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Abstract

Background: For the XIV QTLMAS workshop, a dataset for traits with complex genetic architecture has been
simulated and released for analyses by participants. One of the tasks was to estimate direct genomic values for
individuals without phenotypes. The aim of this paper was to compare results of different approaches used by the
participants to calculate direct genomic values for quantitative trait (QT) and binary trait (BT).

Results: Participants applied 26 approaches for QT and 15 approaches for BT. Accuracy for QT was between 0.26
and 0.89 for males and between 0.31 and 0.89 for females, and for BT ranged from 0.27 to 0.85. For QT,
percentage of lost response to selection varied from 8% to 83%, whereas for BT the loss was between 15% and
71%.

Conclusions: Bayesian model averaging methods predicted breeding values slightly better than GBLUP in a
simulated data set. The methods utilizing genomic information performed better than traditional pedigree based
BLUP analyses. Bivariate analyses was slightly advantageous over single trait for the same method. None of the
methods estimated the non-additivity of QTL affecting the QT, which may be one of the constrains in accuracy
observed in real data.

Background
An idea of genomic selection (GS) has been presented
nearly a decade ago [1] and since that time it has been
applied to plant [2] and animal breeding [3]. Together
with an increased availability of dense marker assays,
implementation of GS in breeding programs has become
more popular [4,5] stimulating development of methods
to estimate genomic breeding values.
Genetic basis of a phenotypic trait – its genetic archi-

tecture - is often complex. A particular trait may be, for
example, controlled by many genes with small effects or
by several major genes. Genes that control one trait may
also control other trait(s), i.e. they are pleiotropic and
the traits are genetically correlated. A gene variant may
have an effect when it is inherited from a parent of one
sex but not from the other (i.e. imprinting) or its effect

will be present only when several alleles are in a particu-
lar combination (i.e. epistasis or haplotype effect). Geno-
mic selection opens new opportunities in the analyses of
complex traits.
A number of approaches have been developed to

obtain direct genomic values (DGV) or genomic-
enhanced breeding values (GEBV) [1,6]. Because
number of markers is usually greater than number of
genotyped individuals, predictions of individual genes
are based on Bayesian model averaging, penalized
regression, dimension reduction methods and algorith-
mic machine learning methods. .Several Bayesian models
have been developed to model effects of individual loci.
They differ in number of characteristics, including a
prior distribution of number of QTL, their effects and
assumption of homogeneity or heterogeneity of QTL
variance (Table 1). Ridge regression (RR) and spatial
regression are two types of panelized estimation, which
assume homogenous variance across all markers. Double
hierarchical generalized linear models (DHGLM)
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estimates marker-specific variances and can be solved by
the iteratively weighted least squares. Partial Least
Square Regression (PLSR) is an extension of the princi-
pal component analyses (PCA): the most systematic var-
iations in marker data are decomposed into a small
number of latent variables (principal components). This
method reduces the dimensionality of the problem uti-
lizing existing correlations between SNP [7]. GBLUP is
an alternative, which treats the markers as a source of
information on relatedness among individuals and mod-
els the sum of all QTL instead of individual loci. Some
variants of GBLUP use preselected SNP to build rela-
tionship matrix for particular trait [1]. Some authors
apply machine learning approaches (boosting, support
vector), with hope that these methods better account for
interaction between QTL [8].
For the XIV QTLMAS workshop, a dataset for traits

with complex genetic architecture has been simulated
and released for analyses by participants [9]. One of the
tasks was to estimate DGV for individuals without phe-
notypes. The aim of this paper was to evaluate and
compare results of different approaches used by the par-
ticipants to calculate DGV.

Methods
Simulated data
Simulated, four-generation pedigree consisted of 3,226
individuals, descended from 20 founders, each mating
resulted in 30 offspring. The last generation consisted of
900 young individuals with no progeny and no pheno-
types. All 3,226 individuals had 100 Mb long genomes
consisting of 5 chromosomes. In total, 37 out of 10,1031
single nucleotide polymorphism (SNP) markers were
assumed to be QTL of which two had major effects.
One of the simulated traits was a quantitative trait (QT)
and the other one was a binary trait (BT). Heritability
for QT, due to imprinting, was higher for males (0.52)
than for females (0.39). True breeding values (TBV) for
QT were calculated as a summation of effects of 30
additive QTL, haplotype effects (QTL pairs 31-32 and
33-34) and effects of imprinted QTL (for males only).
Heritability for BT was 0.48. TBV for BT were

calculated as a summation of effects of 22 additive QTL.
Simulated pedigree, genome, marker and phenotypic
data were made available for analyses. More detailed
description of simulation can be found in [9] and the
simulated dataset is available at http://jay.up.poznan.pl/
qtlmas2010/dataset.html.

Methods used by participants to estimate genomic
breeding values
Eleven groups submitted their estimates of DGV. Parti-
cipants applied several methods and often different var-
iants of same method [8,10-17]. In total, they applied 26
approaches for QT and 15 approaches for BT (Table 2
and 3). The QT was analyzed by 11 groups, whereas BT
by 6 groups. Ten groups used univariate models and
two groups applied bivariate models. Bayesian models
were used by five groups, machine learning was applied
by a single group, and eight groups tested other
methods.

Comparison criteria
Five criteria were used to compare the applied genomic
selection methods: (1) Accuracy being the Pearson cor-
relation between true breeding values (TBV) and DGV.
(2) Bias of estimates calculated as the linear regression
coefficient (TBV = M + b*DGV +E) (unbiased estimates
are expected to have regression coefficient of 1), (3)
mean square difference (MSD) between TBV and DGV,
(4) % of shared ID when selecting top 10% (45 males
and 45 females) based on DGV vs. TBV, and (5) selec-
tion loss from selecting on DGV instead of TBV as a
proportion of response using TBV. Due to a presence of
imprinting, the average genetic values for males and
females were different, and therefore, accuracies and
regression coefficients for these groups were calculated
separately.

Results
Accuracy
For QT, the accuracy was between 0.26 and 0.89 for
males and between 0.31 and 0.89 for females (Table 2).
Most of the approaches using Bayesian model averaging

Table 1 Bayesian models developed for genomic selection

Feature Model BayesA BayesB BayesC (=SSVS stochastic
search variable selection)

BayesCpi

Probability for a locus to be a QTL 1 1-p 1-p 1-p

QTL-specific effect variance (variance heterogeneity) Yes Yes No No

Modelling of no-QTL Not aplicable Null variance Tiny variance Null variance

Estimated parameter p(uniform prior)

Hyperparameters (assumed known) df1, S2 df, S, p df, S, p df, S

Use Metropolis-Hastings sampler? No Yes No No
1df=degrees of freedom; 2S=scale parameter, the two parameters of scaled inverted Chi-square distribution (df, S) used as a priori distribution for QTL effect
variance
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Table 2 The comparison of the applied approaches used by participants for estimation of genomic breeding value of
quantitative trait

Approach no. Authors Method Acc. Reg. Coef. MSD Shared (%) Loss (%)

♂ ♀ ♂ ♀

1 Calus et al.[10]* BayesA bivariate 0.85 0.84 1.06 0.91 45.4 17 14

2 Calus et al. [10] BayeaA univariate 0.84 0.83 1.05 0.90 46.9 58 18

3 Calus et al. [10] BayesC bivariate 0.87 0.89 1.01 0.88 42.4 71 10

4 Calus et al. [10] BayesC univariate 0.86 0.87 1.01 0.89 44.1 68 12

5 Calus et al. [10] GBLUP bivariate 0.83 0.81 1.07 0.90 47.8 57 19

6 Calus et al. [10] GBLUP univariate 0.83 0.80 1.10 0.90 48.9 54 22

7 Calus et al. [10] Pedigree-BLUP univariate 0.49 0.46 0.88 0.71 66.4 17 79

8 Calus et al. [10] Pedigree-BLUP bivariate 0.50 0.47 0.88 0.72 66.8 23 62

9 Cleveland et al. [11] BayesA_all 1 0.85 0.86 1.13 0.96 45.0 70 12

10 Cleveland et al. [11] BayesA_s12 0.49 0.52 0.94 0.91 63.4 26 63

11 Cleveland et al. [11] BayesA_s22 0.67 0.66 0.94 0.84 56.5 54 33

12 Coster and Calus[12] PLSR3 0.76 0.73 9.05 7.31 76.4 16 83

13 Nadaf et al. [13] BayesB 0.89 0.89 1.04 0.91 41.7 77 8

14 Nadaf et al. [13] BayesB + Pedigree information 0.88 0.88 1.02 0.90 42.2 71 9

15 Nadaf et al. [13] GBLUP + Pedigree information 0.81 0.80 1.09 0.92 49.2 56 21

16 Nadaf et al. [13] GBLUP 0.82 0.80 1.12 0.92 49.1 71 23

17 Ogutu et al. [8] Boosting 0.47 0.38 0.19 0.15 280.7 29 65

18 Ogutu et al. [8] Support vector 0.69 0.63 1.54 1.20 48.3 49 36

19 Schulz-Streeck et al. [14] Ridge regression 0.85 0.84 1.02 0.86 59.6 59 19

20 Schulz-Streeck et al. [14] Spatial regression 0.83 0.81 1.08 0.88 46.4 63 19

21 Shen et al. [15] DHGLM4 0.82 0.80 1.03 0.84 49.9 58 15

22 Sun et al. [16] BayesCpi 0.89 0.89 1.05 0.91 41.6 77 8

23 Zhang et al. [17] BayesB 0.89 0.89 1.05 0.91 42.0 74 8

24 Zhang et al. [17] TA–BLUP–sub5 0.89 0.89 1.03 0.90 42.2 73 9

25 Zhang et al. [17] TA–BLUP–all6 0.89 0.89 1.06 0.92 41.9 72 9

26 Zukowski et al. GBLUP 0.58 0.59 1.12 0.96 87.0 41 38
* Reference to applied method;1 with use of all markers in analyses; 2 with use of subset of markers in analyses; 3 Partial least squares regression; 4 Double
hierarchical generalized linear models; 5 BLUP with trait specific matrix obtained with use of subset of markers; 6 BLUP with trait specific matrix obtained with
use of all markers. Acc=accuracies of DGV (Acc.); linear regression coefficients of TBV on DGV; mean square differences (MSD) between TBV and DGV; percentage
of IDs shared between the groups of young individuals selected on TBV and EBV (Shared) and percentage of loss of response to selection when 10% are selected
based on EBV instead of TBV for quantitative trait (QT)

Table 3 The comparison of the applied approaches used by participants for estimation of genomic breeding value of
binary trait

Approach no. Authors Method Acc. Reg. Coef. MSD Shared (%) Loss (%)

1 Calus et al. [10]* BayesA bivariate 0.82 0.91 0.33 60 20

2 Calus et al. [10] BayeaA univariate 0.73 0.89 0.47 53 28

3 Calus et al. [10] BayesC bivariate 0.85 0.95 0.26 64 15

4 Calus et al. [10] BayesC univariate 0.79 0.91 0.37 56 22

5 Calus et al. [10] GBLUP bivariate 0.79 0.88 0.38 60 20

6 Calus et al. [10] GBLUP univariate 0.72 0.83 0.49 52 29

7 Calus et al. [10] Pedigree-BLUP univariate 0.52 0.71 0.74 30 52

8 Calus et al. [10] Pedigree-BLUP bivariate 0.47 0.75 0.79 28 52

12 Coster and Calus[12] PLSR1 0.72 0.78 1.40 20 71

13 Nadaf et al. [13] BayesB 0.82 0.94 0.31 59 20

14 Nadaf et al. [13] BayesB + Pedigree information 0.82 0.94 0.31 59 21

15 Nadaf et al. [13] GBLUP + Pedigree information 0.71 0.84 0.50 51 30

16 Nadaf et al. [13] GBLUP 0.71 0.84 0.50 51 29

21 Shen et al. [15] DHGLM2 0.72 0.83 0.49 50 29

26 Zukowski et al. GBLUP 0.56 0.81 0.69 38 47
* Reference to applied method; 1 Partial least squares regression; 2 Double hierarchical generalized linear models.
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methods performed slightly better (average accuracy
0.68) than other methods. GBLUP yielded an average
accuracy of 0.61 (after exclusion of the least accurate
case of GBLUP). Traditional pedigree BLUP ignoring
genomic data was only about half as accurate as the
best approaches. No substantial differences between
bivariate and univariate analyses were found. For BT,
accuracy level was, generally, higher than for QT and
ranged from 0.27 to 0.85 (Table 3). Similarly to the QT,
Bayesian approaches were somewhat superior to other
methods. The highest accuracy was reached by bivariate
BayesC approach. Unlike QT, for BT bivariate analyses
were considerably more accurate than univariate ones.

Regression coefficient
For QT, regression coefficients ranged from 0.19 to 9.05
for males and from 0.15 to 7.31 for females (Table 2).
Similarly to the previous criterion, the best performing
approaches were Bayesian methods. For BT, regression
coefficients ranged from 0.61 for some of GBLUP appli-
cations to 0.77 for bivariate BayesC (Table 3). Again for
this trait bivariate analyses appeared to be better than
univariate, which was not the case for QT.

Mean square difference (MSD)
For QT, MSD for most of the approaches ranged from
42 to 63 (Table 2). Higher MSD were observed for one
of the machine learning techniques - boosting – (280.7),
one case of GBLUP analyses (87.0) and PLSR (76.4).
These approaches were inferior in comparison to pedi-
gree BLUP that yielded MSD of 66.4-66.8. For BT, MSD
ranged from 0.26 for BayesC bivariate to 1.20 for PLSR.
These results indicate that BayesC bivariate was superior
to remaining methods (Table 3).

Shared
For QT, percentage of ID shared between the groups of
young individuals selected on TBV and DGV varied sub-
stantially and ranged from 16% (PLSR) to 77% (Table 2).
The best three methods were: BayesB (74%-77%),
BayesCpi (77%) and TA-BLUP (72%-73%). For pedigree
BLUP only 17% (univariate) or 23% (bivariate) ID were
shared with true top individuals. For BT, similar range
of variation of shared ID was observed (from 20% with
PLSR to 64% with bivariate BayesC) (Table 3). The best
three approaches were: bivariate BayesC (64%), bivariate
GBLUP (60%), and bivariate BayesA (60%). For pedigree
BLUP only 30% (univariate) or 28% (bivariate) ID were
shared.

Loss
High percentage of shared ID, generally, was associated
with low level of loss in genetic gain. For QT, percen-
tage of lost response to selection when 10% are selected

based on DGV instead of TBV varied from low (8%) to
very high (83%). Pedigree BLUP resulted in 62% to 79%
of loss, whereas approaches using genomic information,
in general, resulted in smaller loss. Most of analyses
using BayesB as well as BayesCpi and TA-BLUP
appeared to be superior to other methods and caused
only 8% to 9% of loss. Percentage of loss for most of the
GBLUP approaches was close to 20%. For BT, loss in
response to selection was, usually, at higher level. The
smallest observed loss was 15% for bivariate BayesB and
the biggest was 71% for PLSR. Pedigree BLUP caused
from 74% to 79% of loss. Bivariate analyses were super-
ior to univariate for both traits.

Discussion
When phenotypes for young individuals are not available,
the approaches that use genomic information had super-
ior performance compared to the methods that were
based solely on pedigree information. Use of genomic
information, therefore, led to improved breeding value
estimation, which was also found by others [1,18-24].
The traits simulated for the XIV QTL-MAS workshop
differed with respect to complexity and a number of
QTL. Effects of simulated QTL were unequal, some QTL
had large effects and most of the other QTL had small
effects on the simulated traits. All Bayesian model aver-
aging methods had similar accuracy. These models were,
furthermore, expected to achieve higher accuracy than
GBLUP because of relatively small number of QTL [25].
GBLUP, however, was expected to capitalize on genetic
relationships between training and validation sets [26].
We have found that these two groups of methods yielded
similar accuracies. Bastiaansen et al. [23] who analyzed
results of the previous QTLMAS workshop also reached
a similar conclusion. Lack of apparent advantage in
terms of accuracy of a single method across a range of
traits was also shown in other simulation studies [27] and
in real data, e.g. [3] and [28].
When the same approach is used by different

researchers, similar results are expected, which was not
always the case in our comparison. One GBLUP imple-
mentation, for example, was about 0.20 less accurate
than other GBLUP analyses. This suggests that the
methods may be very sensitive to data preparation and
that their implementations may vary in performance.
Bivariate analyses, in general, performed better than

univariate analyses for the same approach. This was
expected as the two simulated traits were indeed geneti-
cally correlated. Differences between univariate and
bivariate analyses were especially apparent for BT, for
which phenotypes carry less information. More complex
approaches, requiring initial estimation of marker effects
or use of machine learning techniques applied to QT
provided similar or inferior results to simpler methods.
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Conclusions
Bayesian model averaging methods predicted breeding
values slightly better than GBLUP in a simulated data
set, where traits had complex genetic architecture (epita-
sis, pleiotropy, and imprinting) and were affected by
relatively small number of QTL. The methods utilizing
genomic information performed better than traditional
pedigree based BLUP analyses. Bivariate analyses were
slightly advantageous over single trait for the same
method. None of the methods estimated the non-addi-
tivity of QTL affecting the QT, which may be one of the
constrains in accuracy observed in real data.
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