POSTER PRESENTATION

Open Access

Metabolic modeling predicts perturbations extending lifespan in yeast and counteracting aging in mammalian muscle

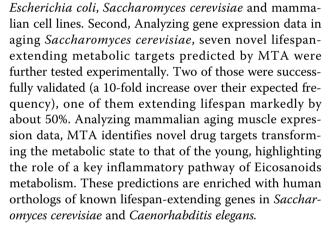
Keren Yizhak^{1*}, Orshay Gabay², Haim Cohen², Eytan Ruppin^{1,3}

From Metabolism, diet and disease Washington, DC, USA. 29-31 May 2012

Background

Disease is classically viewed as a disruption of healthy homeostasis. This naturally gives rise to the quest to find drugs that can efficiently transform a disease state back to a healthy one. Here we address this challenge on a genome scale for the first time. We chose to focus on aging, aiming to predict perturbations (both genetic and environmental) that can extend the organism's lifespan. Aging forms a nice test bed to examine our approach, since it is typically accompanied by progressive changes in gene expression. Furthermore, Caloric Restriction (CR), a dietary intervention that extends lifespan and delays the onset of age-associated phenotypes, is known to reverse these expression changes [1,2]. As CR has very limited value as a therapeutic regimen, these findings strongly motivate the search for metabolic drug targets that can reverse the metabolic state of the aging to that of the young.

Materials and methods


Here we present a novel Metabolic Transformation Algorithm (MTA) that given a source (disease, e.g., aged) and a desired target (healthy, e.g., young) metabolic state, identifies the genetic or environmental perturbations that best enable a transformation from the source to the target state. The MTA algorithm works in the realm of metabolism and is based on Constraint-Based Modeling, an increasingly widely used computational method for studying metabolism on a genome-scale [3,4].

Results

First, the prediction accuracy of MTA has been extensively validated using data from known perturbations in

¹The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel

Full list of author information is available at the end of the article

Conclusions

MTA offers a fundamentally new approach for identifying metabolic drug targets in a broad span of major metabolically-related human disorders, including obesity, neurodegeneration and cancer. As MTA aims to retrieve the metabolic state back to its normal homeostasis, one may expect that it may lead to new drugs with lesser side-effects.

Author details

¹The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. ²The Mina and Everard Goodman Faculty of Life Sciences, Barllan University, Ramat-Gan 52900, Israel. ³The Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.

Published: 1 June 2012

References

 Lee C-K, Klopp RG, Weindruch R, Prolla TA: Gene expression profile of aging and its retardation by caloric restriction. *Science* 1999, 285:1390-1393.

© 2012 Yizhak et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

- Weindruch R, Keenan KR, Carney JM, Fernandes G, Feuers RJ, Floyd RA, Halter JB, Ramsey JJ, Richardson A, Roth GS, Spindler SR: Caloric restriction mimetics. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences 2001, 56:20-33.
- Shlomi T, Cabili MN, Herrgård MJ, Palsson BØ, Ruppin E: Network-based prediction of human tissue-specific metabolism. *Nature Biotechnology* 2008, 26:1003-1010.
- Folger O, Jerby L, Frezza C, Gottlieb E, Ruppin E, Shlomi T: Predicting selective drug targets in cancer through metabolic networks. *Mol Syst Biol* 2011, 7:501.

doi:10.1186/1753-6561-6-S3-P54 Cite this article as: Yizhak *et al.*: Metabolic modeling predicts perturbations extending lifespan in yeast and counteracting aging in mammalian muscle. *BMC Proceedings* 2012 6(Suppl 3):P54.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

Submit your manuscript at www.biomedcentral.com/submit