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Abstract

Two-point linkage analyses of whole genome sequence data are a promising approach to identify rare variants
that segregate with complex diseases in large pedigrees because, in theory, the causal variants have been
genotyped. We used whole genome sequence data and simulated traits provided by Genetic Analysis Workshop
18 to evaluate the proportion of false-positive findings in a binary trait using classic two-point parametric linkage
analysis. False-positive genome-wide significant log of odds (LOD) scores were identified in more than 80% of 50
replicates for a binary phenotype generated by dichotomizing a quantitative trait that was simulated with a
polygenic component (that was not based on any of the provided whole genome sequence genotypes). In
contrast, when the trait was truly nongenetic (created by randomly assigning affected-unaffected status), the
number of false-positive results was well controlled. These results suggest that when using two-point linkage
analyses on whole genome sequence data, one should carefully examine regions yielding significant two-point
LOD scores with multipoint analysis and that a more stringent significance threshold may be needed.

Background
The development of low-cost, high-throughput sequen-
cing technologies has reignited the interest in family-based
study designs for finding causal genes in rare and common
diseases. Linkage analysis was designed for the investiga-
tion of rare variants of large effect and is robust to allelic
heterogeneity. Most researchers are familiar with using
multipoint methods for assessing linkage, which leverage
cosegregation of a marker-haplotype with the trait in a
family as a proxy for the location of causal variants. Whole
exome sequencing (WES) and whole genome sequencing
(WGS) of several or all individuals in a pedigree has now
become feasible. These data provide information about
genetic variability at a very high resolution. Multipoint
linkage analyses of such dense sets of markers are time-
consuming, do not scale well to millions of markers, and
intermarker linkage disequilibrium (LD) can cause inflated

type I error rates when pedigree founders are not geno-
typed [1]. A powerful and time-efficient method to detect
dominant or codominant causal variants of large effect is
two-point (sometimes called single-point) linkage analysis
[2]. This approach analyzes each variant separately,
reduces the computational load and enables parallel pro-
cessing on a large scale. If the causal variant in a family
has been observed reliably in the WES or WGS data, then
that variant should yield the maximum two-point log of
odds (LOD) score at a recombination fraction (θ) of zero
across the genome in the family being studied. Other
nearby variants should also yield high two-point LOD
scores at θ near zero [1,3]. However, it is an open question
whether the standard significance threshold of 3.3 for a
genome-wide significant (GWS) LOD score [4] (which
was based on the number of independent tests using mul-
tipoint linkage for an infinitely dense map) will control
two-point false-positive rates to 1 in every 20 genome
scans when several million variants are analyzed. Conse-
quently, we investigated the proportion of false-positives
applying classic two-point parametric Elston-Stewart link-
age analysis using WGS data in extended pedigrees pro-
vided by Genetic Analysis Workshop 18 (GAW18) [5].
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We used two phenotypes simulated under the null
hypothesis of no linkage to any of the genetic variants in
the data: (a) a binary trait generated by dichotomizing a
quantitative trait simulated with a polygenic component
but no linkage to any markers, and (b) a binary phenotype
simulated under a complete null hypothesis of no linkage
and no genetic effect on the trait.

Methods
Data
Genotype data for all 8,348,674 sequenced and imputed
single nucleotide variants (SNVs) on the odd-numbered
chromosomes were analyzed. There were 959 individuals
with genotypes; 430 individuals without genotype data
were added to provide complete pedigree information for
linkage analysis, and one member was removed from
each of two monozygotic twin pairs. There were 413
founders: 108 had genotypes and phenotypes, 9 had gen-
otypes but no phenotypes, and 296 had neither. Because
our goal was to estimate the false-positive rate under the
null hypothesis of no linkage, we used two phenotypes
that were simulated independently of any genotyped
SNVs in the GAW18 data set. We requested the details
of the simulation, and therefore knew the generating
model of the simulated traits. The first analyzed pheno-
type was a binary trait based on the provided quantitative
phenotype Q1 that was simulated by the GAW18 data
providers to allow estimation of false-positives. Q1 was
simulated as a normally distributed quantitative trait cor-
related among family members with heritability = 0.68,
but was not influenced by any of the genotyped SNVs
[5]. Mean levels of Q1 were simulated to decrease with
age. To create our binary trait, we assumed that disease
risk increased with age, and that affecteds would have
low Q1 values. Therefore, our trait was dichotomized by
estimating the 20% quantile of the distribution in all
founders from all 200 replicates. All individuals with a
Q1 value smaller than the estimated quantile were classi-
fied as affected and as unaffected otherwise. We simu-
lated the second binary phenotype under a complete null
hypothesis by randomly assigning affected-unaffected sta-
tus to members of the families based on a disease preva-
lence of 10%. For both phenotypes, 50 replicates of the
phenotype were analyzed.
Several pedigrees contained loops that cause problems

for likelihood estimation in the linkage analysis program
we used. Because our goal was to estimate false-positive
rates under the null (and not to determine power to
detect linkage or to detect an actual causal gene), we
chose very simple strategies for breaking these loops to
produce simple pedigrees. Different approaches to break
loops were applied depending on their complexity.
Removing the unaffected individual T2DG2501049 in
pedigree 25 broke a loop caused by a woman with

children from two brothers. The simple loops in pedi-
grees 2 and 3 were removed by duplicating an unaf-
fected individual (T2DG0200031 and T2DG0300138)
with both parents and children in the pedigree. Dupli-
cated individuals had the same genotype and phenotype
data but modified family relationships. Pedigrees 6 and
7 were excluded because their more complicated loops
could not have been broken with the simple approaches
used for the other pedigrees. Thus we had a set of sim-
ple pedigrees that allowed analysis of false-positive rates
of two-point parametric linkage. In analyses of real data,
use of a program that can analyze large pedigrees with
loops intact would have optimal power.

Two-point parametric linkage analysis
Allele frequencies of all SNVs were estimated with
PLINK [6], using founders only, which is more accurate
for common than rare variants given the many missing
founders. For SNVs with no minor allele in the foun-
ders, minor allele frequency (MAF) was set to 0.0001.
Two-point parametric Elston-Stewart linkage analysis
was performed using the R package paramlink version
0.6-1 (http://cran.r-project.org/web/packages/paramlink/
index.html). A dominant model was chosen because no,
or only a very low number of, rare allele homozygotes
are observed for rare SNVs and because we were seek-
ing to evaluate type I error rate rather than power. In a
real analysis, one could either use a model from segrega-
tion analysis or could utilize dominant, recessive, and
additive models with reduced penetrance [7] and adjust
the significance threshold for the additional analyses
[8-13]. Penetrances were specified as 0.05 and 0.5 for
genotypes dd and DD/Dd, respectively [7], with a fre-
quency of 0.01 for allele D. The classic LOD score
threshold of 3.3 was used for GWS linkage to evaluate
the results [4]. The GWS LOD score means that under
the null hypothesis only 1 of 20 replicates would have at
least one marker with a LOD score equal to or larger
than 3.3 [3].

Results
Results are presented separately for the two different
unlinked phenotypes.

Binary trait based on Q1
For the binary trait based on the provided quantitative
null trait Q1, 43 of 50 replicates showed at least one
GWS LOD score, with values ranging from 3.3001 to
5.685 (Figure 1). On average 55 (range: 1 to 518) false-
positive significant SNVs were found per replicate, dis-
tributed over all the provided chromosomes. Each of the
total 2398 significant SNVs was significant in only one
replicate. Of these SNVs, 138 had an estimated MAF <
0.05, with 28 having a MAF < 0.01, and only 12 had
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MAF set to 0.0001. Of the significant SNVs, 1008 have
one or two families with a LOD score greater than 1.9,
the classic threshold for suggestive linkage [4], whereas
only 70 of the significant SNVs have no families with
LOD scores > 1 and have between two and five families
with LOD scores > 0.5.

Binary trait under the complete null hypothesis
In contrast, for the binary trait simulated under a com-
plete null hypothesis (random assignment of affected/
unaffected status), only two out of the 50 replicates had
GWS results. In one replicate, one SNV on chromosome
1 had a combined LOD score of 3.336 that was driven by
a LOD score of 3.334 in family 3. The MAF was esti-
mated as 0.0085, and all seven affecteds in family 3 were
heterozygous for the rare allele. Only three of 53 unaffec-
teds in this family were heterozygotes. In another repli-
cate, 19 SNVs in a 4.6 Mb region on chromosome 3 had
combined LOD scores between 3.308 and 3.751, with
family 5 having the largest family-specific LOD scores,
ranging from 2.128 to 2.578. These SNVs were in two
blocks with nearly complete LD, and estimated MAF was
0.389 on average. Again, all affecteds, or all but one
affected, were heterozygous or homozygous for the rare
allele in family 5.

Discussion
Linkage analysis fell out of favor in the genome-wide
association studies era, but the power of families can be
well leveraged in sequencing studies. The advent of
large-scale WES and WGS studies has rekindled interest
in family-based analysis designs [1,14]. Family-based
designs offer protection from population stratification,
and Mendelian consistency checking provides additional
validation of observed rare or novel variants. Although a
variant may be rare in the population overall, large pedi-
grees ascertained for a particular trait of interest will be
enriched for rare variants with some effect on the trait
[14], and there are likely to be several individuals in a
family with a rare causal variant. Thus the number of
individuals required for sufficient power to detect rare
variants of moderate to large effect is considerably lower
in family studies as opposed to studies of unrelated indi-
viduals, especially when there is also substantial locus
heterogeneity [2,14-16]. However, it was unclear whether
the significance thresholds [4], which were adequate for
multipoint analysis or two-point linkage of hundreds to
thousands of marker loci, would be appropriate for WGS
data with millions of SNVs.
In this study we were interested in type 1 error rates of

two-point linkage analysis of a binary trait under the null

Figure 1 Genome-wide significant LOD scores in each replicate for the binary trait based on Q1. Each point represents the location of a
GWS LOD score (x-axis) in a specific replicate. (y-axis). Each replicate is identified by its replicate number on the left axis and numbers of
significant SNVs in each replicate are given on the right.
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hypothesis of no linkage. GAW18 provided only one
quantitative trait simulated under the null hypothesis of
no linkage (simulated to have true genetic causal variants,
but not on the provided chromosomes) so we chose to
dichotomize this trait; we also simulated our own qualita-
tive trait that had no genetic effects whatsoever. As our
purpose was evaluation of false-positive rates for traits
under the null, issues of power do not apply, and this
approach is reasonable. However, we do not recommend
dichotomization of a quantitative trait in real data
because linkage analysis is generally more powerful for a
quantitative trait compared to a binary dichotomization
of that trait. Incorporating covariates into the linkage
analysis can also improve power in a real study especially
for established risk factors.
Our analysis revealed very different results for the two

null phenotypes. We observed a large number of false-
positive results for the polygenic trait, although it was
simulated without using any of the provided genotypes
and was unlinked to the provided chromosomes. Most of
the false-positive results observed for this trait involved
SNVs with relatively common minor alleles, and only 12
of the 2398 significant SNVs across all 50 replicates had
arbitrary MAF of 0.0001. Although incorrect specification
of both the trait model and the marker allele frequencies
can inflate type I error rates, estimation of marker allele
frequencies from the data (as we did here) has been
shown to control false-positive rates even when the trait
model is misspecified, so model misspecification is not
likely the cause of the type 1 error rate inflation observed
here. Differences in pedigree structure and model mis-
specification also appeared to have little effect on false-
positive rates of two-point LOD score linkage of complex
traits in a study of a single marker with 8 equifrequent
alleles [17]. The simulated polygenic component intro-
duces genetic correlation between family members based
on their degree of relationship so that the trait is not seg-
regating randomly. Because each family for this simulated
trait is segregating more than eight million SNVs under
the same Mendelian constraints that cause the simulated
trait correlations, the inflated false-positive rate for this
trait is most likely attributable to chance cooccurrence of
the same correlations between relative pairs for the trait
and a variant [16]. Thus the problem here is most likely
the extremely large number of tests being performed in
each genome scan. It is possible that some inflation is a
result of inaccurate estimates of SNV allele frequencies,
so in real analyses, one should reestimate these frequen-
cies using maximum likelihood estimation for any signifi-
cantly linked variants if some founders are ungenotyped.
In contrast, the number of false-positive results based

on the classic LOD score threshold of 3.3 is well con-
trolled if affected-unaffected status is randomly assigned
(ie, no genetic component exists), even when more than

eight million SNVs are analyzed by two-point para-
metric linkage analysis.
Both two-point and multipoint linkage analysis can

detect linkage to a region containing a causal variant
even if the causal variant was not genotyped. Even
though we only evaluated LOD scores at θ = 0, in a real
analysis, one should also obtain the LOD score at the
maximum likelihood estimate of θ to detect SNVs very
close to a causal variant. One must be careful interpret-
ing a two-point analysis because the most significant
two-point LOD may not indicate the actual causal var-
iant, but simply the closest variant to the untyped causal
variant as, for example, when the causal variant is not
analyzed because it is in a region with low coverage or
was filtered out because of bad quality. One should
examine the strongest linkage region for variants
dropped because of low quality and possibly resequence
the most strongly linked region.

Conclusions
This study of false-positive rates in WGS data simulated
under the null hypothesis of no linkage to any chromo-
somes provided in the data set suggests that a higher
LOD score threshold may be required when analyzing a
complex trait with nonzero heritability. However, more
extensive simulations are required before such new
thresholds can be proposed. Reestimating allele frequen-
cies and performing multipoint linkage in regions show-
ing significant two-point scores may help to resolve this
problem. Single significant SNVs with no supporting
linkage to nearby variants may be eliminated by the mul-
tipoint analysis. This remains an area of future research.
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