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Abstract

Genome-wide association studies have become standard in genetic epidemiology. Analyzing
hundreds of thousands of markers simultaneously imposes some challenges for statisticians. One
issue is the problem of multiplicity, which has been compared with the search for the needle in a
haystack. To reduce the number of false-positive findings, a number of quality filters such as
exclusion of single-nucleotide polymorphisms (SNPs) with a high missing fraction are employed.
Another filter is exclusion of SNPs for which the calling algorithm had difficulties in assigning the
genotypes. The only way to do this is the visual inspection of the cluster plots, also termed signal
intensity plots, but this approach is often neglected. We developed an algorithm ACPA (automated
cluster plot analysis), which performs this task automatically for autosomal SNPs. It is based on
counting samples that lie too close to the cluster of a different genotype; SNPs are excluded when a
certain threshold is exceeded. We evaluated ACPA using 1,000 randomly selected quality
controlled SNPs from the Framingham Heart Study data that were provided for the Genetic
Analysis Workshop 16. We compared the decision of ACPA with the decision made by two
independent readers. We achieved a sensitivity of 88% (95% CI: 81%-93%) and a specificity of 86%
(95% CI: 83%-89%). In a screening setting in which one aims at not losing any good SNP, we
achieved 99% (95% CI: 98%-100%) specificity and still detected every second low-quality SNP.

Background
Genome-wide association studies (GWAS) with
100,000-1,000,000 single-nucleotide polymorphisms
(SNPs) are a promising novel approach for dissecting
the genetic background of complex diseases and have
become common in the last two years [1]. Because of the

high degree of automation in the genotyping process,
great care needs to be taken to generate high data quality
[2]. Here, a number of quality criteria seem to be agreed
upon, including a SNP-wise call fraction or the con-
formation of genotype frequencies with Hardy-Weinberg
equilibrium [3,4].
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Another important criterion is the quality of the results
from the calling algorithm, which transforms the
fluorescence signal intensities into one of the three
possible genotypes. For evaluation, the visual inspection
of signal intensities through cluster plots, also termed
signal intensity plots, has been recommended [4,5], and
the validity of the genotype assignment may be assessed.
Our experience with previously performed GWAS of
coronary artery disease [6,7] has shown that the gold
standard for this evaluation as of yet is the visual
inspection of the cluster plots by at least two indepen-
dent and experienced readers. This is very time-consum-
ing and depends on the training and availability of
experienced readers. Because of this, only a selection of
interesting SNPs in a GWAS are usually evaluated.
Previous analyses have shown that erroneous genotype
scoring can lead to false-positive or false-negative
associations, so that the number of low-quality SNPs
may be overestimated through this selection [2].

There are two principal approaches to tackle this
problem. The first focuses on improving the calling
algorithm itself [8]. The second, which is followed here,
aims at automating the evaluation of the cluster plots.
We have developed an algorithm called automated
cluster plot analysis (ACPA) that fulfills four require-
ments: 1) reduction of work load: out of a vast number
of genotyped SNPs, ACPA classifies only a small
proportion to have questionable quality and thus need
to be inspected visually; 2) high negative predictive
value: of the SNPs classified to be of high quality by
ACPA, only a small portion is erroneously classified;
3) reasonable speed: on a simple personal computer,
1,000 SNPs are analyzed in approximately 10 minutes,
and the processes may also be split between different
machines; and 4) user-friendly environment: ACPA was
implemented in R using the GenABEL [9] library.

Methods
Data
Signal intensities and genotypes of 6,752 participants in
the Framingham Heart Study were provided as Problem
2 for the Genetic Analysis Workshop 16 (GAW16).

Genotyping was performed using the Affymetrix Gene-
Chip Human Mapping 500 k

Array Set. Details of the study and the genome-wide SNP
scan can be found in Cupples et al. [10].

Algorithm
The ACPA algorithm, which analyses one SNP at a time,
is described below for the case of exactly three different
clusters, i.e., three genotype groups.

1. Select all individuals with assigned genotypes, i.e.,
delete all missing genotypes.
2. For clusters k = 1 to 3:

a) Perform a principal-component analysis, using
only data of cluster k.
b) Transform the data of all clusters according to
estimated first two principal components of step a).
c) Calculate the Mahalanobis distance from the
center of cluster k to all samples within cluster k.
d) Define the cluster boundary b as b = q3 + f. IQR,
where q3 is the upper quartile and IQR is the
interquartile range of the Mahalanobis distances
computed in step c). Default: f = 3.
e) Calculate the Mahalanobis distance from the
center of cluster k to the samples not included in k.
f) Count the number ck, of samples not included
in k falling in the boundary.

3. Sum the number of samples falling in the
boundary over all three clusters, i.e., c = ∑ ck
4. A SNP is called to have unreliable genotype
assignments if c exceeds a threshold t. Default: t = 25.

If the SNP has a low minor allele frequency leading to
two clusters, the algorithm is adapted appropriately. The
validation status c of each cluster-plot is logged in a file.
The algorithm has been implemented in R (version
2.7.1) and uses the library GenABEL (version 1.4-1) for
storing the genotype data. The cluster plot can be
generated together with the cluster boundaries in
portable document format (pdf).

Two example plots are displayed in Figure 1. Figures 1, a
and 1, b, show SNPs with clearly separated clusters and
with bad separation of clusters, respectively.

By using different values for the factor f (see above, step 2d),
the size of the ellipses (Figure 1) can be changed.
Specifically, lowering fwill lead to smaller ellipses, resulting
in fewer samples within the boundary. Using f = 1.5 follows
a commonly used definition of outliers when considering
quartiles and the interquartile range. Around each cluster an
ellipse will be constructed and the number of potentially
misclassified samples is counted. The sum over all three
clusters is then compared with a cut-off value t. This
parameter depends on the sample size. For this particular
data set we chose t = 25, which maximizes the accuracy of
ACPA.

Evaluation of the algorithm
The performance of the ACPA algorithm was evaluated
by comparing ACPA with the decisions made by
two experienced readers. First, we performed standard
quality control (sQC) and omitted SNPs with deviations
from Hardy-Weinberg-equilibrium (p < 10-4 for exact
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lack-of-fit test), missing fraction >0.02, and minor allele
frequency <0.01. We randomly selected 1,000 SNPs of
the remaining SNPs. Both readers judged independently
whether a SNP should be excluded from or kept for
further analyses. They also gave a level of uncertainty
(certain/uncertain) of their decisions. Because we
cannot expect ACPA to outperform the reading of
experienced readers, we only considered SNPs for
which both readers came to the same decision and
expressed certainty. A good SNP is a SNP when both
readers recommend keeping that SNP for further
analysis. If both readers favor the exclusion of a SNP,
we call this a bad SNP.

We report sensitivity, specificity, positive predictive values
(PPV) and negative predictive values (NPV) of ACPA as
well as 95% confidence intervals (95% CI) using Wilson’s
score method [11]. Here, sensitivity denotes the proportion

of correctly identified bad clustering SNPs, and specificity is
the proportion of correctly identified good clustering SNPs.
We evaluated the performance of ACPA for two different
ellipse sizes (f = 1.5 and f = 3).

Results
Out of the 486,605 BRLMM-called SNPs that were
provided for GAW16, 343,427 SNPs successfully passed
the sQC. For 695 of the 1,000 randomly selected SNPs,
the two independent readers came to identical decisions,
and both readers expressed certainty about their deci-
sion. Five hundred and eighty-eight (84.6%) were judged
as correctly called SNPs, and the remaining 107 SNPs
were classified as SNPs where genotype assignment was
unreliable. Point and interval estimates for sensitivity,
specificity, PPV, and NPV are shown in Table 1. For
f = 1.5 we achieved a specificity of 99%, i.e., almost all
good SNPs were recognized by ACPA.

Figure 1
Examplesof cluster plots. Cluster plots for two SNPs. One spot corresponds to one sample. Samples with genotypes AA and
BB are red and blue, respectively. Heterozygous samples are shown in green; samples with missing genotypes are black. The
ellipses represent the cluster boundaries as computed by ACPA. a, A SNP with no samples in overlapping ellipses; b, red
samples lie in the green ellipse. At the bottom of the green ellipse, samples have been erroneously classified as red samples.

Table 1: Quality of the automatic analysis with ACPA

Point estimate [CI]

Cluster boundary f Sensitivity Specificity PPV NPV

1.5 0.51 [0.41, 0.60] 0.99 [0.98,1.00] 0.93 [0.83,0.97] 0.92 [0.90,0.94]
3 0.88 [0.81,0.93] 0.86 [0.83,0.89] 0.53 [0.45,0.60] 0.98 [0.96,0.99]
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Increasing the cluster boundaries resulted in a loss of
specificity (86%) but increased the sensitivity of ACPA to
detect badly clustered SNPs. The PPV declined from 93%
to 53%.

Discussion
For the randomly selected sample of 1,000 SNPs, both
readers recommended the exclusion of 107 SNPs.
Although data quality may vary, there will always be
thousands of SNPs that should be excluded. This shows
the necessity of analyzing cluster plots. The large amount
of SNPs requires an automatic approach, and this is
provided by ACPA. Because it would not be reasonable
to exclude well clustered SNPs at the screening stage, the
method must be highly specific. This can be achieved by
choosing a small f, resulting in narrow ellipses and hence
only excluding very badly assigned clusters. For example,
the specificity is 99% for f = 1.5. Of course, this comes at
the cost of keeping many doubtful SNPs in the data
(sensitivity = 51%). In a situation where it would be
costly to include SNPs with a bad cluster plot, one could
increase the value for f to exclude doubtful SNPs.

Conclusion
The necessity of visually inspecting cluster assignments
from the genotype calling was demonstrated, and an
intuitive approach was proposed for performing this task
automatically. As a by-product, our novel software ACPA
provides a convenient way to generate cluster-plots for
any subset of SNPs.
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