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Abstract

We found from our analysis of the Genetic Analysis Workshop 17 data that the population structure of the 697
unrelated individuals was an important confounding factor for association studies, even if it was not explicitly
considered when simulating the phenotypes. We uncovered structures beyond the reported ethnicities and found
ample evidence of phenotype–population structure associations. The first 10 principal components of the
genotype data of the 697 individuals demonstrated much stronger associations with Q1, Q2, and the disease than
did the individuals’ ethnicities. In addition, we observed that population structure was a confounding factor for the
Q1-gene association when identifying the significant genes both with and without adjusting for the causal single-
nucleotide polymorphisms, the ethnicities, and the principal components. Many false discoveries remained after
adjusting for the causal single-nucleotide polymorphisms. Adjusting for the principal components appeared more
effective than did adjusting for ethnicity in terms of preventing false discoveries. This analysis was performed with
knowledge of the causal loci.

Background
The 697 unrelated individuals in the Genetic Analysis
Workshop 17 (GAW17) data set were from seven popula-
tions [1] (see the file unrelateds.ped). No population struc-
ture effect was directly incorporated into the simulation
models to generate the three quantitative traits and the
disease status. However, it was unclear whether population
structure should be a concern for the analysis of this data
set. Intuitively, the principal components (PCs) of the gen-
otype scores and the reported individual ethnicities may
capture different proportions of any overall population
structure. We observed substantial additional structures
within the populations by PC analyses of the population-
specific and overall genotype data among the 697 indivi-
duals. We observed ample evidence for Q1–, Q2–, and
disease–population structure associations by linear and
logistic regression on the individual ethnicities and on the
first 10 PCs of the genotype data of all 697 individuals.
The PCs showed much stronger associations with the

three phenotypes than did the ethnicities. We investigated
confounding of the population structure on the Q1-gene
association by contrasting the gene discoveries with and
without adjusting for the 39 causal single-nucleotide poly-
morphisms (SNPs), ethnicities, and various numbers of
PCs. Abundant false discoveries remained even after
adjusting for the causal SNPs. In terms of preventing false
discoveries, adjusting for the PCs appeared to be more
effective than adjusting for ethnicity. In conclusion, it is
necessary to adjust for population structure in association
studies.

Methods
Interrogating hidden sample structures
The file unrelateds.ped [1] indicates that the 697 unrelated
individuals in the GAW17 data set are from seven popula-
tions: Centre d’Etude du Polymorphisme Humain
(CEPH)-, Denver Chinese, Han Chinese, Japanese, Luhya,
Tuscans, and Yoruba (indexed by 1, …, 7, respectively,
from now on). We performed population-specific and
whole-sample PC analyses to uncover hidden population
structures. For example, for the whole-sample PC analysis
(PCA), let G = (gij)n×M be the matrix of centered genotype
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scores (n = 697, M = 24,487); that is, g1j +...+gnj = 0 for
each j Î {1, …, M}. We inspected the eigenvectors of GG′
to classify individuals.

Uncovering phenotype–population structure associations
For individual i, let ti = (ti,1, …, ti,10) be the first 10 PCs
computed from GG′, and let zi = (zi,1, …, zi,6) represent
the 6 ethnicity contrasts defined by the seven populations
(PS7); zi,p = 1 if i is from population p and 0 otherwise.
Let Sexi, Agei, and Smokei be standardized covariate
scores, and let xi = [1, Sexi, Agei, Age i

2 , Smokei]. For
each of Q1, Q2, and Q4, we tested g = 0 under the model
yi = xib + zig + εi and δ = 0 under the model yi = xib +
tiδ + εi where yi is the trait value, εi is random noise, b =
(b0, …, b4)′, g = (g1, …, g6)′, and δ = (δ1, …, δ10)′ are vec-
tors of regression coefficients. For disease, we tested g =
0 under the model logit[Pr(yi = 1)] = xib + zig and δ = 0
under the model logit[Pr(yi = 1)] = xib + tiδ. All the tests
were conducted using the R functions lm(.), glm(.), and
anova(.).

Finding Q1-gene association
For individual i, let si = (si,1, …, si,39) and gi = (gi,1, …, gim)
be the vectors of genotypic scores of the 39 causal SNPs
and a testing gene of m SNPs, and let yi be the trait
value. We tested h = 0 under the linear regression mod-
els yi = xib + gih + εi, yi = xib + siθ + gih + εi, yi = xib +
zig + gih + εi, and yi = xib + tiδ + gih + εi, where θ = (θ1,
…, θ39)′ and h = (h1, …, hm)′ are vectors of regression
coefficients. We set ti to be the first 10, 15, 100, and 200
PCs. All the tests were conducted using the R functions
lm(.) and anova(.).

Results
Population structure
To better understand the population structure of the
697 individuals, we first performed a population-specific
PCA (Figure 1). Each of the seven populations had a
specific within-population structure, as manifested by
the first two population-specific PCs. Denver Chinese,
Japanese, and Yoruba showed clear structures; Tuscan,
CEPH, Han Chinese, and Luhya showed weak struc-
tures. The PS7 vector would not be able to capture such
subpopulation structures. The PCA of the genotypes of
all 697 individuals uncovered additional structures.

Phenotype–population structure associations
Phenotypes Q1, Q2, and the disease demonstrated
clear associations with PS7 and demonstrated even
stronger associations with the first 10 PCs (Figures 2a,
b, d). For example, the Q-Q plot of the Q1-PS7 asso-
ciation was outside the 95% confidence band, and the
genomic inflation factor of the 200 replicates was
l = − =

=∑1
200 1

200
3 3616log( ) .Pj

j
, where Pj is the p-value of

the test score for the jth replicate. The Q-Q plot of the
Q1-PC association was even further away from the
diagonal, with l = 22.8708. Accordingly, the PCs better
captured the population structure of the 697 indivi-
duals than did PS7. No clear evidence of Q4–popula-
tion structure association was observed: The Q-Q plots
of the Q4-PS7 and Q4-PC associations concentrated
around the diagonal (Figure 2c). This result would be
consistent with the fact that in the simulation Q4 was
not influenced by any of the exonic SNPs.

Q1-gene association
The output of replicate 10 is presented in Figure 3. For
each adjustment, we identified as significant those genes
with p-values less than 0.05/3,205. In the simulated data
for Q1, FLT1 and KDR had the largest effects of all nine
causal genes; FLT1 consisted of 11 causal SNPs and 24
random SNPs, and KDR consisted of 10 causal SNPs and
6 random SNPs. We identified FLT1 and KDR as the two
most significant genes with all the adjustments discussed
here except for that of 200 PCs. After adjusting for envir-
onmental covariates only, we identified 65 false discov-
eries, 42 of which remained even after adjusting for the
39 causal SNPs. This observation would explain the
apparent Q1–population structure associations. After
adjusting for ethnicity and environmental covariates, we
identified 57 false discoveries. As anticipated, the number
of false discoveries decreased as more PCs were used for
adjusting. For example, we identified 8 (2), 7 (2), and 3
(2) significant genes (causal genes) after adjusting for the
first 10, 15, and 100 PCs, respectively. However, the sta-
tistical power would be reduced if too many PCs were
used for adjusting. For example, after adjusting for the
first 200 PCs, we did not identify any genes as significant.

Discussion
Using PCA of the 697 unrelated individuals in the
GAW17 data set, we uncovered population structures in
addition to their ethnicities and found ample evidence by
linear and logistic regression analyses of phenotype–
population structure associations and population struc-
ture confounding with phenotype-gene associations. The
first 10 PCs of the genotype matrix of the 697 individuals
showed much stronger associations with Q1, Q2, and the
disease than did their ethnicities; and the PC adjustments
appeared more effective than did the ethnicity adjust-
ment in terms of preventing false discoveries. We still
need to determine how to choose the optimal number of
PCs, and what they are, for use in the adjustment.
We wondered whether the population structure was

nonlinearly confounded with the phenotypes. Thus we
also tested for phenotype associations with the first 10
PCs and ethnicities using least-squares kernel machines
(LSKMs) [2,3], using linear, quadratic, Gaussian, and
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2wayIX kernels (see [2-5] for details of LSKMs). All the
results (not shown here) were similar to those in Figure
2. One remaining task is to find out why population
structure has an effect here, because it was not explicitly

put into the simulation models. Population history deter-
mines population structure, and population structure in
turn affects the distribution of genotypes. We speculate
that in the GAW17 data set the population history of
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Figure 1 Partial within- and overall-population structures. Each of the seven populations has a specific within-population structure, as
manifested by the first two principal components of the genotype matrix of the individuals in the population. Denver Chinese, Japanese, and
Yoruba showed clear structures; Tuscan, CEPH, Han Chinese, and Luhya showed weak structures.
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Figure 2 Q-Q plots of phenotype–population structure associations. In each panel a–d, each point was computed from one of the 200
replicates. Phenotypes Q1, Q2, and the disease demonstrate clear associations with the individual ethnicities and demonstrate even stronger
associations with the first 10 principal components. No clear evidence of Q4–population structure (PS) association was observed.
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Figure 3 Q-Q plots of Q1-gene association. This figure is based on the gene-specific p-values yielded by seven adjustments of environmental
covariates, quantitative trait loci, ethnicity, and principal components when applied to replicate 10 of Q1. After Bonferroni correction, the seven
adjustments identified 67 (2), 44 (2), 59 (2), 8 (2), 7 (2), 3 (2), and 0 (0) significant genes (causal genes), respectively.
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many genes is similar to that of the true causal genes.
This supposition could be verified by examining the
canonical correlations between the PCs of the causal
genes and the whole-sample PCs.

Conclusions
Our analysis discovered that the population structure of
the GAW17 unrelated individuals data is an important
confounding factor, even though it was not explicitly
involved as an independent predictor when simulating the
phenotypes. It is thus necessary to adjust for any popula-
tion structure, known or unknown, in association studies.
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