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Abstract

Genetic studies often collect data on multiple traits. Most genetic association analyses, however, consider traits
separately and ignore potential correlation among traits, partially because of difficulties in statistical modeling of
multivariate outcomes. When multiple traits are measured in a pedigree longitudinally, additional challenges arise
because in addition to correlation between traits, a trait is often correlated with its own measures over time and
with measurements of other family members. We developed a Bayesian model for analysis of bivariate quantitative
traits measured longitudinally in family genetic studies. For a given trait, family-specific and subject-specific random
effects account for correlation among family members and repeated measures, respectively. Correlation between
traits is introduced by incorporating multivariate random effects and allowing time-specific trait residuals to
correlate as in seemingly unrelated regressions. The proposed model can examine multiple single-nucleotide
variations simultaneously, as well as incorporate familyspecific, subject-specific, or time-varying covariates. Bayesian
multiplicity technique is used to effectively control false positives. Genetic Analysis Workshop 18 simulated data
illustrate the proposed approach’s applicability in modeling longitudinal multivariate outcomes in family genetic
association studies.

Background
High-throughput genotyping advances have generated
large amounts of genetic data. At the same time, numer-
ous related phenotypes are often collected in genetic
studies of complex traits. To understand how genetic
variants influence multiple traits, it is necessary to con-
sider correlation among variants and multiple traits
jointly [1,2]. However, most genetic studies have focused
on single variant-single trait association. Analysis per-
formed in this fashion faces at least 3 issues. First, it
leads to concerns regarding false discoveries. Bonferroni
andother types of correction may limit false discoveries,
but implementing these methods on correlated traits
limits the power to detect true associations. Second,

same genetic variants may influence multiple related
traits [3]. Thus, modeling traits separately may misre-
present the underlying biology. Lastly, failure to inte-
grate correlation among variants because of linkage
disequilibrium (LD) dilutes the association. Longitudinal
studies provide an additional challenge because traits
measured over time are likely to be correlated.
We propose a Bayesian joint modeling of longitudinally

measured multiple traits in family genetic studies. Expli-
citly considering the correlation structure between multi-
ple traits using multivariate random effects [4] and
seemingly unrelated regression techniques [5], this model
studies simultaneously multiple single-nucleotide varia-
tions (SNVs) and their associations with multiple traits
measured longitudinally. Bayesian multiplicity [6] correc-
tion controls false positives. Our method uniquely demon-
strates the ability of Bayesian methods to account for the
complexity of multivariate, longitudinal data in the context
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of genetic family data while controlling for false positives.
Simulated data from Genetic Analysis Workshop 18
(GAW18) illustrate the application of the proposed
method. The analysis was performed with knowledge of
the simulation model.

Methods
Bayesian bivariate model
We consider SNV association models with a longitudinal
bivariate quantitative outcome in family studies. Let ykijt
be the kth outcome of subject j of pedigree i at time t.
Here k = 1 or 2 for bivariate outcomes; i = 1, 2, . . . , I
indexes I families in the study; j = 1, 2, . . . ,ni indexes ni
subjects in pedigree i; and t = 1, 2, . . .mij indexes time
points where outcomes are measured for subject j of ped-
igree i. Here, the number of measurement mij does not
need to be equal for different subjects, but we assume the
2 outcomes are measured at the same set of time points
for the same individual. We jointly model the outcomes
as follows:

ykijt = βk
0 + XT

ijβ
k
x + ZT

ijtβ
k
z + �G

g=1γ
k
g βk

gSNVijg + pki + skij + ekijt

Here, X is a vector of subject-specific time-invariant
covariates and Z is a vector of time-varying covariates.
SNVijg, g = 1, 2, . . .G, is the gth SNV of subject j of pedi-
gree i, coded as 0, 1, or 2 indicating the number of minor
alleles and G is the number of SNVs in the model. β ′s are
regression coefficients (including an intercept) for the cov-
ariates or genetic variants. γ ′s are SNV-specific indicator
variables, which take values 1 or 0, depending on whether
the SNV has an effect on the given outcome or not. Let
pi = {p1i , p2i }, a pedigree-specific random effect common to
all the individuals in the same family and accounts for cor-
relation within families. Let sij = {s1ij, s2ij}, a subject-specific
random effect accounting for the correlation between
measures taken repeatedly on the same subject. Let
eijt = {e1ijt , e2ijt}, the residual error. Additionally, pi, sij and eijt
are assumed to be independent, and
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Random subject : sij ∼ N2 (0,�s) ,�s =
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Residual error : eijt ∼ N2 (0,�e) ,�e =
(
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)
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This Bayesian bivariate model uses bivariate normal
random family and subject effects, and a bivariate nor-
mal distribution for the residual errors, as in seemingly
unrelated regressions, to jointly model the 2 traits and
allow them to be correlated.

Bayesian multiplicity adjustment
Bayesian multiplicity adjustment is a Bayesian solution to
multiplicity problems [6]. Through appropriate choices
of priors on model probabilities, this Bayesian solution
will not inflate type I error in the face of multiple com-
parisons. In our model, we use prior distributions on
SNV inclusion to provide correction for multiplicity. For
each SNV in the model, 2 parameters are present–the
inclusion indicator and the regression coefficient. We
assume that the inclusion indicators follow a Bernoulli
distribution with an unknown inclusion probability
q, while q follows a Beta distribution, that is,
γ k
g ∼ Bernoulli

(
1, q

)
and q ∼ Beta (a, b). Here, we set

a = 1, b = G, which represents a sceptical prior such that
the marginal prior odds of an association is 1/G[7]. This
Beta-Bernoulli type of prior provides an intrinsic multi-
plicity correction in the face of multiple comparisons.
The significance of the Bayesian analysis is the posterior
inclusion probability.Unlike traditional p values, a higher
posterior inclusion probability indicates greater confi-
dence of a true result. For each SNV, we estimate poster-
ior inclusion probability as

p̂
(
γ k
g = 1|D

)
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(
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)

Here, S is the model space being visited by the Markov
chain Monte Carlo (MCMC); p̂

(
Mγ k—D, S

)
is the esti-

mated posterior probability of model Mγ k, where
γ k = {γ k

1 , γ
k
2 , . . . , γ

k
G} is a vector of 0’s and 1’s, indicating

which SNVs are in the model or not. Iγ k
g =1 = 1 if γ k

g = 1
and 0 otherwise. True- and false-positive rates are based
on the median probability model, which is the model that
includes variants with a posterior inclusion probability lar-
ger or equal to 0.5. We use noninformative, independent,
univariate normal priors for all regression coefficients
βk
0,β

k
x ,β

k
z , and βk

g , and noninformative inverse Wishart
priors for variance-covariance matrices�p,�s, and�e.

Analysis of GAW18 data
Two outcomes, diastolic (DBP) and systolic blood pres-
sure (SBP), were evaluated. Covariates included sex, age,
and smoking status. To adjust for antihypertensive med-
ications use, we calculated the mean difference of blood
pressure (BP) between observations with medication use
(med = 1) and those without medication (med = 0)
among observations with hypertension (htn = 1);that is,
(BP

∣∣htn = 1,med = 1) − (BP
∣∣ htn = 1,med = 0).

Observed BP values were adjusted using mean differ-
ences for observations with htn = 1 and med = 1 to
impute DBP and SBP measures without medication use.
These adjusted outcomes were used in the analysis [8].
Included were 849 individuals from 20 pedigrees (aver-

age number of subjects per pedigree was 42; range: 21-75).
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Each individual has 3 observations. Our focus is on SNVs
in MAP4 on chromosome 3. There are 894 SNVs in the
gene; 14 influence both DBP and SBP, and 1 influences
SBP. Among the 15 causal SNVs, three are common
(minor allele frequency [MAF]>0.05); all others are rare.
All analyses were based on replication set 1. To investigate
effectiveness of Bayesian multiplicity adjustment, a ran-
dom set of noise variants of size 1, 15, 30, 60, and 90 were
added from MAP4. Selection of noise variants was truly
random and did not account for LD with causal SNVs.
After burn-in and thinning every 10th iteration, 50,000
samples were drawn for MCMC simulations.
We compared our method with two other methods.

One method is a Bayesian univariate model where the
off diagonal of the variance and covariance matrices in
equations (1), (2), and (3) are zero, thus the 2 traits are
modeled independently. The univariate model can han-
dle longitudinal data and multi-variants, and uses Baye-
sian multiplicity techniques to adjust for multiple
comparisons. The other is the family-based measured
genotype approach (MGA), which is a standard
approach to analyze family genetic studies and compares
polygenic models with or without each SNV as a covari-
ate [9]. MGA models a single outcome and single SNV,

and cannot handle longitudinal data from multiple out-
comes jointly. Thus, only the first pair of DBP and SBP
measures, adjusted for medication use, of each indivi-
dual was used and modeled separately. Bonferroni
correction was used for multiple comparisons after
accounting for 105 tests (90 noises and 15 causal).

Results
Using a threshold of 0.5 for the posterior inclusion prob-
ability, the Bayesian bivariate model detected 5 of the 15
SNVs between SBP and DBP with 1 noise variant (Table 1).
As the number of noise variants increased, the number of
true positives identified was reduced, such that by 90 noise
variants, only two causal variants were identified. True posi-
tives had relatively low MAFs and large effect sizes
(Table 1). False negatives either were rare, had small effect
size, or both. Importantly, Bayesian multiplicity adjustment
yielded no false positives. This suggests that a lower poster-
ior probability threshold may be appropriate to yield a
family-wise error rate of 0.05.
Using the same set of 90 noise variants, MGA detected

five causal SNVs (4 for SBP and 1 additional for DBP).
However, MGA identified 8 and 6 false positives for DBP
and SBP, respectively. The Bayesian univariate model

Table 1 Posterior inclusion probabilities of the causal SNVs

Number of noise variables

Causal SNV Position MAF 1 15 30 60 90 90* (UNI) 90* (MGA)

D S D S D S D S D S D S D S D S

1 47912898 0.0049 1.71 2.34 0.06 0.11 0.03 0.06 0.02 0.05 0.01 0.02 0.01 0.01 0.03 0.04 2.0E-01 1.7E-01

2 47913455 0.0049 −5.46 −8.70 0.93 0.75 0.93 0.84 0.87 0.76 0.51 0.22 0.33 0.09 0.99 0.41 6.3E-03 1.4E-02

3 47924216 0.0066 1.35 1.84 0.03 0.04 0.02 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.01 0.01 2.3E-01 4.6E-01

4 47955326 0.0066 −1.93 −2.63 0.05 0.08 0.02 0.03 0.01 0.03 0.01 0.01 0.00 0.01 0.01 0.02 5.8E-01 4.6E-01

5 47956424a 0.3777 −1.50 −2.38 0.52 0.32 0.06 0.02 0.09 0.03 0.08 0.06 0.03 0.01 0.09 0.07 4.2E-07 1.2E-04

6 47957741 0.0016 −5.08 −8.10 0.06 0.08 0.03 0.05 0.02 0.04 0.01 0.01 0.01 0.01 0.01 0.01 9.7E-01 4.4E-01

7 47957996b 0.0301 −4.64 −7.39 0.11 0.64 0.09 0.65 0.06 0.71 0.06 0.56 0.10 0.51 0.08 0.31 9.7E-12 4.0E-14

8 47958037a 0.3420 0.00 −0.00 0.22 0.33 0.06 0.06 0.05 0.06 0.02 0.05 0.02 0.02 0.05 0.08 3.3E-07 4.3E-05

9 47973345 0.0082 2.14 2.92 0.08 0.58 0.04 0.47 0.03 0.42 0.02 0.19 0.01 0.12 0.01 0.09 1.9E-05 6.6E-03

10 48040283b 0.0318 −6.22 −9.91 0.97 0.52 0.95 0.45 0.96 0.36 0.96 0.46 0.91 0.51 0.94 0.71 2.6E-13 2.3E-14

11 48040284 0.0131 −6.95 −11.1 0.42 0.38 0.12 0.08 0.08 0.07 0.05 0.04 0.03 0.02 0.35 0.26 5.9E-03 2.4E-03

12 48054461 0.1187 0.46 0.63 0.10 0.05 0.14 0.08 0.07 0.04 0.01 0.00 0.01 0.00 0.13 0.02 1.4E-02 3.0E-02

13 48061725 0.0050 1.79 2.44 0.08 0.07 0.04 0.03 0.03 0.03 0.01 0.01 0.01 0.01 0.02 0.01 9.4E-01 7.4E-01

14 48069438 0.0065 −1.78 −2.43 0.04 0.11 0.02 0.04 0.01 0.03 0.01 0.02 0.00 0.01 0.01 0.03 4.2E-01 6.7E-01

15 48091219 0.0065 2.54 3.46 0.06 0.09 0.03 0.04 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.02 7.2E-01 5.6E-01

True positives 3 4 2 2 2 2 2 1 1 2 2 1 5 4

False positives 0 0 0 0 0 0 0 0 0 0 1 1 8 6

Numbers in italics show the results of the Bayesian bivariate model, that is, estimated posterior inclusion probabilities of the 15 causal SNVs and numbers of true
and false positives based on the median probability model. Posterior inclusion probabilities ≥0.5 are in bold. The last 4 columns are the results of the model where
DBP and SBP are modeled independently (*) using either the Bayesian univariate model (UNI, posterior inclusion probability) or measured genotype approach
(MGA, p value), where p values in bold are below the cutoff with Bonferroni correction (0.05/105 = 4.76E-04). In the table, D represents DBP, S represents SBP. SNVs
5 and 8 (a) and SNVs 7 and 10 (b) have relatively high LD (r2≥0.8).
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identified 2 causal SNVs and 1 false positive for both
DBP and SBP.
As the 90 noise variants were randomly selected, exam-

ining the LD structure is also important. Among the true
positives, two pairs (SNVs 5 and 8 and SNVs 7 and 10)
have a high LD (r2 ≥ 0.8). SNVs 7 and 10 were both
identified by the Bayesian bivariate model and MGA, but
only SNV 10 was identified by the Bayesian univariate
model. SNVs 5 and 8 were identified by MGA, but none
was identified by either the Bayesian bivariate or univari-
ate approach. For MGA, six of the false positives of DBP
and four of the false positives of SBP had relatively high
LD (r2 ≥ 0.8) with identified true positives. After
discounting false positives caused by indirect effects,
MGA had 2 false positives for both DBP and SBP.
Overall the Bayesian bivariate model resulted in poster-

ior estimates of beta values very similar to the reported
effect size from Genetic Analysis Workshop (GAW) data

generators (Figure 1). However, estimates of effect sizes
were inflated when only 1of the 2 variants in high LD and
having the same effect direction was included in the
model during MCMC simulation (e.g.SNVs 7 and 10).
The estimated effect size for SNV 8 (true effect size ≈ 0)
was also inflated because it is in high LD with SNV 5 (true
effect size <0). In addition, for many causal SNVs there
was a high posterior exclusion probability (the proportion
of times the variant was not included in the model), sug-
gesting that some beta estimates were based on a small
number of MCMC runs.

Discussion
We developed a novel Bayesian model for analysis of mul-
tiple longitudinal traits and multi-variant models in family
genetic studies. This is a significant advance because pre-
vious studies have looked at bivariate models, longitudinal
data, or multi-SNV models separately. For the first time,

Figure 1 Posterior exclusion probability and posterior density of regression coefficients of the causal SNVs. For the Bayesian bivariate
model with 90 noise variants, the plot shows, for the 15 causal SNVs, (a) estimated posterior exclusion probabilities (red for DBP and blue for
SDP), and (b) posterior density of regression coefficients (red for DBP and blue for SBP) when the SNVs were included in the model. Dashed
reference lines indicate simulated effect sizes.

Ding et al. BMC Proceedings 2014, 8(Suppl 1):S69
http://www.biomedcentral.com/1753-6561/8/S1/S69

Page 4 of 6



we have developed an analytic approach that can incorpo-
rate all of these issues jointly. The model considers bivari-
ate random family and random subject effects to account
for correlation between outcomes, family members, and
repeated measures of the same individual. The seemingly
unrelated regression technique is used to correlate the
residuals of the 2 outcomes measured at the same time for
the same individual. Inherent in this method is Bayesian
multiplicity for the control of false positives. Using the
GAW18 simulated data set, we demonstrated the feasibil-
ity of the proposed model.
Compared to the Bayesian univariate model in which the

2 outcomes are modeled separately, our method had simi-
lar power, but fewer false positives. Compared to MGA,
our Bayesian bivariate approach had fewer false positives
regardless of LD between causal and noise SNVs. While
the noise variants in LD with our causal variants did not
result in increased false positives using the Bayesian
approach, given the multi-variant nature of the analysis it
is possible that the LD in these noise parameters may have
reduced power to detect causal effects. Although different
from our proposed method in many aspects, MGA repre-
sents a standard practice for analysis of family-based
genetic studies. This comparison of different approaches is
important because it demonstrates that given the low false
positives, the Bayesian model is potentially better than
current standard practice.
Several other studies have shown improved power of

joint modeling of multiple traits over univariate analyses
[10-13]. However, we saw a modest reduction in false posi-
tives without much increase in power. This may be a result
of the fact that although the correlation between SBP and
DBP is modest (r2 = 0.55), these 2 outcomes depend on
almost exactly the same set of variants; efficiency gains by
utilizing a multivariate approach in this case are negligible.
In contrast, large efficiency gains are expected when the
outcomes depend on different covariate sets [11]. Further-
more, our model does not explicitly model the genetic rela-
tionship between individuals; instead, we used a random
family effect. Although we do not expect the inclusion of a
kinship coefficient matrix to influence the results, future
studies should examine this further.
It is important to note that the model inference is

based on computationally expensive MCMC simulation.
Although we didn’t use any special algorithms to effi-
ciently sample the model space and the number of itera-
tions was relatively small given the extremely large model
space, the posterior inclusion probabilities became stable
very early in the MCMC chain. This suggests that poster-
ior inclusion probabilities can provide valid model infer-
ence. Sensitivity analyses with more optimistic priors on
inclusion probabilities gave more power while controlling
false positives. However, prior knowledge or evidence
must support the use of this type of prior.

Conclusions
In summary, we introduced a Bayesian model for analysis
of bivariate quantitative traits measured longitudinally in
family genetic studies. This method extends the previous
joint modeling methods and permits simultaneous analy-
sis of multiple traits with longitudinal data. Furthermore,
this method incorporates multi-variant effects while
effectively controlling the false-positive rate.
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