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Abstract

Background: Gene identification using linkage, association, or genome-wide expression is often
underpowered. We propose that formal combination of information from multiple gene-
identification approaches may lead to the identification of novel loci that are missed when only one
form of information is available.

Methods: Firstly, we analyze the Genetic Analysis Workshop 16 Framingham Heart Study
Problem 2 genome-wide association data for HDL-cholesterol using a “gene-centric” approach.
Then we formally combine the association test results with genome-wide transcriptional profiling
data for high-density lipoprotein cholesterol (HDL-C), from the San Antonio Family Heart Study,
using a Z-transform test (Stouffer’s method).

Results: We identified 39 genes by the joint test at a conservative |% false-discovery rate,
including 9 from the significant gene-based association test and 23 whose expression was
significantly correlated with HDL-C. Seven genes identified as significant in the joint test were not
independently identified by either the association or expression tests.

Conclusion: This combined approach has increased power and leads to the direct nomination of
novel candidate genes likely to be involved in the determination of HDL-C levels. Such information
can then be used as justification for a more exhaustive search for functional sequence variation
within the nominated genes. We anticipate that this type of analysis will improve our speed of
identification of regulatory genes causally involved in disease risk.
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Background

The ultimate goal of genetic studies of complex diseases
is the identification of the genes that are causally
involved in risk. Genome-wide association studies
(GWAS) (like their predecessors, linkage studies)
attempt to identify genomic regions that are likely to
harbor functional sequence variants influencing disease
risk. For linkage studies, the size of the putative target
region is on the order of 10 Mb while GWAS generally
identify much smaller genomic regions of 500 kb to
1 Mb. Once such a region is found, the critical goal must
then be to identify the causal gene(s) involved and their
functional variants. In this paper, we propose an
approach that leads to the direct nomination of
empirically chosen positional candidate genes using
independent transcriptional and genetic information.
Once nominated, such candidate genes should be
examined exhaustively to determine their causal status.

In a “successful” genome-wide association study, the
result is localization of a genomic region; actual
identification of causally involved genes requires sub-
stantially more information. Therefore, joint utilization
of multiple sources of independent information (such as
transcriptional profiling) is ultimately required to
enhance inference about causal relationships. Because
genes (or other contiguous genomics regions) remain the
primary functional units of the human genome, we focus
on gene-based tests of genetic, transcriptional, or
proteomic data to determine whether a given gene is
likely to be involved in the determination of a complex
disease-related phenotype. This gene-centric approach
allows replication studies to be focused on genes rather
than variants. This analysis approach for GWAS data has
been suggested as best practice [1], however it has yet to
receive broad implementation.

Gene expression measurements reflect quantitative var-
iation in transcript-specific mRNA levels and thus
represent phenotypes lying very close to the direct action
of genes. By globally searching for gene transcripts
having levels that correlate with more classical measures
of disease related phenotypes, it should be possible to
nominate or prioritize novel candidate genes for more
extensive genetic analysis. Combining such transcrip-
tional information with the results of GWAS should
provide a powerful approach for the selection of disease-
related genes.

Methods

As an example of our gene-centric approach, we focus on
the dissection of genetic determinants influencing high-
density lipoprotein cholesterol (HDL-C) levels, an
important endophenotype inversely related to risk of
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cardiovascular disease. Age, sex, and their interactions as
well as smoking status were included as covariates in all
analyses.

Framingham Heart Study data

For the genetic component of our tests, we utilized the
genome-wide association information available in the
Genetic Analysis Workshop 16 Problem 2 single-nucleo-
tide polymorphism (SNP) data obtained from the long-
running Framingham Heart Study (FHS) [2]. The full
FHS pedigree was trimmed using PEDSYS [3] to include
only genotyped individuals (n = 6852) plus the minimal
set of untyped individuals required to maintain familial
relationships. The trimmed pedigree consists of 12,789
subjects in 1059 extended families.

Genotyping was performed by Affymetrix for approxi-
mately 550,000 SNPs. The genotypes were cleaned for
mendelian errors using an automated procedure in
which a mistyping analysis is conducted with the
computer program SimWalk2 [4,5] and those genotypes
for which the probability of being mistyped exceeds a
certain threshold are blanked. Genotypes were then
coded as the number of copies of the minor allele.
Missing genotypes were imputed (for genotyped indivi-
duals only) using the computer program Merlin [6,7].

For each cohort fasting HDL-C data were taken from the
first visit for which they were available. HDL-C measures
were blanked for individuals using cholesterol-lowering
drugs.

Gene-centric test of association

To quantify the evidence for a given gene influencing
HDL-C levels we employed an omnibus gene-based test
of association. We defined the physical location of each
gene (extended by 25 kb in either direction) and then
selected the Problem 2 SNPs within each region. We
calculated the effective number of SNPs within a gene
region using the method of Li and Ji [8] as implemented
in SOLAR [9]. We then performed a marginal measured
genotype analysis on each SNP using SOLAR and
calculated an adjusted p-value for the best marginal
SNP. The measured-genotype analysis [7] was conducted
for each polymorphic SNP: the number of minor alleles
is added to the polygenic model as a covariate in order
to assess the effect of the SNP genotype on the trait
mean. This model was fitted to the data and compared,
using a likelihood ratio test, to the null model. Two
times the difference in the log likelihoods of these
models was distributed as a chi-square random variable
with one degree of freedom. The likelihood ratio test
statistic was recorded for each tested SNP. We adjusted
the p-values against the effective number of SNPs using
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corrected = 1 -(1-nominal)", where corrected is the

corrected p-value, nominal is the uncorrected p-value, and
effective is the effective number of SNPs. Our approach
explicitly allows for non-independence among family
members and the effects of other potential covariates.

A given SNP may fall into the focal bin of more than one
gene/transcript. This has the potential of inducing some
positive correlation among test statistics for nearby
genes. However, our reliance on the false-discovery rate
(FDR) approach, with its known robustness in the
presence of such positive non-independence, amelio-
rates this potential problem [10].

Genome-wide transcriptional profiles

The expression analysis was conducted as part of the San
Antonio Family Heart Study, initiated in 1992 to
investigate the genetics of cardiovascular disease and its
risk factors in Mexican Americans [11]. The expression
profiling methodology is described, in detail, in Goring
et al. [12]. All protocols were approved by the Institu-
tional Review Board of the University of Texas Health
Science Center at San Antonio. We used publically
available information from our previously published
large-scale transcriptional profiling study of lymphocyte
samples from 1240 Mexican Americans [12] in which we
had quantified the evidence for phenotypic correlation
between HDL-C levels and gene expression levels. In this
data set a x” 'tail’ test was to assess whether there was a
significant excess of samples with transcript-specific
expression values above the 95" percentile of the null
distribution based on manufacturer-provided negative
control samples. This allowed the detection of even
those RNA molecules that are clearly present above
baseline levels in some individuals. We identified a total
of 22,413 transcripts with significantly detectable expres-
sion levels [12]. Using a conservative FDR of 1%, we
identify 102 transcripts that were significantly correlated
with HDL-C levels.

Joint test

We then simultaneously utilized our transcriptional and
genetic information by the application of a joint gene-
based test that takes into account the evidence for a
phenotypic relationship between HDL-C levels and a
gene’s expression and the strength of the association
between SNPs in (or near) the gene with HDL-C levels.
We combine these two tests using a Z-transform test also
known as ‘Stouffer’'s method” [13]. The method basically
converts p-values to Z-scores using an inverse normal
transformation. The Z-scores are summed and then
scaled by the square root of the number of combined
tests. The resulting test statistic is distributed as a
standard normal variate that is then transformed back
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to a combined overall p-value. This omnibus test is not
dependent upon the distribution of the data but depends
only upon the expected uniform distribution of p-values
under the null hypothesis.

Results and discussion

For each cohort, the first HDL-C measure was included
in the phenotype file, along with age at exam and
smoking status. HDL-C measures were blanked for
individuals using cholesterol-lowering drugs. In total
there were 6334 individuals with both HDL-C measures
and genotype data, with HDL-C measures ranging from
16 to 206 (mean 53.6 + 0.2). Within our analysis dataset,
age at exam ranged from 5 to 72 (mean 38.3 + 0.1).
There were 6301 individuals with data on both HDL-C
and age and 6152 individuals with both HDL-C and
smoking status.

The genes considered in this investigation were those
corresponding to the 22,413 transcripts identified in the
expression profiling. Of these, there were 17,350 gene
regions with a least one effective SNP located within a
25-kb extension of either side of the physical gene
location (NCBI build 36.3). SNP counts ranged from
1 to 597, with an average of 21 + 1 SNPs per gene region.
The 25-kb extension of the boundaries was selected to
maximize the number of SNPs that may influence the
target gene while minimizing the number of over-
lapping; this parameter is investigator-driven and can
be adjusted as required.

Of the 17,350 gene regions tested, 14 were significantly
associated with HDL-C from the measured genotype
analysis, following correction of the p-value for the
effective number of SNPs within the region, ata 1% FDR.
These results are shown in Table 1.

In the joint test there were a total of 39 genes significant
at a highly conservative 1% FDR, including 9 from the
significant measured genotype set and 23 with expres-
sion that was significantly correlated with HDL-C. Seven
genes identified as significant in the joint test were not
identified by either the association or expression tests
independently (ABCG1, Cl2orf62, Co6orf64, GPBARI,
LOC283551, LYRM1, and PRPF38A). The results of the
joint test are shown in Additional File 1.

The genes shown in Table 2 are prime candidates for
resequencing and variant typing, empirically selected
based on evidence both from transcriptional profiling
and genome-wide association. One of the most signifi-
cant genes is CETP (cholesteryl ester transfer protein), a
well known cholesterol binding gene. In total, there are
seven well known lipid metabolism genes prioritized by

Page 3 of 5

(page number not for citation purposes)



BMC Proceedings 2009, 3(Suppl 7):S92

http://www.biomedcentral.com/1753-6561/3/S7/S92

Table I: The 14 measured genotypes results for HDL-C significant at a 1% FDR

2

Gene Chromosome Best SNP X Uncorrected p-value Corrected p-value Number of SNPs Effective SNPs
CETP 16 rs3764261 159.09 <1.0 x 10°%° <1.0 x 102 25 20
HRNBP3 17 rs898533  1621.74 <1.0 x 10°%° <1.0 x 10°%° 41 36
SMURFI 7 rs9297145  1599.57 <1.0 x 102 <1.0 x 102 20 12
KLHL6 3 rs12496193  1594.56 <1.0 x 10°%° <1.0 x 10°%° 32 20
NLRC5 16 rs| 1508026  121.65 <1.0 x 10°2° <1.0 x 10°2° 40 31
LPL 8 rs17410962  52.95 34 x 103 45 x 1072 20 13
1QCcG 3 rs| 1547008  46.68 8.4 x 1072 59 x [0 12 7
ZNF613 19 rs4987042  42.82 6.0 x 107" 48 x 107'° 13 8
RCAN2 6 rsl1442219  33.60 6.8 x 10”7 8.1 x 108 26 12
CYP5IAI 7 rs2229188  29.60 53 x |0® 2.1 x 107 9 4
L8 4 rs2886920  27.90 1.3 x 107 1.5 x 107 18 12
PACRG 6 rs13202088  27.56 1.5 x 107 1.0 x 107 127 69
CC2D2A 4 rs16892095  25.32 49 x 107 I.1 x 107 44 23
LYRM2 6 rs4707557  23.98 9.7 x 107 9.7 x 10°¢ 13 10

the joint test (ABCB4, ABCGI1, CETP, CYP51A1, ILS,
IL1R2, and LPL). Interestingly, the list also prioritizes a
number of genes of little-known function, such as
NLRC5 (NLR family CARD domain containing 5),
TCTN1 (tectonic family member 1), and TPPP3 (tubulin
polymerization-promoting protein family member 3),
which would not be selected by any form of candidate
gene approach.

It can also be seen that there are situations in which genes
show a highly significant correlation between their expres-
sion and HDL-C, but no evidence of association at the
physical location of the gene, such as ILIR2 (Table 2).
Similarly, there are cases (SMURF1) where the association
information drives the combined tests. We have retained all
genes that exhibit combined significance. An individual
reader may choose to further focus on only those genes that
exhibit at least nominal significance on each dimension.

While this approach shows great potential for speeding
gene identification, it also has several limitations. One
potential weakness is the focus on regulatory variation.
While there is a growing belief that much of quantitative
phenotypic variation may stem from regulatory varia-
tion, other types of mechanisms (e.g., structural varia-
tion that alters protein-protein interactions) can also be
involved. Similarly, genes whose expression is not
detected in the target tissue may be missed. Thus, as
with all discovery-based approaches, only positive
findings admit interpretation. A gene cannot be ruled
out using these methods.

This paper combines information from two different
population studies. Both samples, however, are ascer-
tained without regard to phenotype. It is possible that
the relationship between expression levels and disease-
related phenotypes may vary across populations. How-
ever, we would expect this to diminish signal rather than

yield false positives. Optimally, expression and associa-
tion results would come from the same data set.

Conclusion

Our results suggest that the formal combination of
information from orthogonal sources may lead to the
identification of novel loci that are missed when only
one form of information is available. For the current
study, we have combined existing information on the
correlation of gene expression levels with HDL-C and
the association between SNPs near these genes with
HDL-C levels. Our simple measure of evidence is
effectively a measure of significance resulting from the
combination of p-values from two separate tests, both
of which are tests of a gene-centric hypothesis. Of
course, this approach can be made substantially more
powerful when both forms of information are available
in a single study and a formal, true joint test is
specified. In the current application, our results empiri-
cally nominate genes that are likely to be directly
involved in quantitative HDL-C variation. Many of
these genes would not have been identified using a
classical pathways-based combinatorial approach
because their functions have yet to be identified.
Many would also not have been identified by using
each approach in isolation. A logical next step would be
either replication or, given the magnitude of current
evidence, a direct move to resequencing to identify
functional variants.

List of abbreviations used

FDR: False-discovery rate; FHS: Framingham Heart
Study; GAW16: Genetic Analysis Workshop 16; GWAS:
Genome-wide association study; HDL-C: High-density
lipoprotein cholesterol; SNP: Single-nucleotide poly-
morphism.

Page 4 of 5

(page number not for citation purposes)



BMC Proceedings 2009, 3(Suppl 7):S92

Competing interests
The authors declare that they have no competing
interests.

Authors’ contributions

JCC and JB wrote the paper. JCC, JMP, ED, HHHG, and
TDD processed and analyzed the data. JB conceived the
methodology and fundamental structure of the project.
JCC, HHHG, and LA supported the conception and
design of the project.

Additional material

Additional file 1

The 39 significant joint-test results for HDL-C significant at a 1% FDR.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1753-
6561-3-S7-8S92-S1.pdf]

Acknowledgements

The Genetic Analysis Workshops are supported by NIH grant ROI
GMO031575 from the National Institute of General Medical Sciences. Data
collection was supported by a grant from the US National Heart, Lung and
Blood Institute (HL 045222). A donation from the Azar and Shepperd
families paid for the transcriptional profiling. Additional funds for
transcriptional profiling, sequencing, genotyping, and statistical analysis
were provided by ChemGenex Pharmaceuticals. The SOLAR statistical
genetics computer package is supported by a grant from the US National
Institute of Mental Health (MH 059490). The supercomputing facilities
used for this work at the AT&T Genomics Computing Center were
supported in part by a gift from the SBC Foundation. The laboratory work
was carried out in facilities that were constructed with support from the
US National Center for Research Resources (RR 013556).

This article has been published as part of BMC Proceedings Volume 3
Supplement 7, 2009: Genetic Analysis Workshop 16. The full contents of
the supplement are available online at http://www.biomedcentral.com/
1753-6561/3%issue=S7.

References

I. Neale BM and Sham PC: The future of association studies:
gene-based analysis and replication. Am | Hum Genet 2004,
75:353-362.

2.  Cupples LA, Heard-Costa N, Lee M, Atwood LD and for the
Framingham Heart Study Investigators: Genetic Analysis Work-
shop 16 Problem 2: The Framingham Heart Study data set.
BMC Proc 2008, 3(Suppl 7):S3.

3. Dyke B: PEDSYS, a Pedigree Data Management System
User’s Manual. Population Genetics Laboratory Technical Report No
San Antonio, Southwest Foundation for Biomedical Research; 21993,
226.

4. Sobel E and Lange K: Descent graphs in pedigree analysis:
applications to haplotyping, location scores, and marker-
sharing statistics. Am | Hum Genet 1996, 58:1323—1337.

5. Sobel E, Papp JC and Lange K: Detection and integration of
genotyping errors in statistical genetics. Am | Hum Genet 2002,
70:496-508.

6.  Abecasis GR, Cherny SS, Cookson WO and Cardon LR: Merlin—
rapid analysis of dense genetic maps using sparse gene flow
trees. Nat Genet 2002, 30:97-101.

7. Burdick JT, Chen WM, Abecasis GR and Cheung VG: In silico
method for inferring genotypes in pedigrees. Nat Genet 2006,
38:1002-1004.

http://www.biomedcentral.com/1753-6561/3/S7/S92

8. LiJandJi L: Adjusting multiple testing in multilocus analyses

using the eigenvalues of a correlation matrix. Heredity 2005,
95:221-227.

9.  Almasy L and Blangero J: Multipoint quantitative-trait linkage

analysis in general pedigrees. Am | Hum Genet 1998,
62:1198-1211.

10. Benjamini Y and Hochberg Y: Controlling the false discovery
rate - a practical and powerful approach to multiple testing.
J Roy Stat Soc B Meth 1995, 57:289-300.

I'l. MacCluer JW, Stern MP, Almasy L, Atwood LA, Blangero |,
Comuzzie AG, Dyke B, Haffner SM, Henkel RD, Hixson JE,
Kammerer CM, Mahaney MC, Mitchell BD, Rainwater DL,
Samollow PB, Sharp RM, VandeBerg JL and Williams JT: Genetics
of atherosclerosis risk factors in Mexican Americans. Nutr
Rev 1999, 57:559-S65.

12.  Goéring HH, Curran JE, Johnson MP, Dyer TD, Charlesworth J,
Cole SA, Jowett B, Abraham LJ, Rainwater DL, Comuzzie AG,
Mahaney MC, Almasy L, MacCluer JW, Kissebah AH, Collier GR,
Moses EK and Blangero J: Discovery of expression QTLs using
large-scale transcriptional profiling in human lymphocytes.
Nat Genet 2007, 39:1208-1216.

13. Whitlock MC: Combining probability from independent tests:
the weighted Z-method is superior to Fisher’s approach.
J Evol Biol 2005, 18:1368-1373.

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime.

Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 5 of 5

(page number not for citation purposes)


http://www.biomedcentral.com/1753-6561/3?issue=S7
http://www.biomedcentral.com/1753-6561/3?issue=S7
http://www.ncbi.nlm.nih.gov/pubmed/15272419?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15272419?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8651310?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8651310?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8651310?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11791215?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11791215?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11731797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11731797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11731797?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16921375?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16921375?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16077740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16077740?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9545414?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9545414?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10391028?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10391028?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17873875?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17873875?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16135132?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16135132?dopt=Abstract
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Methods
	Framingham Heart Study data
	Gene-centric test of association
	Genome-wide transcriptional profiles
	Joint test

	Results and discussion
	Conclusion
	List of abbreviations used
	Competing interests
	Authors’ contributions
	Additional material
	Acknowledgements
	References

