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Abstract

Background: The QTLMAS XVth dataset consisted of pedigree, marker genotypes and quantitative trait
performances of animals with a sib family structure. Pedigree and genotypes concerned 3,000 progenies among
those 2,000 were phenotyped. The trait was regulated by 8 QTLs which displayed additive, imprinting or epistatic
effects. The 1,000 unphenotyped progenies were considered as candidates to selection and their Genomic
Estimated Breeding Values (GEBV) were evaluated by participants of the XVth QTLMAS workshop. This paper aims at
comparing the GEBV estimation results obtained by seven participants to the workshop.

Methods: From the known QTL genotypes of each candidate, two “true” genomic values (TV) were estimated by
organizers: the genotypic value of the candidate (TGV) and the expectation of its progeny genotypic values (TBV).
GEBV were computed by the participants following different statistical methods: random linear models (including
BLUP and Ridge Regression), selection variable techniques (LASSO, Elastic Net) and Bayesian methods. Accuracy
was evaluated by the correlation between TV (TGV or TBV) and GEBV presented by participants. Rank correlation of
the best 10% of individuals and error in predictions were also evaluated. Bias was tested by regression of TV on
GEBV.

Results: Large differences between methods were found for all criteria and type of genetic values (TGV, TBV). In
general, the criteria ranked consistently methods belonging to the same family.

Conclusions: Bayesian methods - A<B<C<Cπ - were the most efficient whatever the criteria and the True Value
considered (with the notable exception of the MSEP of the TBV). The selection variable procedures (LASSO, Elastic
Net and some adaptations) performed similarly, probably at a much lower computing cost. The TABLUP, which
combines BayesB and GBLUP, generally did well. The simplest methods, GBLUP or Ridge Regression, and even
worst, the fixed linear model, were much less efficient.

Background
In 1990, Lande and Thompson [1] defined a two steps
marker assisted selection procedure. Firstly, apparent
effects of markers were estimated in a reference popula-
tion. Secondly, during n generations, breeding values of
candidates to selection were calculated from these esti-
mated effects giving a so called Molecular Scores. These
ideas, which founded the genomic selection, were more

recently made operational by SNP chips which provide
tens of thousands genotypes per individual. The seminal
paper of Meuwissen et al. [2] presented a few statistical
approaches of these Genomic Estimated Breeding Values
(GEBV). A large literature followed, describing and com-
paring various methods.
These methods could be classified according to the

assumption made concerning the variance of chromosome
segments effects. The simplest assumption, assumed in
BLUP methodology [2] or Ridge Regression [3], is that the
variance of these effects is equal for all chromosome
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segments. However, this hypothesis is not consistent with
classical genetic prior, and observations, that only a few
chromosome segments contain QTL, with various extent
of their effects, while most chromosome segments do not
contain QTL.
Variable selection procedures were proposed to better

fit this biological knowledge. In [2], a stepwise proce-
dure, including a QTL detection step through single
segments regression analyses, was envisaged in the least
square framework. The efficiency for genomic evaluation
of more advanced penalized regression approaches were
evaluated, like sparse PLS [4], LASSO [5] or Elastic Net
[6], which all allow the vast majority of loci to have null
regression coefficients.
On the other hand, Bayesian methods were proposed to

take into account the between chromosome segments
variances heterogeneity. In BayesA [2], each chromosome
segment is given its own variance, all segments contribut-
ing to the variability. This last hypothesis is made free
with other Bayesian techniques which assume that only a
fraction π of the segments carry QTL: BayesB keeps the
between segments variance heterogeneity, while BayesC
considers a single variance for the active segments. In
BayesCπ, the proportion π is estimated from the data [7].
The QTLMAS XVth dataset consisted of the pedigree,

marker genotypes and quantitative trait performances of
animals with a sib family structure [8]. Pedigree and geno-
types concerned 3,000 progenies among those 2,000 were
phenotyped. The trait was regulated by 8 QTLs which dis-
played additive, imprinting or epistatic effects. The 1,000
unphenotyped progenies were considered as candidates to
selection. Participants of the XVth QTLMAS workshop
were invited to predict GEBV of these 1,000 individuals
and to send to the organizers the description of their meth-
ods and results before the meeting. This paper aims at
comparing the GEBV estimations obtained by participants
to the workshop. Comparing the results obtained by the
different groups should provide insight into determining
which method is best fitted to analyze this kind of data set.

Methods
Simulated data
The simulated data set was described by Elsen et al. [8].
Briefly, the population comprised 3,000 individuals born
from 20 sires and 200 dams , i.e. 10 dams per sire. Within
each family, 10 progenies were assigned phenotypes and
marker genotypes and 5 were assigned only marker geno-
types. A total of 10,000 SNPs carried by 5 chromosomes
of 1 Morgan each were simulated. Eight QTLs were
simulated: one quadri-allelic additive QTL with a large
effect on Chr1, two linked QTLs in phase on Chr2, two
linked QTLs in repulsion on Chr3, one imprinted QTL
on Chr4 and two interacting QTLs on Chr5. Random
noise was added giving an heritability coefficient of 0.30.

The marker density, linkage disequilibrium (LD) and
minor allele frequency (MAF) were similar to real life
parameters.

Computation of the true genotypic and breeding values
“True” genetic values of the candidates to selection were
calculated from simulated QTL genotypes information.
Two values were calculated for each candidate. Firstly, a
True Genotypic Value (TGV) defined as the sum of the
5 chromosomal genotypic values corresponding to the
candidate genotypes at each of these chromosomes. The
TGV of candidate i, TGVi depends on its QTL geno-
types (g1i , g

2
i ...g

5
i ) and on the QTL effects (aj) given in

the Table 1 of Elsen et al. [8]:

TGVi =
5∑

j=1

aj(g
j
i)

Secondly, the expectation of the genotypic value of
candidate’s progenies was calculated, according to the
same principle, i.e. as a sum of chromosomal genotypic
values. It depends on the QTL genotypes of the candi-
date, on the QTL effects and on the frequencies of QTL
genotypes in the population, i.e. the QTL genotypes
probabilities of the mate of the candidate. This breeding
value was noted TBVi:

TBVi =
5∑

j=1

n∑

gj=1

prob(gj/gji) ∗ aj(gj)

where the gj are the n QTL possible genotypes on the
chromosome j (n=(10,9,9,4,9) for the chromosomes 1 to
5 respectively), prob(gj/gji) is the probability of the geno-
type gj for the progeny of the candidate i given the can-
didate’s genotype and aj (g

j) is the genotypic value
associated to that QTL genotype (Table 1 in [8]). Con-
cerning the QTL6 on chromosome 4, which was
imprinted, candidates were considered as those which
give the allele expressed by their progeny.
The participants were sent the TGV and TBV only

after the meeting.

Methods used by the participants
The participants estimated Genomic Estimated Breeding
Values, noted GEBV in the following, and sent them, with
a short description of the methods used, to organizers
before the meeting. A total of 27 methods were studied by
the participants (table 1). Most of them belong to the
three categories which were presented in the introduction:
(i) (G)BLUP methods - including Ridge regression [9],
GBLUP describing dominance effect [10] and TABLUP
[11] where the genomic matrix includes information about
the SNP effect variance (here estimated using BayesB) [12]
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(ii) Selection variable procedures - LASSO and Elastic Net,
including adaptative versions which aim at forcing the
LASSO to be consistent, i.e. to correctly estimate the sub-
set of zero coefficients with a probability tending to 1
[9,13] and (iii) Bayesian approaches [12,10] - including the
BayesZ [14,15] and a new two-steps Bayes procedure
intermediate between the BayesA or B (one variance for

each SNP) and the BayesC (a single variance for the active
SNP), with a grouping of SNP based on their effect esti-
mated with a GBLUP [16]. This method will be given the
“BayesS” acronym in the following. Mucha et al. [17] used
simple linear models (fixed or random) with the idea of
estimating haplotype rather than SNP effects, the haplo-
types being inferred with the PHASE software [18].

Table 1 Methods used by the participants to the XVth QTLMAS workshop

First
author

Label Method Description

Shariati BayesS_1 2 steps (all SNP) First step: a GBLUP giving estimation of SNP effects. Groups of size 150, 75 (SPNa) or 50 (SNPb) are made
assembling SNP of similar effect.
Second step: BayesA with all or a limited (1500 or 450) number of SNP and a unique SNP effect variance
per group.

BayesS_2 2 steps (1500
SNP)

BayesS_3 2 steps-Bayes
(450 SNPa)

BayesS_4 2 steps-Bayes
(450 SNPb)

Ogutu RR Ridge
regression

GBLUP_O GBLUP Qualified Ridge Regression BLUP by the authors

LASSO_O LASSO

LASSO_ad Adaptative
LASSO

Following Zou [21], data-driven weights are added to the penalty to force LASSO to be consistent

EN Elastic net

EN_ad Adaptative EN Mixture of adaptative lasso and EN

Wang BayesA_W BayesA

BayesB_W BayesB

BayesCπ_W BayesCπ

TABLUP TABLUP In the genomic matrix, loci IBD probability estimations are weighted by their effect variance estimated
from BayesB [11]

GBLUP_W GBLUP

Mucha AM Animal model All models are estimating haplotypes effects. Haplotypes are obtained using the PHASE software [18].
RM1 and RM2 differ by the estimation of the haplotype effect variance

FM Fixed effect

RM1 Random model
1

RM2 Random model
2

Zeng GBLUPa_Z GBLUP1 Additive effect only

GBLUPd_Z GBLUP2 Additive and dominance effect

BayesB _W BayesB

BayesCπ_W BayesCπ

Usai LASSO_Uc LASSO-LARS
classic

The penalty is describes as ∑|bj|≤t. In the LASSO-LARS classic, the t parameter is the average number of
active SNP in 1000 simulations. In strategy 1, the number which occurred more than 5% of the times and
in strategy 2, which minimized a selection criteria

LASSO_Uc1 LASSO-LARS
strategy 1

LASSO_Uc2 LASSO-LARS
strategy 2

Schurink BayesZ BayesZ Similar to BayesCπ, with a Bernoulli prior for π
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Comparison criteria
Results (GEBV as given by the participants) were com-
pared based on 4 criteria. For each criteria, the two
True Values (TGV and TBV) were considered. Accuracy
of GEBV was calculated as the Pearson’s correlation
between the TV and the GEBV. Ability to identify the
best individuals was assessed from the Spearman’s rank
correlation between the TV and the GEBV in the top
10% of TV. Bias was assessed from the linear regression
coefficient (named also the regression slope) of the TV
on the GEBV. Finally, mean squared error of prediction
was calculated on GEBV and TV centered on zero.

Results
They are presented in table 2 (TGV) and 3 (TBV). The
ranking is nearly the same for those two values.

Accuracy
The Pearson correlation between GEBV and the TV were
consistent within type of technique used. The range was
large, from 0.49 (GEBV- TGV correlation, 0.47 for
GEBV-TBV) for the Mucha et al. [15] fixed effect model
to 0.94 (GEBV- TGV correlation, 0.89 for GEBV-TBV)
for the Zeng et al. [10] BayesCπ. The highest correlations
were obtained with the Bayesian approaches, with a very
good performance of BayesCπ [10,12] which overper-
formed BayesZ, a similar approach based on an alterna-
tive prior. The very limited number of QTL simulated in
the dataset, a situation far from the BayesZ prior, is a
possible explanation for this difference. The same argu-
ment could explain the lower performance of the BayesS
[16], where SNP effects are assembled in groups of simi-
lar effects. The TABLUP, which mixes BayesB estimation
and GBLUP, was intermediate between the “classical”
and the new Bayesian approaches of Shariati et al. [16].

Table 2 Comparison of True Genomic Values estimations

First author Label r rank bias MSE

Shariati BayesS_1 0.86 0.53 0.89 7.51

BayesS_2 0.86 0.53 0.89 7.52

BayesS_3 0.86 0.53 0.88 7.85

BayesS_4 0.85 0.55 0.87 8.00

Ogutu RR 0.85 0.54 1.19 8.44

GBLUP_O 0.90 0.52 1.11 5.55

LASSO_O 0.92 0.63 1.09 4.67

LASSO_ad 0.92 0.62 1.02 4.30

EN 0.92 0.62 1.23 4.96

EN_ad 0.90 0.40 0.97 5.48

Wang BayesA_W 0.92 0.65 1.06 4.15

BayesB_W 0.93 0.70 1.05 3.66

BayesCπ_W 0.93 0.70 1.06 3.63

TABLUP 0.91 0.68 0.97 4.59

GBLUP_W 0.78 0.37 1.20 11.71

Mucha AM 0.61 0.36 1.06 17.57

FM 0.49 0.32 0.35 43.17

RM1 0.70 0.38 1.77 16.65

RM2 0.71 0.38 1.69 16.30

Zeng GBLUPa_Z 0.82 0.53 1.04 8.94

GBLUPd_Z 0.81 0.52 1.04 9.46

BayesB _W 0.93 0.71 1.05 3.63

BayesCπ_W 0.94 0.72 1.07 3.41

Usai LASSO_Uc 0.92 0.62 1.25 5.04

LASSO_Uc1 0.90 0.64 1.02 5.30

LASSO_Uc2 0.92 0.63 1.09 4.66

Schurink BayesZ 0.90 0.60 1.06 5.20

r=Pearson correlation between TGV and GEBV, rank=rank correlation of the
best 10% TGV, bias = regression coefficient between TGV and GEBV, MSEP=
mean squared error of prediction of TGV by GEBV.

Table 3 Comparison of True Breeding Values estimations

First author Label r rank bias MSE

Shariati BayesS_1 0.84 0.48 0.33 12.92

BayesS_2 0.84 0.47 0.33 12.94

BayesS_3 0.83 0.49 0.33 13.37

BayesS_4 0.82 0.49 0.32 13.62

Ogutu RR 0.83 0.52 0.45 5.55

GBLUP_O 0.81 0.51 0.39 8.23

LASSO_O 0.87 0.55 0.43 6.44

LASSO_ad 0.88 0.60 0.37 9.94

EN 0.87 0.52 0.44 5.86

EN_ad 0.81 0.48 0.33 12.01

Wang BayesA_W 0.86 0.61 0.38 9.07

BayesB_W 0.89 0.66 0.38 9.12

BayesCπ_W 0.88 0.65 0.39 9.00

TABLUP 0.88 0.64 0.36 10.88

GBLUP_W 0.77 0.48 0.46 4.98

Mucha AM 0.59 0.37 0.40 5.93

FM 0.47 0.44 0.13 43.01

RM1 0.70 0.34 0.68 2.54

RM2 0.70 0.34 0.65 2.68

Zeng GBLUPa_Z 0.82 0.50 0.40 7.61

GBLUPd_Z 0.81 0.49 0.40 7.59

BayesB _W 0.89 0.66 0.38 9.22

BayesCπ_W 0.89 0.66 0.39 8.84

Usai LASSO_Uc 0.86 0.53 0.45 5.66

LASSO_Uc1 0.86 0.62 0.37 9.54

LASSO_Uc2 0.87 0.55 0.43 6.48

Schurink BayesZ 0.87 0.63 0.39 5.20

(r=Pearson correlation between TBV and GEBV, rank=rank correlation of the
best 10% TBV, bias = regression coefficient between TBV and GEBV, MSE=
mean squared error of prediction of TBV by GEBV)
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The variable selection procedures can work nearly as
well as the BayesB or C, in particular the LASSO and
Elastic net [9,13]. However the adaptative Elastic Net
did not give the expected improvement.
The GBLUP performances were more variable with a

very low correlation given by the Mucha et al. [17] version
based on haplotypes, and higher values for the Zeng et al.
[10] and Ogutu et al. [9] proposals. Finally, the fixed effect
linear model was far below all other methods.
Even if all tendencies were observed for both groups of

correlations, the correlations between GEBV and the TBV
were always lower than the correlations between GEBV
and TGV. These last correlations were always lower than
the former.

Rank correlation
As compared to the Pearson’s correlation, this criteria,
which illustrates how methods can capture the best indivi-
duals, shows a similar range (0.32 to 0.72, i.e. 0.4 points of
correlation between extreme situations), i.e. the fixed
model and the BayesCπ. Globally the classification
between groups of methods is the same: Bayes methods
outperformed the selection variable approaches, the
GBLUP family arrived last in the classification. The only
exception was the TABLUP which was positioned between
the two first groups. However, within some groups, differ-
ences were exacerbated. This was particularly true for the
Bayes group, where the ranking BayesCπ > BayesB >
BayesA > BayesZ > BayesS was preserved, and even more
for the Ogutu et al. [9] selection variable, with a very low
correlation observed for the adaptative Elastic Net. Nota-
bly the random model proposed by Mucha et al. [17] fell
in the worst positions with this criterion.
The rank correlation between GEBV and TBV is gen-

erally lower than the GEBV-TGV one, with some excep-
tions (GBLUP [12], animal and fixed models [17],
adaptative EN [9]).

Regression coefficient (or regression slope)
Unbiased estimators are supposed to have a regression
coefficient of 1. Most of the regression coefficients
observed were in the range 0.85-1.25. The ranking of the
Bayesian techniques were consistently correct, while the
coefficient were more variable for the other approaches.
Three of the methods proposed by Mucha et al. [15]
clearly gave biased estimations (the fixed and both random
models).

Mean squared error of prediction (MSEP)
The results are still very consistent with the other cri-
teria. The Bayesian techniques (excluding BayesS) and
the selection variable techniques (LASSO or EN) gave
the more precise estimations of the TGV. TABLUP was
in the same range. The GBLUP and BayesS performed

not as well and Mucha et al. haplotypes models [17] did
very badly.
The MSEP of the TBV were quite different and were

above or under the TGV MSEP depending on the method.
The more precise estimation was given by the Mucha et al.
[17] random model. LASSO, EN and GBLUP were satisfy-
ing, while the Bayesian approaches (in particular the
BayesS) provided high Mean Squared Error of Prediction.

Conclusions
The very general tendency is a better ranking of the
Bayesian methods, in the alphabetic order (A<B<C<Cπ)
whatever the criteria and the True Value considered
(with the notable exception of the MSEP of the TBV).
The Selection variable procedures (LASSO, Elastic Net
and some adaptations) performed similarly, probably at a
much lower computing cost. The TABLUP, which com-
bines BayesB and GBLUP, generally did well. The sim-
plest methods, GBLUP or Ridge Regression, and even
worst, the fixed linear model, were much less efficient.
The approach followed by Mucha et al. [17] to incorpo-
rate haplotype information was not efficient.
These observations are consistent with the results pre-

sented in the previous analyses of QTLMAS data [19-21],
even if the genetic architecture simulated was restricted
to a quite limited (8) number of QTL. It may be that this
oligogenic situation did not work in favor of methods
probably more suited to highly polygenic cases, such as
BayesS [16] or BayesZ [15].
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SNP: Single Nucleotide Polymorphism; QTL: Quantitative Trait Locus; MAF:
Minor Allele Frequency; LD: Linkage Disequilibrium; GEBV: Genomic
Estimated Breeding Value; TBV: True Breeding Value; TGV: True Genomic
Value; LASSO: Least Absolute Shrinkage and Selection Operators; EN: Elastic
Net; MSEP: Mean Squared Error of Prediction; GBLUP: Genomic Best Linear
Unbiased Prediction.
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