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Abstract

We conducted a genome-wide association study on the Genetic Analysis Workshop 17 simulated unrelated
individuals data using a multilocus score test based on wavelet transformation that we proposed recently. Wavelet
transformation is an advanced smoothing technique, whereas the currently popular collapsing methods are the
simplest way to smooth multilocus genotypes. The wavelet-based test suppresses noise from the data more
effectively, which results in lower type I error rates. We chose a level-dependent threshold for the wavelet-based
test to suppress the optimal amount of noise according to the data. We propose several remedies to reduce the
inflated type I error rate: using a window of fixed size rather than a gene; using the Bonferroni correction rather
than comparing to the maxima of test values for multiple testing corrections; and removing the influence of other
factors by using residuals for the association test. A wavelet-based test can detect multiple rare functional variants.
Type I error rates can be controlled using the wavelet-based test combined with the mentioned remedies.

Background
Genome-wide association studies of common mutations
in the genome have many important results, but most of
the genetic components of the disease risk of common
diseases cannot be explained by common mutations.
Resequencing studies have identified numerous new rare
mutations in the genome. The new hypothesis is that
some common diseases may be caused by multiple rare
mutations. If each rare mutation has only a small mar-
ginal effect, then using methods that are based on sin-
gle-nucleotide polymorphisms (SNPs) cannot identify
them. Therefore we consider a group of SNPs and study
the association between the group and the disease. A
group can be a gene or a window of consecutive SNPs.
Because most common diseases have been studied
before, all common mutations with strong marginal
effects should have been discovered already. We focus
on multiple rare mutations in a gene. Testing multiple

SNPs simultaneously for association with diseases can
potentially have higher power than testing single SNPs
one at a time. The problem here is that a higher num-
ber of degrees of freedom is introduced by the increased
number of SNPs. Collapsing is a popular idea for deal-
ing with rare variants, whereas a common method is to
take a weighted sum [1].
Collapsing methods effectively reduce the number of

degrees of freedom. However, useful genetic information
may be buried in noise by collapsing all neighboring
SNPs together, regardless of whether they are causal or
not. Collapsing neighboring genotypes in a gene replaces
each genotype at each SNP with the average genotype in
a gene, which is the simplest way to smooth multilocus
genotypes of an individual. More advanced smoothing
techniques include kernel smoothing, Fourier transfor-
mation smoothing, and wavelet transformation smooth-
ing. It is interesting to note that the sum of the
neighboring genotypes is the first Fourier transformation
coefficient of multilocus genotypes. Therefore collapsing
methods are a special case of the test based on Fourier
transformation [2], in which, instead of genotypes, one
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analyzes the coefficients of the Fourier transformation of
the multilocus genotypes. In collapsing methods, only
the first (lowest frequency) Fourier coefficient is ana-
lyzed, and all other Fourier coefficients (the high-fre-
quency parts) are ignored. In this sense, the Fourier-
based test is a generalization of collapsing methods,
whereas the wavelet-based test is an improvement of the
Fourier-based test. The wavelet-based tests can be
regarded as a generalization of collapsing methods
because wavelet transformation is a smoothing techni-
que and collapsing methods are just the simplest way of
smoothing.
We earlier proposed a test based on wavelet transfor-

mation [3]. The wavelet transformation is designed to
handle unsmooth and noisy data. Using this new test
has some advantages over the test based on the Fourier
transformation because the weighted genotype data are
unsmooth and Fourier transformation is mainly for
smooth data. By using a process of thresholding, wavelet
transformation can effectively reduce the noise, increase
the information to noise ratio, and reduce the number
of degrees of freedom. This process takes into account
the genetic information contained in the linkage disequi-
librium structure of the neighboring SNPs. In this
aspect, the wavelet-based test is similar to tests based
on haplotype similarity [4,5] without the need to esti-
mate unknown haplotypes. For rare alleles and rare hap-
lotypes, such estimations may not always be accurate.
The first step in the wavelet transformation is to

transform a noisy, unsmooth weighted multilocus geno-
type of an individual into its wavelet coefficients. The
second step is to threshold the wavelet coefficients by
dropping coefficients of small magnitude. Last, the
inverse wavelet transformation is used to transform the
thresholded coefficients back into a clean and smooth
modified weighted multilocus genotype of the individual.
Our test is based on the modified weighted multilocus
genotype. The choice of threshold procedure is crucial,
and we use empirical Bayes thresholding [6]. The
threshold procedure is done on an individual basis, so it
does not smooth out rare SNPs.

Methods
In the Genetic Analysis Workshop 17 (GAW17) simu-
lated data there are 697 unrelated individuals consisting
of 209 case subjects and 488 control subjects. These
individuals were genotyped on 24,487 SNPs in 3,205
genes on 22 chromosomes. There are three quantitative
traits (Q1, Q2, and Q4) and a qualitative trait (Affected/
Unaffected). Three environmental factors are also given:
Sex, Age, and Smoking status. We have requested and
obtained the answer document that describes the simu-
lation model.

As many initial tests show, inflated type I error rates
are the most serious problem faced by people who are
dealing with this data set. The inflated type I errors
could be caused by many factors. The first is population
stratification. Although population origin was not used
in the phenotype simulation, the differences among
populations still need to be considered. To tackle this
problem, we applied Eigenstrat [7] to remove the effects
of population stratification. We used the top k eigenvec-
tors obtained by Eigenstrat to adjust genotypes and phe-
notypes [7]. Let G be the genotype matrix, C be the
matrix of the principal component vectors, C′ be its
transpose, and Y be the vector of phenotypes. The
adjusted genotype matrix is G − CC′G and the adjusted
phenotype vector is Y − CC′Y. They are still denoted as
G and Y. We need to determine the number of eigen-
vectors to be used. The first two eigenvalues (23.138
and 15.087) are much larger than the others, so we let k
= 2.
After adjusting for population stratification, the type I

error rates were still inflated. A relationship between the
size of a gene and the type I error rate has been
observed before [8]. Most researchers test association
between a gene and a phenotype. The advantage of this
approach is that higher power is achieved and the
results can have biological meanings. However, because
the inflated type I error rates are the main concern, we
take a different approach. We used eight consecutive
SNPs as a window and tested the association between a
window of SNPs and a phenotype. As a result, the type
I error rate is reduced. Because phenotypes are more
likely to be related to nonsynonymous SNPs, it is rea-
sonable to test only nonsynonymous SNPs, which
further reduces the type I error rates.
There are three environmental factors: Age, Sex, and

Smoking status. Using the first replicate, we test the
relationship among environmental factors and pheno-
types. Regressing Age on the three quantitative traits
yields p-values less than 0.0001 (Q1), 0.3437 (Q2), and
less than 0.0001 (Q4). So Q1 and Q4 are related to Age,
and Q2 is not. Similarly, we found that the relationships
between Sex and both Q1 and Q2 are not significant,
but the relationship between Sex and Q4 is significant.
The relationship between Smoking and Q1 or Q4 is sig-
nificant, but the relationship between Smoking and Q2
is not. Similar tests between Age, Sex, Smoking, and the
qualitative trait show that the Affected status is influ-
enced by Smoking and Age but not by Sex. The results
of using logistic regression to test the relationships
between Q1, Q2, Q4, and the Affected status illustrate
that all three quantitative traits are related to the
Affected status. In summary, Q1 is related to Smoking
and Age; Q4 is related to Sex, Smoking, and Age; and
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the qualitative trait Affected is related to Q1, Q2, Q4,
Smoking, and Age.
To identify the functional variants for a trait, we need

to remove the influences of other factors. Therefore we
first adjust each environmental factor for population
stratification by Z − CC′ Z, where Z is an environmental
factor and C is the matrix of the principal component
vectors. For quantitative traits Q1, Q2, and Q4 and the
qualitative trait Affected, we fit the following linear
regression models:
Q1 = a0 + a1(Age) + a2(Smoking), (1)
Q4 = a0 + a1(Age) + a2(Smoking), (2)
Affected = a0 + a1(Q1) + a2(Q2) + a3(Q4) + a4(Smok-

ing) + a5(Age), (3)
where Q1, Q2, Q4, Age, Sex, and Smoking are all

adjusted for population stratification. Let Q1, Q2, Q4, and
Affected be the residuals of models (1)–(3). We test the
association between these residuals and genes (or windows
of SNPs). Using residuals of the traits instead of the origi-
nal traits can further reduce the type I error rates.

When thousands of genes are tested, the problem of
multiple testing needs to be addressed. There is a com-
mon way to obtain a global p-value: One randomly per-
mutes a phenotype M times and finds the maximum of
a test value on all genes for each set of permuted phe-
notypes. The global p-value of a test value T on a gene
is the proportion of the M maxima that are greater than
T. To test at a significance level of 0.05, one just needs
M = 5,000 permutations. This approach works fine
when test values on all genes have the same distribution
under the null hypothesis. If the distributions are differ-
ent, taking this approach will reduce power drastically.
The type I error rate will be inflated in order to keep a
reasonable power (see Table 1). To avoid this disadvan-
tage, we take the following approach. We use a signifi-
cance level of 0.05. The empirical p-values of tests on
each window (or gene) are computed by 60,000 permu-
tations. For the Bonferroni correction, the empirical p-
values are multiplied by the number of windows (or
number of genes), which is 1,702 (or 2,342). This

Table 1 Powers and type I error rates

Window Q1 Q2 Q4 Affected

16 SNPs

Power FLT1 (0.82)
KDR (0.17)
ARNT (0.015)
VEGFC (0.005)

BCHE (0.02)
SIRT1 (0.005)
VNN3 (0.035)
LPL (0.005)
VLDLR (0.01)
SREBF1 (0.02)

HSP90AA1 (0.005)
PRKCA (0.005)

Type I error 0.085 0.121 0.134 0.099

8 SNPs

Power FLT1 (0.68)
KDR (0.16)

BCHE (0.01)
SIRT1 (0.005)

HSP90AA1 (0.005)
PRKCA (0.005)

Type I error 0.035 0.075 0.11 0.05

4 SNPs

Power FLT1 (1.0)
KDR (0.15)

RARB (0.005)
VNN1 (0.025)
VNN3 (0.01)

SREBF1 (0.005)

SOS2 (0.005)

Type I error 0.247 0.162 0.178 0.150

Genes

Power FLT1 (0.68)
KDR (0.26)

GCKR (0.01)
BCHE (0.01)
VNN1 (0.02)
LPL (0.005)
VLDLR (0.01)
SIRT1 (0.005)
SREBF1 (0.005)

HSP90AA1 (0.005)
PRKCA (0.005)

Type I error 0.06 0.21 0.27 0.155

4 less rare SNPs, no adjustments for other factors

Power FLT1 (0.575)
ARNT (0.015)

VNN1 (0.005)
VNN3 (0.005)
LPL (0.015)

Type I error 0.050 0.136 0.085 0.105

Using a gene as the window does not make any adjustment for population stratification and environmental factors. Values in parentheses are the powers.

Jiang and Dong BMC Proceedings 2011, 5(Suppl 9):S70
http://www.biomedcentral.com/1753-6561/5/S9/S70

Page 3 of 6



multiple testing correction procedure has smaller type I
error rates than that obtained using M maxima.
To compare these two methods of permutation, we run

the following simulation. Consider 100 independent ran-
dom variables X(i) for i = 1, 2, …, 100. Let e be the stan-
dard normal random variable. We consider two
scenarios. In the first scenario, all X(i) have the same dis-
tributions under the null hypothesis; in the second sce-
nario, the X(i) have different distributions under the null
hypothesis. Under the null hypothesis, in the first sce-
nario, X(i) = e; in the second scenario, X(i) = a(i) + b(i)e,
where the mean of X(i), a(i), is selected from the standard
normal distribution, and the standard deviation of X(i), b
(i), is selected from a uniform distribution on [0.5, 1.5].
Note that in the second scenario the average of a(i) is 0
and the average of b(i) is 1. Under the alternative hypoth-
esis, X(1) = 3 + e, and all other X(i) are the same as those
under the null hypothesis. So X(1) is the functional SNP,
and all other X(i) are nonfunctional SNPs.
For each scenario, we take a sample size of 100,000

for each X(i) under the null hypothesis to mimic results
of 100,000 permutations. We then take a sample size of
1,000, T(i, 1), …, T(i, 1,000) for each X(i) under the
alternative hypothesis as the test values in 1,000 repli-
cates to compute the power and type I error rates. We
compute empirical p-values for each T(i, s) using two
methods: by comparing to the maxima and by applying
the Bonferroni correction. We then use 1,000 replicates
to find the power and type I error rates at a significance
level of 0.05; the results are given in Table 1. From
Table 1, we can see that the second method is robust.
As expected, the power of the second method decreases
slightly when the distributions of X(i) are not the same
under the null hypothesis. On the other hand, the
power of the first method drops to almost 0 when the
distributions of X(i) are not the same under the null
hypothesis, and the type I error rate is also inflated. In
practice, if we use the first method, the type I error rate
has to be inflated substantially in order to increase the
power. Table 1 shows the advantage of the second
method over the first. The only drawback of the second
method is the computational burden. So long as that
can be contained, we should use the second method.
The genotypes AA, aA, and aa at each SNP are coded

as 0, 1, and 2, respectively, where a is the minor allele
at the SNP. Because most functional variants are rare
alleles, we put a weight on a rare allele. A coded geno-
type is divided by the square root of nq(1 − q), where n
is the total number of individuals and q is the estimated
minor allele frequency (MAF) of the ith SNP [1]. Let X
be the matrix of weighted genotypes. The jth column X
(j) of X is the weighted genotype of the jth individual.
We apply wavelet transformation, thresholding, and
inverse wavelet transformation consecutively on vector

X(j), resulting in the modified genotype of the jth indivi-
dual, denoted still as X(j).
Empirical Bayesian thresholding [6] is determined as

follows. Suppose that the sample wavelet coefficients Z
are from a normal distribution with mean u. Suppose
that u has a prior distribution of (1 − w)d(u) + we(u),
where d is an atom probability density function at 0 and
e is a symmetric density function. Let u′(z; w) be the
median of u given Z = z. There exists a function t(w)
such that u′(z; w) = 0 if and only if |z| is less than or
equal to t(w). Let the threshold be t(w′), where w′ is the
marginal maximum-likelihood estimator of w.
Consider a window of m consecutive nonsynonymous

SNPs (or all nonsynonymous SNPs in a gene), which is
an n × m submatrix of X, still denoted by X. Subtract
the mean of the ith row of X from each entry of X such
that the mean of each row of X is 0. Let Y = (Y(1), …, Y
(n)) be the traits of n individuals adjusted for population
stratification. Assume the generalized linear model [9]:

f E Y j a bX j( ( ( ))) ( )= + (1)

between X and Y, where f is a link function. Let:

U j Y j X j X n j( ) ( )[ ( , ) ( , )]= + +1  (2)

be the score statistic for the markers. Let V(j) be an
estimated variance of U(j) under the null hypothesis.
The global score statistic of this window for trait Y is:

T
U U m

V
= + +( ) ( )

,
1 

(3)

where V is the square root of the sum of all V(j). We
compute T for four different traits (Q1, Q2, Q4, and
Affected).

Results
We analyzed 200 replicates. The null hypothesis for a
window (or a gene) is rejected if the p-value after Bon-
ferroni correction is less than 0.05. This process was
done for 1,702 windows (or 2,342 genes) using 200
replicates. For a functional window (which contains
functional variants), the power is the number of times
the null hypothesis is rejected divided by 200. For a
nonfunctional window (which does not contain func-
tional variants), the type I error rate is the number of
times the null hypothesis is rejected divided by 200. The
power and type I error rates are reported in Table 2.
When using eight SNPs as a window and at a signifi-

cance level of 0.05, the type I error rates for Q1, Q2, Q4,
and Affected were 0.035, 0.075, 0.11, and 0.05, respec-
tively. The type I error rates were under control for Q1
and Affected. For the other two traits, the type I error
rates were still inflated, although smaller. The wavelet-
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based test is sensitive to the choice of window size. Using
a window size of 4 or 16 led to inflated type I error rates.
Instead of consecutive SNPs, if we used all nonsynon-
ymous SNPs in a gene as a window, the type I error rates
more than doubled with a small gain in power. This
small gain is not worth it. The power on most functional
variants was low, although FLT1 could be consistently
identified. Note that the type I error rate for Q1 was
0.035, which means that among 1,691 nonfunctional win-
dows with 200 replicates, a total of 338,200 tests, the null
hypothesis was wrongly rejected only seven times.

Discussion
Using Eigenstrat [7] can remove some effects of popula-
tion stratification; however, it cannot remove all inflated
type I errors. A large number of principal components
will not always reduce the type I error rate; sometimes it
does just the opposite. The number of principal compo-
nents used should depend on the distribution of the
eigenvalues. In this study, two principal components
were much larger than the others and consequently were
used. Because the type I error rates seem to increase as
the number of SNPs in a gene increases [8], using a win-
dow of fixed size instead of a gene as a window can have
a lower type I error rate with only a little sacrifice in
power. Removing the influences of other factors before
identifying the functional variants for a trait can both
increase power and reduce the type I error rate. Finally,
the choice of the multiple testing correction method will
also have an effect on type I error rates. Despite the
popularity and convenience of a given test, in general, we
cannot assume that the test has the same distribution in
all genes (or all windows) under the null hypothesis. The
common practice of using the maxima of test values on
all 22 chromosomes for multiple testing correction will
increase type I error rates. Obtaining p-values by permut-
ing phenotypes on each window (or gene) followed by
Bonferroni correction is a safer choice.
From Table 2, it seems that the wavelet-based test

algorithm has a higher power when testing a gene that
contains more functional variants. For example, for the
quantitative trait Q1, the genes FLT1 and KDR have 11
and 10 functional variants, respectively, and all other
functional genes have fewer than 6 functional variants.

For the quantitative trait Q2, the genes BCHE, SIRT1,
and SRERF1 have 13, 9, and 10 functional variants,
respectively; all other genes have fewer functional var-
iants. For the qualitative trait, all genes except one have
less than five functional variants; the power of the wave-
let-based test on the qualitative trait is lower.
For the GAW17 data set, the wavelet-based test works

the best when the window size is 8. All genes except one
contain fewer than 14 functional variants. Increasing the
window size only increases noise and type I error rates
but not the power of the test. When window size is
reduced, the test can capture only a part of the functional
variants in a gene, which reduces the power. One of the
advantages of the wavelet-based test is to take into
account the genetic information contained in the linkage
disequilibrium structure of the neighboring SNPs. A
small window size loses this advantage. With 24,487
SNPs on 22 chromosomes, the data set is sparse. For a
denser data set, a larger window size may be needed to
capture most of the functional variants in a gene.
When the wavelet-based test is applied to less rare

SNPs with MAFs greater than 1% with or without
adjusting for population stratification and with or with-
out removing the environmental factors, the power is
decreased and the type I error rates are increased in all
but one case: a window size of 4 without any adjust-
ments. It seems that for less rare SNPs, a window size
of 4 is better than a window size of 8, and not removing
environmental factors is better than removing them.
Each gene contains only a few functional variants with
MAF greater than 1%. The wavelet-based test does not
work well under this circumstance.

Conclusions
As an advanced smoothing technique, wavelet-based
tests are a generalization of collapsing methods. A level-
dependent threshold can reduce noise and type I error
rates. The inflated type I error rate is a serious problem
faced by practitioners. This problem has several causes,
and one remedy cannot solve it. We suggest the follow-
ing: using a window of fixed size rather than using a
gene as a window; using Bonferroni correction rather
than the maxima of test values for the multiple testing
correction; removing other influencing factors and using
residuals for association tests; and using Eigenstrat [7]
to remove some effects of population stratification and
choosing the number of principal components according
to the distribution of the eigenvalues.
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Table 2 Comparison of two permutation methods

Method Power Type 1 error

Method 1 (compare with maxima of test values)

The same distribution under the null hypothesis 0.299 0.049

Different distributions under the null hypothesis 0.005 0.061

Method 2 (Bonferroni correction)

The same distribution under the null hypothesis 0.283 0.046

Different distributions under the null hypothesis 0.279 0.050
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