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Abstract

Using the North American Rheumatoid Arthritis Consortium genome-wide association dataset, we
applied ridged, multiple least-squares regression to identify genetic variants with apparent unique
contributions to variation of anti-cyclic citrullinated peptide (anti-CCP), a newly identified clinical
risk factor for development of rheumatoid arthritis. Within a 2.7-Mbp region on chromosome
6 around the well studied HLA-DRB1 locus, ridge regression identified a single-nucleotide
polymorphism that was associated with anti-CCP variation when including the additive effects of
other single-nucleotide polymorphisms in a multivariable analysis, but that showed only a weak
direct association with anti-CCP. This suggests that multivariable methods can be used to identify
potentially relevant genetic variants in regions of interest that would be difficult to detect based on
direct associations.

Background
Rheumatoid arthritis (RA) is an autoimmune disease
causing inflammation and soft-tissue swelling of mainly
diarthrodial joints. The disease can lead to considerable
loss of mobility due to pain and joint destruction. A
newly identified autoantibody, anti-cyclic citrullinated
peptide (anti-CCP), is strongly correlated with persistent
RA and is a better predictor of erosive outcome than
rheumatoid factor immunoglobulin M (IgM) [1]. Eleva-
tions of anti-CCP have been noted to predict increased

risk for development of RA [2]. The HLA-DRB1 shared
epitope alleles are strongly associated with the presence
of anti-CCP antibodies, and this effect is modulated by
HLA-DR3 allele [3].

Complex human diseases such as RA have complicated
genetic architectures [4]. Association studies looking at
the individual, direct effects of genes suggest that each
genetic predictor alone has very weak association with
disease status [5]. However, the high heritability
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identified in many human diseases indicates that the
overall genetic contribution to risk is substantial. For
complex disease studies, the standard approach of
univariable analysis may miss genetic variants whose
association with the trait only becomes clear when
simultaneously adjusting for the effects of other genetic
factors. A natural way to proceed is to apply multiple-
regression analysis using a set of genetic variants as the
independent variables and the trait as the dependent
variable. However, in mapping studies involving dozens
of correlated variants, not to mention genome-wide
association studies (GWAS), ordinary least square (OLS)
regression is far too unstable to be useful due to the high
dimension of the independent variable relative to the
sample size, and the high correlation among genetic
variables caused by linkage disequilibrium (LD).

Ridge regression (RR) [6] was introduced as a method for
predictive modeling and for reducing the mean squared
estimation error by stabilizing regression estimates in the
presence of correlation among the independent vari-
ables. RR also provides a means to identify genetic
associations along a continuum spanning from direct
relationships to multivariable relationships, by changing
a tuning parameter. Malo et al. recently proposed using
RR to prioritize linked single-nucleotide polymorphisms
(SNPs) in genetic association studies according to their
unique (potentially causal) associations with the
trait [7].

In this study, we explored the ability of RR to identify
genetic associations with anti-CCP, a quantitative clin-
ical predictor of RA development. We performed a series
of RR analyses using a range of tuning parameters and
compared the results with those of single-factor analysis.
Focusing on regions of interest around HLA-DRB1 and
TRAF1-C5, RR was able to identify a SNP that was
strongly associated with anti-CCP variation. This asso-
ciation was strongest in a multivariable analysis account-
ing for the effects of all other variants in the region, and
largely vanished in univariable analysis. The fact that this
SNP is not directly correlated with anti-CCP suggests that
one or more additional genetic variants in our dataset
may also be contributing to the variation of anti-CCP,
but that the dataset available to us is not sufficiently
large to identify these additional factors with high
confidence.

Methods
Data
The phenotype and geonotype data provided by the
North American Rheumatoid Arthritis Consortium
(NARAC) were analyzed, including 868 RA cases and
1194 controls. The analysis dataset includes 867

unrelated RA cases with anti-CCP measured as a
quantitative outcome. 545,080 SNPs were genotyped
using the Illumina 550 k chip [8] and distributed by
Genetic Analysis Workshop (GAW) 16. All available
SNPs within a 2.7-Mbp genomic region around HLA-DR
cluster on chromosome 6 and the 100-kbp TRAF1-C5
region on chromosome 9 [8] were used in this study.
SNPs with minor allele frequency (MAF) smaller than
0.05 were excluded, leaving 957 SNPs. These SNPs were
then subjected to an iterative procedure in which a
randomly selected SNP in the most correlated pair of
SNPs was dropped. This procedure was iterated until no
SNP pairs correlated more than 0.7 remained, which left
us with 328 SNPs.

Statistical methods
Pearson correlation was used for detecting associations
between individual genetic variants and anti-CCP, using
the Fisher transform and the asymptotic standard
deviation to form a Z-score for the null hypothesis of
no direct association. Population genetic parameters for
all SNPs were calculated, including MAFs, genotype
frequencies, and either a chi-square test or the Fisher
exact test for departures from expectations under Hardy-
Weinberg equilibrium (HWE).

Ridge regression
In RR, the estimated coefficients of the linear model
solve a penalized least-squares criterion with the
penalty being proportional to the squared L2-norm of
the coefficients: β̂ β λ βλ β= argmin 2

2
2
2|| Y X || + || ||− ,

where Y is the n-vector of trait values, X is the n × m
design matrix whose ith row contains the genotype of
sample i on genetic variants j = 1,2,...,m, b is the m-vector
of effect estimates for the genetic variants, and l is the
tuning parameter. The genetic marker and trait data are
centered so no intercept is included when fitting the
regression. The expected value of β̂ λ is E = F M1β̂ βλ λ

− ,
where Fl = X’X + l I and M = X’X. The covariance matrix
of β̂ λ is cov 2 1 1β̂ σλ λ λ= − −F M F2 . Therefore, it is possible
to calculate numerically the vector of Z-scores
Zλ λ λβ β= ˆ / ( ˆ )SD . When l = 0, the Z-score is the same
as what would be obtained using OLS. When l Æ ∞, the
Z-scores converge to values that are proportional to the
univariable Pearson correlation coefficients between
each independent variable and Y.

A complicating factor is that when l > 0, the Z-score Zli
need not have mean zero under the specific null
hypothesis bi = 0 - this is only guaranteed under a
global null hypothesis of no effects among all modeled
genetic variants. However, for small values of l, the
degree to which the Z-scores are off-center is small, and
can be accommodated by re-standardizing the Z-scores.
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This is accomplished by considering a quantile-quantile
plot of the observed Z-scores against corresponding
standard normal quantiles. Based on an assumption that
the middle 90% of the Z-scores correspond to zero
effects, we fit a simple linear regression to the points on
the quantile-quantile plot. The slope of this line
estimates the standard deviation of the null Z-scores,
which tends to be slightly greater than 1 due to the lack
of centering. By scaling the Z-scores with the reciprocal
of this standard deviation, any lack of centering of the
null Z-score means is presumed to be eliminated.

Our main interest is to identify genetic variants
associated with the trait that do not show direct
associations in univariable analysis. We will do this by
considering RR Z-scores for several nonzero values of l.
The Z-scores are then re-standardized as described above,
and univariable Z-scores are also calculated. Bonferroni
corrections of the Z-scores are used to account for
multiple comparisons. Randomization of the trait vector
Y is used to assess whether the overall significance level
is maintained after considering the results for several
l values.

Results
Identification of masked effects using RR
The Z-scores for 328 SNPs in the HLA-DR and TRAF1-C5
regions were calculated using RR with tuning parameters
l = 1, 10, 100, and 1000. We found that coefficient
estimates and Z-scores varied continuously with l, and
these values are representative of the results that occur for
other l values. As expected, the Z-scores were slightly over-
dispersed, with standard deviations estimated from their
central values ranging from 1.02 to 1.1. The Z-scores were
then rescaled by the reciprocals of these factors. The
Z-scores based on Fisher-transformed Pearson correlation
coefficients were also calculated for each SNP. For each
value of l, the SNPs were ranked in absolute value and
compared to a Bonferroni threshold of 3.8. The maximal
Z-scores among the univariable model and the four RR
models (l = 1, 10, 100, and 1000) were used to rank the
328 SNPs (Figure 1). A single SNP (rs2844533) was
significant for l = 1 and l = 10, with a Z-score exceeding
5 for l = 1. This SNP had a Z-score smaller than
1 (insignificant) in univariable analysis of anti-CCP, and
its Z-score varied smoothly with a high value exceeding 5
(when l = 1). No SNPs were significant for larger values of
l, or for the univariable analysis. SNP rs2844533 is located
at 31,458,781 bp on chromosome 6, about 25 kbp
upstream of HLA-B gene, and about 1 Mbp downstream
of HLA-DRB1 gene.

Randomization of the trait vector, followed by the same
analysis as performed with the actual trait values,

produced Z-scores exceeding the Bonferroni threshold
in approximately 1 in 20 data sets, as expected (data not
shown). This suggests that our re-standardization was
successful at creating statistics that are well approxi-
mated by a standard normal null distribution. We
repeated the analysis under Box-Cox transforms of the
trait value of the form (y�-1)/�, and found that for �
ranging from 1 (no transformation) to 0.55 (approxi-
mately a square root transformation), rs2844533 con-
tinued to be the top-ranked SNP and was significantly
associated with the trait after Bonferroni adjustment.

Figure 1
Results of RR analysis and univariable analysis in
identifying SNPs associated with anti-CCP. The SNPs
are ordered by the maximal value of the absolute Z-score.
The gray box shows the null region based on Bonferroni
correction for one test per SNP. A, All SNPs; B, SNPs with
the largest Z-scores.
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Discussion
Even when genes contribute additively to a quantitative
trait, the genes having strongest additive effects can often
be identified with greater power by using multivariable
techniques, rather than scanning for direct associations.
A major reason for this is that when several correlated
variants are present, each introduces heterogeneity that
partially masks the other variants’ effects. However,
traditional multivariable analysis using OLS regression is
ineffective for large numbers of predictor genes, particu-
larly when substantial correlations are present. RR
operates on a continuum between univariable analysis
and OLS multiple regression, potentially allowing the
trade-off between univariable and multivariable analysis
to be made optimally in a particular setting. For
predictive modeling with a high dimensional and/or
substantially correlated covariate vector, RR outperforms
OLS regression [9]. It can also handle data with p > n (i.e.,
number of predictors is larger than the sample size).

Here we used RR to identify a strong association in a
mildly ridged, multiple regression fit (l values from 1 to
10 correspond to effective degrees of freedom of 280 to
326, compared to 328 for OLS regression) focusing on a
candidate region of interest extracted from a GWAS data
set. As demonstrated here, an important application of
RR will be to help in determining whether multiple
disease loci are located in a candidate region following a
genome-wide scan, such as the strong LD region within
15q25.1 associated with lung cancer [10].

Sample size is a critical issue when using multiple
regression analysis for genetic mapping, particularly in
the case of a complex disease where individual genetic
variants only explain a small portion of total variance
[5]. In principle, with a sufficiently large sample OLS can
be used to identify the unique contributions of the
markers in a region. Here we demonstrate, consistent
with other reports, that RR can be used to identify
multifactorial genetic associations in situations where
multiple regression fit by OLS and univariable analysis
both fail to identify any associations. In genetic mapping
using several hundred correlated genetic variants, RR
appears able to partially reveal the complicated genetic
structures. Further development may extend the utility of
RR to even higher dimensional data sets, and to
categorical traits.

Conclusion
By considering a sequence of RR analyses and rigorously
calibrating the estimates of genetic effects, we identified
a single SNP showing a strong association with a
quantitative trait related to RA. The most plausible
explanation for this finding is that multiple genetic

variants in our data set are contributing to anti-CCP
variation in a way that obscures the direct relationships
between genetic variants and the trait. While univariable
analysis and multiple regression fit using least squares
yielded no associations with rigorous significance levels,
the RR procedure allowed us to identify one SNP with
high confidence. In this case we were unable to identify
the other genes presumed to be associated with anti-CCP
variation; however, our inability to identify these
synergistic factors does not detract from the potential
importance of the SNP we did find.

List of abbreviations used
CCP: Cyclic citrullinated peptide; GAW: Genetic Analysis
Workshop; GWAS: Genome-wide association studies;
HWE: Hardy-Weinberg equilibrium; IgM: Immunoglobu-
lin M; LD: Linkage disequilibrium; MAF: Minor allele
frequency; NARAC: North American Rheumatoid Arthritis
Consortium; OLS: Ordinary least square; RA: Rheumatoid
arthritis; RR: Ridge regression; SNP: Single-nucleotide
polymorphism.

Competing interests
The authors declare that they have no competing
interests.

Authors’ contributions
YVS and KAS participated in the design and coordination
of the study, performed the statistical analysis, and
drafted the manuscript. JZ, N-HC and SLRK participated
in the design of the study. All authors read and approved
the final manuscript.

Acknowledgements
The Genetic Analysis Workshops are supported by NIH grant R01
GM031575 from the National Institute of General Medical Sciences.

This article has been published as part of BMC Proceedings Volume 3
Supplement 7, 2009: Genetic Analysis Workshop 16. The full contents of
the supplement are available online at http://www.biomedcentral.com/
1753-6561/3?issue=S7.

References
1. Huizinga TW, Amos CI, Helm-van Mil van der AH, Chen W, van

Gaalen FA, Jawaheer D, Schreuder GM, Wener M, Breedveld FC,
Ahmad N, Lum RF, de Vries RR, Gregersen PK, Toes RE and
Criswell LA: Refining the complex rheumatoid arthritis
phenotype based on specificity of the HLA-DRB1 shared
epitope for antibodies to citrullinated proteins. Arthritis Rheum
2005, 52:3433–3438.

2. Kroot EJ, de Jong BA, van Leeuwen MA, Swinkels H, Hoogen van den
FH, van’t Hof M, Putte van de LB, van Rijswijk MH, van Venrooij WJ
and van Riel PL: The prognostic value of anti-cyclic citrulli-
nated peptide antibody in patients with recent-onset
rheumatoid arthritis. Arthritis Rheum 2000, 43:1831–1835.

3. Irigoyen P, Lee AT, Wener MH, Li W, Kern M, Batliwalla F, Lum RF,
Massarotti E, Weisman M, Bombardier C, Remmers EF, Kastner DL,
Seldin MF, Criswell LA and Gregersen PK: Regulation of anti-
cyclic citrullinated peptide antibodies in rheumatoid arthri-
tis: contrasting effects of HLA-DR3 and the shared epitope
alleles. Arthritis Rheum 2005, 52:3813–3818.

BMC Proceedings 2009, 3(Suppl 7):S67 http://www.biomedcentral.com/1753-6561/3/S7/S67

Page 4 of 5
(page number not for citation purposes)

http://www.biomedcentral.com/1753-6561/3?issue=S7
http://www.biomedcentral.com/1753-6561/3?issue=S7
http://www.ncbi.nlm.nih.gov/pubmed/16255021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16255021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16255021?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10943873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10943873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10943873?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16320316?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16320316?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16320316?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16320316?dopt=Abstract


4. Gregersen PK: Genetics of rheumatoid arthritis: confronting
complexity. Arthritis Res 1999, 1:37–44.

5. Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M,
Mayer B, Dixon RJ, Meitinger T, Braund P, Wichmann HE, Barrett JH,
König IR, Stevens SE, Szymczak S, Tregouet DA, Iles MM, Pahlke F,
Pollard H, Lieb W, Cambien F, Fischer M, Ouwehand W,
Blankenberg S, Balmforth AJ, Baessler A, Ball SG, Strom TM,
Braenne I, Gieger C, Deloukas P, Tobin MD, Ziegler A,
Thompson JR, Schunkert H and WTCCC and the Cardiogenics
Consortium: Genomewide association analysis of coronary
artery disease. N Engl J Med 2007, 357:443–453.

6. Hoerl A and Kennard R: Ridge regression: biased estimation
for nonorthogonal. Technometrics 1970, 12:55–67.

7. Malo N, Libiger O and Schork NJ: Accommodating linkage
disequilibrium in genetic-association analyses via ridge
regression. Am J Hum Genet 2008, 82:375–385.

8. Plenge RM, Seielstad M, Padyukov L, Lee AT, Remmers EF, Ding B,
Liew A, Khalili H, Chandrasekaran A, Davies LR, Li W, Tan AK,
Bonnard C, Ong RT, Thalamuthu A, Pettersson S, Liu C, Tian C,
Chen WV, Carulli JP, Beckman EM, Altshuler D, Alfredsson L,
Criswell LA, Amos CI, Seldin MF, Kastner DL, Klareskog L and
Gregersen PK: TRAF1-C5 as a risk locus for rheumatoid
arthritis–a genomewide study. N Engl J Med 2007,
357:1199–1209.

9. Frank IE and Friedman JH: A statistical view of some chemo-
metrics regression tools. Technometrics 1993, 35:109–135.

10. Amos CI, Wu X, Broderick P, Gorlov IP, Gu J, Eisen T, Dong Q,
Zhang Q, Gu X, Vijayakrishnan J, Sullivan K, Matakidou A, Wang Y,
Mills G, Doheny K, Tsai YY, Chen WV, Shete S, Spitz MR and
Houlston RS: Genome-wide association scan of tag SNPs
identifies a susceptibility locus for lung cancer at 15q25.1.
Nat Genet 2008, 40:616–622.

Publish with BioMed Central   and  every 
scientist can read your work free of charge

"BioMed Central will be the most significant development for 
disseminating the results of biomedical research in our lifetime."

Sir Paul Nurse, Cancer Research UK

Your research papers will be:

available free of charge to the entire biomedical community

peer reviewed and published immediately upon acceptance

cited in PubMed and archived on PubMed Central 

yours — you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/info/publishing_adv.asp

BioMedcentral

BMC Proceedings 2009, 3(Suppl 7):S67 http://www.biomedcentral.com/1753-6561/3/S7/S67

Page 5 of 5
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/pubmed/11094412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11094412?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17634449?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17634449?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18252218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18252218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18252218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17804836?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17804836?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18385676?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18385676?dopt=Abstract
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Data
	Statistical methods
	Ridge regression

	Results
	Identification of masked effects using RR

	Discussion
	Conclusion
	List of abbreviations used
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

