/
http://www.ncbi.nlm.nih.gov/pubmed/21215324?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21215324?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20929806?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20929806?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21556065?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21556065?dopt=Abstract
https://public-registry.jbei.org/static/vesa/VectorEditor.html
https://public-registry.jbei.org/static/vesa/VectorEditor.html
http://code.google.com/p/vectoreditor/
http://j5.jbei.org/bin/j5_entry_form.pl
http://clothocad.org
http://genocad.org
http://github.com/SynBioDex/libSBOLxml
http://public-registry.jbei.org
http://j5.jbei.org/index.php/License
http://j5.jbei.org
http://www.mediawiki.org
http://www.postgresql.org/
http://www.perl.org/
http://www.adobe.com/products/flex.html
http://www.degrafa.org/
http://trac.puremvc.org/PureMVC
http://nochump.com/blog/archives/15
http://code.google.com/p/flex-object-handles/
https://github.com/mikechambers/as3corelib
http://code.google.com/p/as3-rpclib/
http://www.circusponies.com/
http://www.apple.com/quicktime/
http://j5.jbei.org/DeviceEditor_manual/pages/122.html
http://j5.jbei.org/j5manual/pages/38.html

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	DeviceEditor design process
	Design process acceleration and correct-by-construction design
	Graphical user interface for creating and modifying Eugene biological design specification rules
	Mechanisms for integration with other bioCAD software

	Discussion
	Conclusions
	Methods
	DeviceEditor software license and availability
	DNA sequence availability
	DeviceEditor software implementation

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

