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Abstract

For the analysis of the longitudinal hypertension family data, we focused on modeling binary traits of hypertension
measured repeatedly over time. Our primary objective is to examine predictive abilities of longitudinal models for
genetic associations. We first identified single-nucleotide polymorphisms (SNPs) associated with any occurrence of
hypertension over the study period to set up covariates for the longitudinal analysis. Then, we proceeded to the

future hypertension status of individuals.

longitudinal analysis of the repeated measures of binary hypertension with covariates including SNPs by
accounting for correlations arising from repeated outcomes and among family members.

We examined two popular models for longitudinal binary outcomes: (a) a marginal model based on the
generalized estimating equations, and (b) a conditional model based on the logistic random effect model. The
effects of risk factors associated with repeated hypertensions were compared for these two models and their
prediction abilities were assessed with and without genetic information.

Based on both approaches, we found a significant interaction effect between age and gender where males were
at higher risk of hypertension before age 35 years, but after age 35 years, women were at higher risk. Moreover,
the SNPs were significantly associated with hypertension after adjusting for age, gender, and smoking status. The
SNPs contributed more to predict hypertension in the marginal model than in the conditional model. There was
substantial correlation among repeated measures of hypertension, implying that hypertension was considerably
correlated with previous experience of hypertension. The conditional model performed better for predicting the

Background

Hypertension is a chronic condition resulting from high
blood pressure in the arteries during circulation. Clinically,
a person is said to be hypertensive if the individual’s systo-
lic blood pressure (SBP) is greater than 140 mm Hg or dia-
stolic blood pressure (DBP) is greater than 90 mm Hg.
With advances in genome-wide association studies, several
researchers have also investigated the role of genes in this
disease [1,2]. It is essential to control hypertension in
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order to avoid consequences like cardiovascular diseases,
stroke, and heart and kidney failure.

The San Antonio Family Study data for Genetic Analy-
sis Workshop 18 (GAW18) contain up to 4 longitudinal
measures of SBP and DBP along with their background
and genetic information for a total of 932 individuals
from 20 Mexican American families. In the analysis of
the longitudinal hypertension family data, we focus on
modeling longitudinal binary traits of hypertension,
defined by SBP >140 mm Hg, DBP >90 mm Hg or use of
antihypertensive medication, by taking into account cor-
relations arising from repeated outcomes and among
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family members while controlling for covariates such as
age, gender, smoking status, and genetic polymorphisms.

Our primary objective is to examine predictive abilities
of longitudinal models with inclusion of genetic infor-
mation. In the first step, we identify important single-
nucleotide polymorphisms (SNPs) associated with any
occurrence of hypertension over the study period in
order to set up covariates for the longitudinal analysis.
The selection of SNPs is based on chromosome 3 only.
Then we proceed to the longitudinal analysis of repeated
measures of hypertension with covariates, including
SNPs that already identified. We examined two popular
modeling approaches for longitudinal binary outcomes:
the marginal model (population-average) and the condi-
tional model (subject-specific). The effects of the risk
factors associated with repeated hypertension from the
two models were compared and their prediction abilities
were assessed with and without genetic information
using the areas under the receiver operating characteris-
tic curve.

Methods

Selection of associated SNPs

The SNP selection was performed based on the Cox
proportional hazards (PH) model [3,4] using time to
first hypertension, and on the logistic model using any
occurrence of hypertension over repeated measurements
as a binary outcome, controlling for covariates of inter-
est such as age, gender, and smoking status. The Cox
PH model was fitted for each SNP with frailty, a random
effect, to account for familial correlation,

)\i]'(t) = )\0(’[) exp (ﬂXi]' + aSNP + b]) (1)

where 4;(t) is the hazard function of individual i in
family j, Ao(t) is the baseline hazard function, b; is the
random effect for family j, and Xj; is the vector of covari-
ates for the fixed effects. Each SNP entered into the
model was assumed to be codominant (TT, TC, CC) as
the inheritance mode is not known. Similarly, the logistic
model was fitted for each SNP for the binary hyperten-
sion outcome, defined as 1 if one has ever experienced
hypertension over the study period and 0 otherwise, with
a random intercept to account for familial correlation.
These two modeling approaches were employed to vali-
date the choice of SNPs for the following longitudinal
models.

Longitudinal models

We considered the two most commonly used modeling
strategies for analyzing correlated data from longitudinal
study: marginal and conditional models, also known as
population-averaged and subject-specific approaches,
respectively. To accommodate the dependence among
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longitudinal repeated outcomes, the marginal approach
directly describes marginal means along with a prespeci-
fied working correlation structure as nuisance para-
meters, whereas the conditional approach describes an
individual response conditioning on the unobserved
values of random effects. The generalized estimating
equations (GEEs) method by Liang and Zeger [5] was
used to estimate population-average effects in the mar-
ginal model, whereas the logistic random effect model [6]
was used to provide subject-specific effects in the condi-
tional model.

Marginal model (population-averaged model)

Let y; represent the occurrence of hypertension (binary
trait) for individual i at time j. Then, the marginal logis-
tic model for hypertension can be expressed as

logit P(y“ =1; Xjj) = fo + B1 ageij + B2 sex; + B3 sex; x agejj + 4 smoke;; + Bs SNP; (2)

where the risk factors of interest are age at examina-
tion, sex (1 = male, 2 = female), smoking status (1 =
smoker, 0 = nonsmoker), and a vector of SNPs identi-
fied in the first step. The interaction between age and
sex was also considered in the model.

The analysis of correlated traits was based on GEEs
[5], using up to 3 visits per subject.
Conditional model (subject-specific model)
Another way to accommodate the correlation arising
among repeated outcomes over time is by introducing
subject-specific random effects. As a result of the nested
structure of the data where individuals were repeatedly
measured over time and nested within families, we con-
sidered the 3-level logistic random intercepts model for
the binary hypertension y; at time point i, of individual
j, within family k, as

1ogitP(y;j, = 1; Xijk) = Bo+vik D+ P+ Brageiicfasexiic+Bs sexjix ageijic+Ba smokeijic+ fs SNPj, (3)

where ij(z) represents a random effect for individual j
within family k following iid N(O, 0(2)2) and v¥ is a
random effect for family k with iid N(0, 6(3)%). The two
random intercepts describe the dependence at two
levels: one at the individual level among repeated out-
comes and another at the family level among family
members.

Results

Our analysis focused on a binary trait of hypertension
defined by SBP >140 mm Hg, DBP >90 mm Hg, or use
of antihypertensive medication. A total of 932 partici-
pants from 20 families were considered. The genome-
wide association analyses were performed for 65,519
SNPs on chromosome 3 using the software PLINK [7]
with R-plugin, and statistical analysis was conducted
using SAS [8] and R [9].
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Data preprocessing

After the data were preprocessed for quality control, 850
individuals were kept with no missing phenotypes and
6261 SNPs were excluded with Hardy-Weinberg equili-
brium test p value (among founders only) <0.001, or
minor allele frequency <0.01, or with a missing genotyp-
ing rate >0.95 from our analyses.

SNP selection

With adjustment for covariates and familial correlation,
we identified the top 5 SNPs on chromosome 3 that
were most associated with hypertension binary trait
using the logistic model and with age at first hyperten-
sion using the Cox PH model, respectively (Tables 1
and 2). We found that the two most significant SNPs
are rs10510257 and rs1047115. Interestingly, these two
SNPs were identified from both models.

Marginal and conditional models for longitudinal
data

We compared the two approaches for modeling longitu-
dinal binary data by including the two identified SNPs.
For a fair comparison of these two models, we used
only 443 individuals who completed the first 3 follow-
ups with no missing genotypes in the two SNPs. Table 3
summarizes the estimates of regression coefficients and
variance of random effects for marginal and conditional
models. A first-order autoregressive correlation struc-
ture (AR1) was chosen for GEE because it best
described the correlation structure of the data among
other correlation structures. In particular, the first-order
autoregressive moving average correlation structure pro-
vided almost the same results as AR1. For both models,
we found that age effect on the odds of hypertension
was significantly different for males and females, as
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shown in Figure 1. In the marginal model, females had
increased odds for hypertension by 87% for each 5-year
increase in age, whereas males had increased odds of
only 56% for each 5-year increase in age. The genetic
effects of both SNPs (rs10510257 and rs1047115) were
significant with adjustment of other covariates at the 0.1
level of significance. For rs10510257, genotypes AA and
AG decreased the odds of hypertension by 33% and
41%, respectively, compared to genotype GG; for
rs1047115, genotype GT had a two-fold increased odds
of hypertension compared to genotype TT.

We observed that the estimates of the regression coef-
ficients in the conditional analysis were slightly farther
away from zero than those from the marginal model.
For example, the log odds ratio (OR) of hypertension
between smokers and nonsmokers was 0.213 in the con-
ditional model compared to 0.203 in the marginal
model. The log OR of rs10510257 genotype AA com-
pared to genotype GG was -1.399 for the conditional
model and -1.097 for the marginal model. In addition,
the conditional model allowed us to measure intraclass
correlations via the variances of random effects. The
estimated variance of individual-level random effect was
1.388 and that of family-level random effect was 1.092.
They yielded the estimated intraclass correlation across
repeated measures of hypertension in the same indivi-
dual equal to 0.43 and familial correlation equal to 0.19,
which implies that hypertension is substantially corre-
lated with previous experience of hypertension.

Prediction ability

We demonstrated the prediction ability of the two mod-
els in Figure 2 using the receiver operating characteristic
curve by predicting the hypertension status of indivi-
duals at follow-up 3. The estimates of the area under

Table 1 Top 5 most significant SNPs associated with time to hypertension based on Cox PH model with frailty

Chr SNP Basepair position p Value In/near gene (within 60 kb)
3 rs10510257 3346138 1.09080 X 10~
3 rs1047115 186358366 138323 x 107 FETUB
3 rs5024851 247473 167662 X 107 CHLT
3 rs7630698 189199930 219678 x 10°7°
3 rs704903 43070847 409467 x 107 FAMT198A

Table 2 Top 5 most significant SNPs associated with any occurrence of hypertension over the study period based on

logistic random effect model

Chr SNP Basepair position p value In/near gene (within 60 kb)
3 rs10510257 3346138 695197 x 10°°
3 rs1047115 186358366 173097 x 107 FETUB
3 rs719318 10474137 1.89300 X 107 ATP2B2
3 rs6807497 67015910 231716 x 107
3 rs1456217 66959472 3.16978 x 107
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Table 3 Comparison of marginal and conditional models: estimated coefficients from the two models for the

longitudinal binary hypertension traits

Marginal model

Conditional model

Variables Log OR SE p value Log OR SE p value
Intercept —4.002 1.281 0.0018 -5.012 1618 -
Age (years) 0.053 0.026 0.0429 0.072 0.032 0.0274
Gender —1.209 0.811 0.1359 —1.206 0.964 02112
Smoke 0.203 0253 04211 0213 0315 0.5001
Age x gender 0.036 0017 0.0331 0.036 0.019 0.0621
Rs10510257(AA) —-1.097 0574 0.0558 —-1.399 0.747 0.0615
Rs10510257(AG) —-0.887 0.286 0.0019 -1.119 0313 0.0004
Rs1047115 (GT) 0712 0431 0.0985 0.903 0.536 0.0925
Random effects

6 for ID 1388

o3 for PEDNUM 1.092

the curve (AUC) were 0.839 and 0.973 based on the
marginal and conditional models, respectively, indicating
that the conditional model had better ability for predic-
tion. To compare the predictive ability of the SNPs, we
obtained the AUCs for the two models without SNPs;
their AUCs were, respectively, 0.826 and 0.973 for the
marginal and conditional models. However, we did not
see much noticeable difference in AUCs with SNPs and
without SNPs for both marginal and conditional models.
The increase of 0.013 in AUCs for the marginal model
with SNPs compared to that without SNPs might still

be suggestive of a meaningful improvement [10]. For
further comparison, we obtained the correct classifica-
tion rates using an arbitrary cutoff of 0.5. Although the
magnitude of their increase appears relatively small,
there was some improvement in the correct classifica-
tion rates when the SNPs were added to the model
(78% with SNPs and 76.9% without SNPs in the mar-
ginal models, and 91.5% with SNPs and 91% without
SNPs in the conditional models). Indeed, the SNPs con-
tributed more in the marginal model than in the condi-
tional model.
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Figure 1

Interaction effect between age and gender on hypertension in the marginal and conditional models.

(b) Conditional model
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Figure 2 Receiver operating characteristic curves for marginal and conditional modeling approaches.

Discussions

In the analysis of longitudinal family data for genetic
association studies, the correlation structure of the data
is often complex and requires adequate modeling. In
addition, population-average effect estimates are smaller
in magnitude than subject-specific effect estimates with
the difference increasing with intraclass correlation, as
our analyses revealed [11].

It is worth mentioning that in our conditional model,
multiple random effects were included to address the
nested structure of the data where individuals are repeat-
edly measured over time and nested within families; in
particular, we assumed a common random effect shared
within families to explain familial correlation induced by
shared latent environmental and genetic risk factors. How-
ever, using a single random effect may not be sufficient if
we want to describe more complex correlation structure
within families. The relativeness within families can be
explicitly modeled using multivariate random variables or
using kinship coefficient.

In our modeling of longitudinal data, although the
SNPs identified were significant risk factors in the model,
the improvement of predicting capability of the model
measured by the AUCs appeared to be very minor yet
not negligible. Notice that our genome scan was only on
chromosome 3. As one reviewer pointed out, a compre-
hensive predictive model would not be possible without
whole-genome exploration.

Conclusion

Our study demonstrated that the genetic information
plays an important role in predicting future hyperten-
sion event. In our modeling of longitudinal data, the
SNPs identified were significant risk factors in the

model whereas the improvement of predicting capability
of the model measured by the AUCs appeared to be
very minor yet not negligible. We found that the condi-
tional modeling approach could make maximum use of
the information provided by repeated phenotypes, which
could lead to better prediction. Therefore, the longitudi-
nal modeling approaches also can be helpful for identi-
fying new genes and developing new treatments for
repeated outcomes.
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