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Abstract

Random forests (RF) is one of a broad class of machine learning methods that are able to deal with
large-scale data without model specification, which makes it an attractive method for genome-wide
association studies (GWAS). The performance of RF and other association methods in the
presence of interactions was evaluated using the simulated data from Genetic Analysis Workshop
16 Problem 3, with knowledge of the major causative markers, risk factors, and their interactions in
the simulated traits. There was good power to detect the environmental risk factors using RF,
trend tests, or regression analyses but the power to detect the effects of the causal markers was
poor for all methods. The causal marker that had an interactive effect with smoking did show
moderate evidence of association in the RF and regression analyses, suggesting that RF may perform
well at detecting such interactions in larger, more highly powered datasets.

Background
Random forests (RF) [1] is one of a broad class of
machine learning methods that are able to deal with
large-scale data without precise model specification: it is
massively nonparametric. It performs random searches
through feature space and data space, the latter by using

bootstrap sampling. It generates multiple recursively
partitioned classification trees (the exact number deter-
mined by the analyst), called a “forest”. RF has gained
attention as a method that may be useful for detecting
associations when there are large numbers of predictor
variables to be evaluated, such as single-nucleotide

Page 1 of 6
(page number not for citation purposes)

BioMed Central

Open Access

mailto:kimyoo@mail.nih.gov
mailto:robwoj@mail.nih.gov
mailto:sunghe@mail.nih.gov
mailto:rmathias1@mail.nih.gov
mailto:liwang@jhsph.edu
mailto:aklein1@jhmi.edu
mailto:lenrootr@mail.nih.gov
mailto:jmalley@mail.nih.gov
mailto:jebw@mail.nih.gov
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


polymorphism (SNP) loci in a genome-wide association
study (GWAS). It has also been suggested that RF may
perform better than other methods when the causative
loci have minimal marginal effects but larger interaction
effects [2-6]. The calculation of importance values and
the very local nature of the classification in each tree
allows RF to automatically evaluate gene-gene and gene-
environmental interactions [5] without assuming com-
plex models or explicitly testing all possible interactions.
Many GWAS test each locus under the generally
implausible assumption of complete or weak statistical
independence across all loci. RF evaluates the predictive
strength of all loci by averaging the importance of each
in all possible SNP-SNP and SNP-covariate contexts.

In many genetic association studies, a common
approach is to follow up the most significant results
from a GWAS by genotyping independent samples for a
smaller number of SNPs (e.g., 1536 or 3072) using
customized arrays [7]. At this point, it is unknown
whether RF would be more likely than standard
regression methods to include true causative SNPs in
the second stage of genotyping in the presence of gene-
gene or gene-environment interactions in GWAS data.

To address this issue, the Genetic Analysis Workshop 16
(GAW16) Problem 3 simulated data set was used to
evaluate performance of RF and several other association
methods. Given knowledge of the major causative SNPs
and risk factors for these simulated traits [8], we
compared whether the major risk factors were detected
in the RF analyses performed in the statistical package R
to standard association tests in the computer program
PLINK [9], and backward-elimination RF [3], which
iteratively eliminates a pre-specified portion of predic-
tors based on low importance values until the error rates
of test datasets (out-of-bag samples) minimize to a
certain point. Methods were evaluated based on whether
the associated SNPs were among the most significant set
of SNPs to be selected for genotyping at a hypothetical
“second stage".

Methods
The Framingham Heart Study SHARe dataset for GAW16
Problem 2 formed the basis of the simulated data
pedigree structures: 6,476 individuals with both pheno-
type and genotype data in 942 pedigrees across three
generations plus 188 unrelated individuals. The geno-
types for all Problem three replicates were fixed to those
that were actually observed for the Framingham Heart
Study SHARe participants. Phenotypes were simulated
for all genotyped individuals at three time points,
10 years apart. Total cholesterol (CHOL) was defined
as the sum of the simulated phenotypes triglyceride,

high-density lipoprotein (HDL), and low-density lipo-
protein (LDL). The traits were simulated such that over
time, one develops cranial adipose cumulation (CAC).
People with high levels of CAC were at higher risk for
myocardial infarction (MI). Smoking also increased the
risk of MI in these simulated data. The MI trait was
simulated so that the age-adjusted incidence of MI was
higher for men than for women. The MI and CAC traits,
along with the strongest causative risk factors on the
etiologic pathway used in the simulation, are detailed in
Kraja et al. [8]. Two hundred replicate datasets were
created based on the same generating model.

Genotype quality control
In the 50 k-SNP panel (48,071 SNPs), quality control
measures were performed in the following order: 1)
individuals with genotype calls for <95% of the SNPs
were removed; 2) all genotypes with a confidence score
(the probability that a given genotype is accurate,
provided by the BRLLM allele-calling algorithm
[10,11]) <0.95 were considered as missing; 3) SNPs
with call rates <98% or minor allele frequencies (MAF)
<1% were removed. 4) An additional 1,317 SNPs
departing from Hardy-Weinberg proportions (p < 0.01)
were excluded, leaving 31,538 SNPs for the analyses.
Markers showing mendelian inconsistencies were coded
as unknown in the parent(s).

Phenotype definition
Phenotype observations from the first two replicates in
the simulated data were combined for case and control
selection (three phenotype time-points per replicate)
using both the family data and the unrelated individuals
(singletons) as described below. Because the number of
unrelated cases with an MI in any one replicate was
small, these two replicates were combined to increase the
power to detect variables that contribute to risk of the
simulated disease by increasing the number of cases.
Subjects were classified as a “case” if they had at least one
MI and as a “control” if they were free from any MI over
all six time-points. Families were classified as “case-
families” if they contained at least one case and “control-
families” if they had no cases. Among the genotyped
persons, 563 unrelated cases (329 males) and 553
unrelated controls (243 males) were selected. These
included all singletons in addition to the youngest case
from each case family and the oldest control from each
control family. Environmental risk factors (age, sex,
smoking, and CHOL) and CAC were taken from the visit
that corresponded to the earliest MI for cases and the
final visit in the first replicate for controls. Where a case
had an MI in both replicates at the same time point,
phenotypes from the first replicate were selected. These
1,116 persons were used in all analyses described here.
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RF analyses
Imputation of missing genotypes (1% of genotypes) was
performed using the RfImpute function implemented in
randomForest package 4.5 in R 2.7.1. RF analyses were run
100 times, randomly sampling 31,000 SNPs in each run
with 1000 trees per forest. Each RF model included
covariates of age in years, sex, CHOL, and smoking status
(yes, no) as potential predictors. Analyses were performed
for MI as a dichotomous trait for RF classification and CAC
as a quantitative trait for RF regression. Each of these
analyses was performed in two ways, using either 200 or 7
randomly sampled predictors at each node (mtry option in
the randomForest package) in each tree.

The results over the 100 RFs were summarized by
counting the number of times the major causative loci
for the CAC and MI traits appeared in the subsets of
SNPs identified by each RF as being most predictive
based on importance indices generated by randomForest
[1]: GINI (the sum over all trees of the decrease in Gini
impurity after each split) and mean decrease in accuracy
(MDA) for classification or mean decrease in mean
squared error (MSE) for regression. These subsets
included either 1536 or 3072 SNPs to match the
numbers of SNPs often used for second stage genotyping
in GWAS studies. Backward-elimination variable selec-
tion was performed using the varSelRF 0.6-5 package
with the corresponding RF options as described above
(1000 trees per forest) but discarding 40% of the lowest
ranked predictors at the start of each new forest.

PLINK analyses
Case-control (Cochrane-Armitage trend) and quantita-
tive-trait (linear regression) association analyses were
performed in PLINK [9]. Multivariate linear and logistic
regression, adjusting for linear effects of age, sex,
smoking status, and CHOL, were also used under
additive genetic and log-additive models. For regression
analyses, p-values were obtained using Wald t-tests; for
the Cochrane-Armitage test, they were derived from the
asymptotic chi-squared distribution (1 df).

Results and discussion
For comparison with our RF analyses, standard signifi-
cance tests for association were performed for MI and
CAC, adjusting for covariates using PLINK. Among the
SNPs that were simulated to have the strongest genetic
effects on MI and CAC, none showed genome-wide
significance, and only rs12565497 (p = 0.003) showed a
nominal significance level (MI below 0.01) (Tables 1
and 2). In multivariate linear regression, both sex and
CHOL were significantly correlated with CAC. In multi-
variate logistic regression, age, sex, smoking status,
and CHOL were highly associated with MI. The lowest

p-value among causal markers was p = 0.000192 for
rs12565497. This SNP ranked 16th among all 31,538
markers tested with multivariate logistic regression. Two
other causal SNPs (rs17714718 and rs1894638) would
have been retained for second-stage analysis using the
univariate rankings (at 1549 and 2683, respectively), but
not based on the multivariate analysis.

In the main RF analyses, we compared several analysis
strategies. First, we compared which importance score was
best to use for ranking SNPs (MDA vs. GINI (MSE)). We
observed that the causal SNPs and important covariates
were more likely to be included in the top predictor lists to
pass to second-stage analysis when the ranking was based
on the GINI index for classification (REP in Table 1) or
MSE index for regression (REP in Table 2) than when based
on MDA scores. For example, rs12565497 appeared in the
TOP 3072 list in 71% of the 100 forests when using GINI
compared with 13% using the MDA index (data not
shown). It should be noted that Strobl et al. [12] have
shown that there is bias in several of the variable-selection
processes (including GINI and a permutation accuracy
importance measure) often used in RF analyses when there
are quantitative traits on different scales or categorical
predictors with different numbers of categories, such that
non-causative continuous variables and non-causative
variables with large numbers of categories are more likely
to be selected as important predictor variables than are
variables with small numbers of categories. Because no
variables with large numbers of categories were used in this
study and the only two continuous variables included in
the analysis were known to have an effect on the simulated
trait, this sort of bias would not be observed here.
However, this potential bias should be accounted for in a
study of real data, as suggested by Strobl et al. [12]. Results
presented here used categorical (genotypic) coding of
genotypes, but additive coding gave similar results.

Table 1 shows that for MI, all environmental risk factors
were included in the lists of top predictors in 100% of
the 100 forests when using the mtry option = 200. For
CAC, only age and CHOL ranked highly in all forests.
This is reasonable because the simulation framework of
MI incorporated smoking status, CAC (and therefore
CHOL), and age as risk factors, whereas CAC itself
had only age and CHOL as direct risk factors. Age and
sex were significantly different in cases and controls (p =
2.2 × 10-16 and 1.72 × 10-6, respectively). RF performed
very well in detecting these environmental risk factors
that had comparatively large effects on the traits. RF
analyses that included these risk factors had lower mean
prediction error rates in 100 RFs (mean = 23% and 40%
for mtry = 200 and 7, respectively) than did RF analyses
that did not include these covariates (mean = 35% and
43% for mtry = 200 and 7, respectively).
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As expected, the number of times that causal SNPs were
ranked high enough to be selected for second-stage
analysis (top lists) across the 100 RFs increased with the
number of SNPs included in the top lists. Only
rs12565497, which was simulated to interact with
smoking to affect risk of MI [8], had a moderately high
frequency (71%) of being in the top 3072 predictors
across the 100 RFs. No other SNPs were included in the
top 3072 predictors in more than 33% of the 100 RFs
(Table 1). None of the five causal SNPs were included
frequently in the top 3072 predictors for CAC, indicating
very low statistical power to detect association. Using a
larger number (mtry = 200) of predictors at each node
rather than a small number (mtry = 7) resulted in better
performance as measured by the number of times that
causal SNPs were included in the top 3072 SNPs across
the 100 RFs. Examination of the top 100 predictors over
the 100 RFs for each trait revealed that none of these

SNPs were closer than 4 Mbp to any of the causative loci
and none were in linkage disequilibrium with any of the
causative loci, thus showing that proxy SNPs for the
causal loci were also not serving as strong predictors in
the RF analyses. RF using the backward-elimination
algorithm took 1 day per 1 RF, and the lists of top
predictors for MI included all environmental risk factors,
but none of the causal SNPs (data not shown).

Conclusions
These RF results supported the use of the GINI (MSE)
index rather than MDA, a large number of sampled
predictors per node (i.e., mtry option number in
randomForest), and categorical coding of genotype
data when using RF for the first stage of a GWAS. In
this fairly small sample, the strategy of picking random
samples of the available SNPs for each RF analysis and

Table 1: PLINK and RF results for MI

PLINKa RF

p-Valueb

(rank)
REPc

Top 1536
REPc

Top 3072

Predictors Univariate
analysis

Multivariate
analysis

mtry = 200d mtry = 7d mtry = 200d mtry = 7d

Covariates
Age - 7.66 × 10-7 100 100 100 100
Sex - 6.97 × 10-12 100 36 100 44
Smoking - 1.72 × 10-10 100 71 100 84
Cholesterol - <1.0 × 10-50 100 100 100 100

CAC
rs6743961

(MAF = 0.49)
0.451
(16568)

0.7394
(24158)

2 10 9 22

rs17714718
(MAF = 0.49)

0.0188
(1549)

0.093
(3893)

20 13 33 29

rs1894638
(MAF = 0.49)

0.0406
(2683)

0.3198
(11586)

5 18 14 32

rs1919811
(MAF = 0.49)

0.2106
(9215)

0.2088
(8004)

8 14 9 21

rs213952
(MAF = 0.20)

0.3923
(14807)

0.2319
(8758)

11 3 25 11

MI
rs12565497

(MAF = 0.30)
0.00303
(370)

0.000192
(16)

56 21 71 37

rs11927551
(MAF = 0.29)

0.963
(30577)

0.6993
(22956)

1 4 7 9

aPLINK analyses assumed either additive or log-additive genetic models.
bp-Values for covariates were averages across all SNPs.
cREP: the number of times in 100 RFs (1000 trees each) in which the given SNP of interest appeared in the top 1536 or 3072 predictors based on
GINI index.
dmtry: the number of predictors (200 or 7) randomly selected at each node to find the best split while growing trees.
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then averaging results over 100 forests was not very
successful in including the major causative SNPs in the
top-ranked sets of SNPs so that they would be included
in later replication analyses - only one causal SNP
occurred in the top list of SNPs frequently. However, the
performance of the RF and regression analyses were very
similar and the results suggest that RF may perform well
at detecting interactions when the sample size is larger
and overall power to detect genetic effects is thus larger.
Future simulation studies in much larger samples will be
required to resolve this question.
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