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Abstract

A modified BioBrick™ assembly method was developed with higher fidelity than current protocols. The method
utilizes a PCR reaction with a standard primer set to amplify the inserted part. Background colonies are reduced by
a combination of dephosphorylation and digestion with Dpnl restriction endonuclease to reduce vector and insert
background respectively. The molar ratio of the insert to vector in the ligation was also optimized, with the
accuracy of the transformed construct approaching 100%.
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Background

The methods used for controlled modification of genetic
material have experienced several major improvements
since the initial development of recombinant DNA techni-
ques in the early 1970s [1-4]. While there have been many
efforts to simplify and standardize the genetic assembly
process [5-7], one format that has gained widespread
acceptance is the BioBrick™[8]. BioBrick assembly is com-
monly applied within a synthetic biology conceptual fra-
mework that abstracts and classifies basic functional units
of genetic material (promoters, ribosome binding sites,
protein coding sequences like reporters, terminators, etc.)
as “parts” that can be assembled into “devices” that create
new functionality, and higher level “systems” to accom-
plish complex tasks [9]. While the BioBrick standard has
been revised several times [10-12], the basic format has
remained the same. Each “BioBrick part” is contained on a
plasmid and is flanked by four unique restriction sites,
(two 5’ and two 3’) with the inner restriction sites that can
be cut by two endonucleases yielding compatible ends.
Using this format, individual parts may be selectively
digested and then ligated together to form new composite
parts or devices while preserving the format, connecting
the individual parts by a benign mixed restriction site
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known as a “scar” (Figure 1). The chief utility of this tech-
nology is that all parts using the same format are inter-
changeable and composite parts can be recombined in the
same way as individual parts [8]. This has allowed entire
catalogs of compatible biological parts to be developed
[9,13]. The major limitation of this format is that compo-
site parts must be assembled piece by piece. To make
this system useful and affordable, easy and reliable stan-
dard methods of performing these assemblies have been
developed [14].

The original method used to perform “bio-bricking” is
called the standard assembly method. In using this
method, one part is designated the insert and is digested
out of its plasmid using enzymes EcoRI and Spel or Xbal
and PstlI [8]. The other part remains in its plasmid, but
the plasmid is opened up using compatible enzymes:
EcoRI and Xbal or Spel and Pstl respectively (Figure 2).
Upon successful double ligation the inner Xbal and Spel
sticky ends will form a benign scar and the two parts will
be adjacent to one another in the final circular construct.
This protocol requires the following steps: 1) extraction
of plasmids containing the two parts to be assembled; 2)
digestion of the plasmids to create compatible ends on
DNA fragments; 3) separation of the digested DNA by
agarose gel electrophoresis; 4) extraction of the selected
fragments from the gel; 5) ligation of the fragments
together; and 6) transformation of the ligated plasmid
product into cells. This process has many advantages: the
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Figure 1 Assembly of Parts Using the BioBrick Standard Format. The promoter and the protein coding sequence, initially existing as parts
on separate plasmids, are digested and ligated to form a composite part on one plasmid. Because Xbal (TCTAGA) and Spel (ACTAGT) form
compatible ends (CTAG), the two individual parts are connected by a mixed restriction site (ACTAGA) that is not recognized by any restriction
endonuclease and is called the “scar”. The individual parts may exist on plasmids with different resistances and the final composite parts may or
may not be on a plasmid with the same resistance as its constituent parts.

parts can all be on plasmids with the same antibiotic
resistance; thermostable enzymes (e.g. Bglll and BamHI)
can be used; and only two successful ligations are neces-
sary to achieve a circularized plasmid. However, there is
a key disadvantage: the gel electrophoresis and extraction
are difficult to automate and result in poor yields of puri-
fied DNA, especially for smaller parts.

To address many of these problems, the three antibio-
tic (3A) assembly method was developed [15]. This
method successfully eliminates the necessity for gel elec-
trophoresis and the associated costs/problems/time and
enables the automated assembly of small parts. Using
this method the two plasmids containing the parts to be
assembled are extracted as before, but both parts (desig-
nated “prefix” and “suffix”) are digested out of their
respective plasmids and then inserted into a third plas-
mid in a three way ligation. This third plasmid is called
the “construction plasmid” and has a different antibiotic
resistance than the part plasmids (Figure 3). Various
means are employed to eliminate background transfor-
mation of the construction plasmid including the inser-
tion of a specific “cell death” gene [16-18] and the use
of PCR-linearized plasmid backbone [14]. While this 3A
Assembly greatly simplifies the assembly of biological
parts, it has some disadvantages as well. The three-way
ligations are less efficient and produce comparatively
fewer circularized products and fewer transformants. It
is also possible for these backbones to be ligated to the
construction plasmid in place of the desired part
because the digested prefix and suffix plasmid back-
bones are included in the ligation. Both of these pro-
blems lead to a loss of accuracy and the need to screen
and sequence a number of colonies.

We proposed and critically tested an alternate BioBrick
assembly method called Amplified Insert Assembly to
eliminate many of these problems. This method com-
bines the functional simplicity of the standard assembly
method with the ease and flexibility of 3A Assembly and
is compatible with any BioBrick standard in which the
restriction endonucleases are able to be heat inactivated.
It is based on the original standard assembly method in
that it uses a double ligation to insert one part, desig-
nated the “insert”, adjacent to another part that remains
in its plasmid, and thus is the designated “vector”. The
need for gel electrophoresis is eliminated because the
insert is amplified from its original plasmid using high-
fidelity PCR, and background transformation is elimi-
nated by simple enzymatic treatments. Very small parts
can also be assembled with ease because this PCR step
adds sufficient length to allow purification using a DNA
binding column. While these combined treatments elimi-
nate the need for gel electrophoresis and enable the
assembly of small parts, they also substantially decrease
the required starting quantity of DNA, generally making
use of the BioBrick repository more affordable and
versatile.

Several aspects of the amplified insert (AI) assembly
protocol will be familiar to those using standard cloning
techniques, as they are very similar to the processes
involved in typical cloning of DNA [19]. This new
assembly protocol is differentiated by 1) the use of com-
mon flanking primers which preserve, during amplifica-
tion, the existing restriction sites flanking the BioBrick
part, 2) these primers also add sufficient length of DNA
(~300 bp) to the amplified part to allow even very small
parts (e.g. RBSs) to be purified easily using a DNA
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Figure 2 Standard Assembly. This figure illustrates a typical standard assembly. The plasmid containing the promoter is digested with Spel and
Pstl, and the plasmid containing the coding sequence is digested with Xbal and Pstl. Both of these digests are separated using agarose gel
electrophoresis and the relevant parts are recovered from the gel. The gel extracts are then ligated together and the circular product is
transformed into cells. Because of the necessity for gel electrophoresis, performing this same assembly using the small-sized promoter as the
insert instead of the protein coding sequence would be extremely difficult.
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binding column, 3) clean-up of the amplified insert by
Dpnl digestion, and 4) the elimination of background
vector by the dephosphorylation of the vector DNA.

Results

The protocol for utilizing the Al assembly method is
simple and fast. First, the plasmid DNA for both parts is
purified from an overnight culture. The insert DNA is
then amplified from its plasmid using 25 cycles of high-
fidelity PCR. This amplification uses standard primers
that anneal to all BioBrick plasmids and eliminate the

need to order custom oligos for each assembly, as
required by other PCR based assembly methods [20-22].
While this PCR is running, the vector plasmid is
digested with either EcoRI and Xbal or Spel and PstL.
After two hours of digestion, the vector is also treated
with Antarctic Phosphatase to remove the terminal
phosphates in the cut vector and prevent self-ligation.
When the PCR product is finished it is purified using a
DNA binding column and then digested for one hour
with either EcoRI and Spel or Xbal and Pstl to comple-
ment the vector. Dpnl is also added to this digest as a
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Figure 3 Three Antibiotic (3A) Assembly. Using this method of assembly, the promoter is digested with EcoRI and Spel and the coding
sequence is digested with Xbal and Pstl. A PCR linearized “construction plasmid” with a different antibiotic resistance than the others is also
digested with EcoRI and Pstl and may or may not be treated with Dpnl and phosphatase to remove some of the background plasmids. These
three digests are then ligated together and the circular product of that ligation is transformed into cells.
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third restriction endonuclease. Once all digests are
heated to inactivate the endonucleases (80°C for 20
min), they are ligated using T4 Ligase at a molar ratio
of 4:1 (insert:vector), transformed into competent cells,
and plated onto media of appropriate resistance. This
method is illustrated in Figure 4.

The high accuracy of this assembly is enabled by the
use of Dpnl restriction endonuclease to eliminate insert
background and Antarctic Phosphatase to eliminate vec-
tor background. This additional processing is an enzy-
matic substitute for the mechanical separation of gel
electrophoresis, and can be performed concurrently to

the restriction digest without requiring any additional
time. Dpnl restriction endonuclease is a frequent blunt
cutter (recognition site GATC) but only cuts sites with
a methylated adenine residue [23]. Many cloning strains
of E. coli are positive for Dam methyltransferase which
specifically methylates this GATC site [24], making it
susceptible to Dpnl cleavage. Because the synthetic
DNA created during PCR amplification is not methy-
lated, the Dpnl only cuts the template DNA. Thus the
PCR followed by digestion with Dpnl provides an enzy-
matic amplification and clean-up of the BioBrick insert.
Similarly, the use of a phosphatase prohibits the cut
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Figure 4 Amplified insert Assembly. The insert part is amplified from its plasmid using high-fidelity PCR and the purified PCR product is
digested with Xbal, Pstl, and Dpnl. Meanwhile the vector part's plasmid is digested with Spel and Pstl and phosphatased. The products of these
two digestions are then ligated and the circular product is transformed into cells. This assembly can easily be done in reverse manner using the

promoter as the insert and leaving the coding sequence in its vector, thus providing additional flexibility.

vector DNA from re-ligating by removing the terminal
phosphate groups necessary to bond DNA bases. To
verify and quantify the accuracy and efficiency of Al
assembly, promoters and protein coding sequences of
various sizes were inserted to create functional BioBrick
expression cassettes for the lacZ o fragment [25] and
mRFP[26], allowing the constructs to be screened by

color. In addition to the traditional additive assembly
procedure, Al assembly was also used for coding
sequence replacement, which is commonly used for pro-
moters that are contained in testing devices (Figure 5).
The molar ratios of insert to vector were adjusted to
determine the optimum for this protocol, as this ratio
has been shown to have a substantial effect on ligation
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Figure 5 Experimental Amplified Insert Assemblies. 1) The Ptet promoter is amplified from its plasmid and inserted 5’ of lacZ e with RBS.
The amplified fragment is 350 bp and the insert size is 50 bp. 2) The J23100 constitutive promoter is amplified from its testing device and
inserted 5’ of lacZ .. The amplified fragment is 1200 bp and the insert size is 40 bp. 3) The lacZ e is amplified from its plasmid and is inserted 3’
of the J23100 promoter while replacing the existing coding sequence in the testing device and restoring the standard BioBrick format. The
amplified fragment is 830 bp and the insert size is 530 bp. 4) The entire promoter testing device is amplified from its plasmid and inserted 3" of
lacZ o creating a composite mRFP generator and testing device. The amplified fragment is 1200 bp and the insert size is 900 bp.
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success [27]. As a comparison, three antibiotic (3A)
assembly was also performed as instructed in the Bio-
Brick™ assembly kit (Ginkgo BioWorks, Boston MA,
USA). For all assemblies the insert parts were initially
contained on ampicillin resistant BioBrick plasmids, and
all composite parts were contained on chloramphenicol
resistant plasmids. This allowed the separate assessment
of insert background in AI assembly by plating the
transformation product on ampicillin plates. This back-
ground number allows us to quantify the additional
number of incorrect colonies if the vector and insert
plasmids both had the same resistance. This background
assessment was not done for 3A assembly, as this
method requires that the construction plasmid have a
different resistance than the prefix or suffix and there-
fore the insert background is theoretically insignificant
as it would not appear on plates of the correct
resistance.

The results of these tests are summarized in Table 1.
Non-colored chloramphenicol resistant colonies are
enumerated as “incorrect” and colonies that appear on
ampicillin plates are enumerated as “background”. The
3A assemblies were each transformed twice (column
purified/concentrated and unpurified) to ensure suffi-
cient colonies for enumeration, as the unpurified 3A

Table 1 Transformation Results
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ligation produced only a few colonies. The unpurified
transformation data are given first. All Al assembly liga-
tions were transformed unpurified. For the AI assembly
tests, various combinations of placing the insert 5’ (liga-
tions #1 and #2) or 3’ (ligations #3 and #4) of the vector
part are represented. Sequences of the assembled parts
are available in [Additional File 1].

Conclusions

Based on these results shown in Table 1 it can be seen
that the amplified insert assembly method produces the
desired composite part with greater accuracy when com-
pared to 3A assembly. There is also a greater trend
toward success at the higher molar ratios, with the 4:1
(insert:vector) ratio giving greater accuracy in three out
of the four assemblies tested. Furthermore, it can be
seen that the amplified insert assembly is equally adept
at performing the standard additive assembly (ligations
#1 and #4) as well as coding sequence replacement (liga-
tions #2 and #3). These results also show a trend toward
decreased accuracy when the insert is placed behind the
vector part (ligations #3 and #4). This could be due to
the lower activity of Pstl in the reaction buffer used
(75% compared to 100% for all other enzymes according
the NEB’s buffer chart). While this can be slightly

Amplified Insert Assembly

# Ligation Inputs Results
Insert Vector Ratio Color Correct Incorrect Background % Accuracy
Ptet lacZ o 11 Blue 819 6 1 99.6 + 0.9%
1 Ptet lacZ o 21 Blue 868 13 1 984 £ 0.7%
Ptet lacZ o 41 Blue 793 0 1 99.9 + 0.2%
PJ23100 lacZ o 11 Blue 778 3 3 99.2 + 0.6%
2 PJ23100 lacZ o 2:1 Blue 1454 5 1 99.6 + 0.8%
PJ23100 lacZ o 41 Blue 607 0 1 99.8 + 0.3%
lacZ o PJ23100 11 Blue 391 12 6 956 + 2.2%
3 lacZ o PJ23100 2:1 Blue 547 2 3 99.1 £ 0.7%
lacZ o PJ23100 41 Blue 465 5 1 98.7 + 3.3%
mRFP Driver lacZ o 11 Red 676 34 5 946 + 34%
4 mRFP Driver lacZ o 21 Red 1329 24 1 98.2 + 0.9%
mRFP Driver lacZ o 41 Red 1761 22 6 98.4 * 1.0%
Three-Antibiotic Assembly
# Ligation Inputs Results

Prefix Suffix Vector Color Correct Incorrect % Accuracy

5 PJ23100 lacZ o pSB1C3 Blue 8 1 89%
5% PJ23100 lacZ o pSB1C3 Blue 418 43 90.7 + 0.6%

6 lacZ o mRFP Driver pSB1C3 Red 3 1 75%
6% lacZ o mRFP Driver pSB1C3 Red 174 29 85.7 + 4.6%

The cumulative number of colonies after performing assemblies in triplicate on three separate days are shown. 3A ligations marked with an asterisk (*) were
purified and concentrated before transformation. The highest % accuracy is bolded for each ligation reaction.
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Standard Assembly

Three Antibiotic Assembly  Amplified Insert Assembly

Plasmid Extraction X X X
Restriction Digest X X X
Phosphatase Treatment X X
Dpnl Digest X
Gel Electrophoresis X
PCR X X
Ligation X X X
Purification After Gel Before Transformation Before Digestion
Accuracy Depends on size: Gel extraction difficult for small inserts 89% 99%

frustrating, it also illuminates the fact that the amplified
insert assembly method allows an added level of choice
in determining which enzymes to use. In contrast, with
3A assembly all enzymes must be used for every assem-
bly. While it should be noted that the extremely low
numbers of colonies given by the unpurified 3A ligation
is a substantial limitation of this method, this limitation
is readily eliminated by a quick purification step. Similar
assemblies were also performed using the standard
assembly method with gel electrophoresis. These assem-
blies had an accuracy of 94%, but only yielded an aver-
age of three colonies per plate, and none of the
assemblies involving small inserts yielded any colonies.

These results show that the amplified insert assembly
method preserves the functional simplicity (and therefore
accuracy) of the original standard assembly method while
possessing several positive characteristics of 3A assembly,
including the elimination of gel electrophoresis and the
ability to assemble small parts. While the PCR step can
sometimes add up to two hours to the total assembly
time, the total time from cultures to plating is usually
under six hours, and the hands-on time is only slightly
increased when compared to 3A assembly. Furthermore,
because this protocol allows the amplification of insert
from a small amount of DNA, plasmid preps of common
parts (e.g. promoters, terminators, and RBSs) can be kept
as a stock and used repeatedly as insert template. If the
PCR is performed in advance from a plasmid stock, the
total time required for AI assembly is four hours. A com-
parison of the various BioBricking methods can be found
in Table 2.

Because this procedure uses PCR to amplify the insert,
there is an inherent risk of causing mutations in the
part sequence. To mitigate this risk a few steps should
always be taken: 1) a high fidelity polymerase should
always be used; 2) the number of PCR cycles should be
kept at or below 30; and 3) the final construct should
always be sequenced to detect any mutations. It also
occasionally happens that PCR can unexpectedly fail for
a number of reasons, but because our reaction uses the

same polymerase and primers for each assembly, the use
of a standard 2x stock can drastically reduce the user
error involved in the amplification process. Despite
these risks we have yet to observe a mutated plasmid in
over 100 successful sequenced assemblies, and have
found this method to be a quick, effective, and reliable
way to perform all types of BioBrick assembly.

Methods

For all experiments E. coli strain DH50 was grown in
SOB liquid medium [28] supplemented with appropriate
antibiotic (100 pg/ml Ampicillin; 50 pg/ml Kanamycin;
35 pg/ml Chloramphenicol) or on 2% agar plates at 37°C
supplemented with X-gal (200 mg/L) and the appropriate
antibiotic. All parts and plasmids used in this experiment
were obtained from the Registry of Standard Biological
Parts http://partsregistry.org/Main_Page, and a list of the
parts and plasmids used is provided in Table 3. Plasmids
were extracted using the E.Z.N.A Plasmid Mini Kit
(Omega Bio-Tek, Norcross, GA, USA). DNA was quanti-
fied using a NanoDrop 2000 spectrophotometer (Thermo
Scientific, Wilmington, DE, USA).

Amplified insert assembly

PCR
Parts were amplified via PCR using the high fidelity
Vent” DNA Polymerase (New England BioLabs, Ips-
wich, MA, USA) and run according to the suppliers
protocol (2011) in 1x Thermopol Buffer (2 mM Mg2
") for 25 cycles (25 sec@94°C, 25 sec@58°C, exten-
sion (1 min/kb)@72°C). Primers VF2 (tgccacct-
gacgtctaagaa) and VR (attaccgcctttgagtgage) were
used that flank the restriction sites by approximately
125 bp and have a T, of 60°C. PCR cleanups were
performed using the E.Z.N.A. Cycle-Pure Kit
(Omega Bio-Tek, Norcross, GA, USA).

Digestion
All digests were performed in 50 pl volumes con-
taining 1x NEBuffer 2 (New England BioLabs,
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Table 3 Parts and Plasmids

Part# Description Size (bp) Use Plasmid Resistance

BBa_1732018 lacZ oo with a strong ribosome binding site 534 Insert pSBTAK3 Ampicillin, Kanamycin
BBa_J23100 Strong constitutive promoter in mRFP testing device 35 + 890 Insert pBca1020 Ampicillin
BBa_R0040 TetR repressible promoter 54 Insert pSB1A2 Ampicillin
BBa_1732018 lacZ o with a strong ribosome binding site 534 Vector pSB1C3 Chloramphenicol
BBa_J23100 Strong constitutive promoter in mRFP testing device 35 + 890 Vector pSB1C3 Chloramphenicol

The plasmids used are described according to the parts registry number www.partsregistry.org and the size of the BioBrick part contained on the plasmid. Parts
given two sizes are promoters contained on promoter testing devices that have an mRFP coding sequence between the Spel and Pstl sites. The sizes are given

as the promoter and mRFP gene respectively.

Ipswich, MA, USA) and either 0.5 pmol of purified
PCR product or 0.25 pmol of purified plasmid.
Twenty units of each enzyme were used for the
digests, except for Spel and Antarctic Phosphatase
which were used in 10 unit and 5 unit quantities
respectively. Digests were performed according to
the following scheme:

To place the insert part in 5’ of the vector part. The
vector was digested with EcoRI and Xbal for two hours
(while the insert PCR was taking place) and then treated
with Antarctic Phosphatase (supplemented with the spe-
cified buffer) for one hour while the purified insert was
digested with Dpnl, EcoRIl, and Spel;

To place the insert 3'of the vector part. The vector was
digested with Spel and Pstl for two hours (while the
insert PCR was taking place) and then treated with Ant-
arctic Phosphatase (supplemented with the specified
buffer) for one hour while the insert was digested with
Dpnl, Xbal, and Pstl.

All digests were heat inactivated for 20 min at 80°C.
All enzymes were purchased from New England Bio-
Labs (Ipswich, MA, USA).

Ligation
Ligations were performed in 20 pl volumes using T4
Ligase (New England BioLabs, Ipswich, MA, USA)
according to the manufacturers protocol (2011) for
sticky ends. A total of 6 pl of unpurified digests was
used for each ligation, with the molar ratios varied
from 1:1 to 4:1 (insert:vector).

Three-antibiotic (3A) assembly

vector construction
The backbone of the plasmid pSB1C3 was amplified
and linearized via PCR using Phusion® High-Fidelity
DNA Polymerase (New England BioLabs, Ipswich,
MA, USA). Phusion® was used here because it has
high processivity (4 kb/minute), a higher fidelity
than Vent®, and works well for large parts or, in this

case, a 2.5 kb plasmid backbone. However, because
of its high processivity Phusion® is not ideal for the
amplification of small parts, which is why Vent® was
used elsewhere. Primers which bind in the BioBrick
sites and have a T, of 61°C were used for 35 cycles
according to the manufacturer’s (2011) specifica-
tions. Constructs were purified using the E.Z.N.A.
Cycle-Pure Kit and used immediately.

Digestion

0.25 pmol of DNA were used for all 50 pl digests.
The prefix parts were digested with EcoRI and Spel
and the suffix parts were digested with Xbal and
Pstl. The linear construct plasmid was digested with
EcoRI and PstI and also supplemented with Dpnl
and Antarctic Phosphatase to eliminate background
as described above. During the phosphatase step,
vector digests were supplemented with 6 pl of Ant-
arctic Phosphatase buffer. All reactions were heat
inactivated for 20 min at 80°C after three hours of
digestion.

Ligation

2 ul of each digest (6 pl total) was added to the liga-
tion mix as described above. The ligations were
done in duplicate with one ligation being trans-
formed in its unpurified state, while the other liga-
tion was purified using an E.Z.N.A MicroElute
Cycle-Pure Kit (Omega Bio-Tek, Norcross, GA,
USA) and concentrated in a volume of 5 pl, which
was used in its entirety to transform cells.

Transformation and selection

5 ul of ligation product was added to 100 pl DH5a
competent cells (1 x 107 cfu/ug DNA) and transformed
using an Eppendorf 2510 electroporator (Hamburg, Ger-
many) at 15,000 V/cm. Transformed cells were diluted
into 900 pl prewarmed SOC medium [28] and let
recover for 30-60 min at 37°C. 100 pl of this recovery
solution was then plated in triplicate on chlorampheni-
col plates and singly on an ampicillin plate to assess


www.partsregistry.org

Speer and Richard Journal of Biological Engineering 2011, 5:17
http://www jbioleng.org/content/5/1/17

background insert plasmid (for AI assembly only). The
plates were developed for two days before color counts
were made. Strains containing only lacZa (without a
promoter), as well as the mRFP driver were also tested
to ensure that they did not produce a false positive for
the X-gal screen.

Additional material

Additional file 1: Gene Sequences. This file contains the gene
sequences of the parts used as well as the final constructs created by
assembly.

List of abbreviations used

RBS: ribosome binding site; ORF: open reading frame; mRFP: monomeric red
fluorescent protein; PCR: polymerase chain reaction; SOB super optimal
broth; bp: base pairs.
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