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Abstract

Genome-wide association studies, which analyzes hundreds of thousands of single-nucleotide
polymorphisms to identify disease susceptibility genes, are challenging because the work involves
intensive computation and complex modeling. We propose a two-stage genome-wide association
scanning procedure, consisting of a single-locus association scan for the first stage and a gene-based
association scan for the second stage. Marginal effects of single-nucleotide polymorphisms are
examined by using the exact Armitage trend test or logistic regression, and gene effects are
examined by using a p-value combination method. Compared with some existing single-locus and
multilocus methods, the proposed method has the following merits: 1) convenient for definition of
biologically meaningful regions, 2) powerful for detection of minor-effect genes, 3) helpful for
alleviation of a multiple-testing problem, and 4) convenient for result interpretation. The method
was applied to study Genetic Analysis Workshop 16 Problem 1 rheumatoid arthritis data, and
strong association signals were found. The results show that the human major histocompatibility
complex region is the most important genomic region associated with rheumatoid arthritis.
Moreover, previously reported genes including PTPN22, C5, and IL2RB were confirmed; novel genes
including HLA-DRA, BTNL2, C6orf10, NOTCH4, TAP2, and TNXB were identified by our analysis.

Introduction
Genome-wide association study (GWAS) has been
broadly applied to identify disease susceptibility genes
of complex disorders. Single-locus association tests are
routinely run to identify causal or associated single-
nucleotide polymorphisms (SNPs) having strong

marginal effects on disease status; however, their power
to detect minor-effect SNPs may not be satisfactory.
Multilocus association tests, which incorporate genetic
information such as linkage disequilibrium (LD) and
genetic distance, are performed to improve test power of
single-locus association tests.
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In order to analyze a large number of SNPs across the
human genome, chromosomal regions on which to
apply multilocus association tests should be defined in
advance. Two frequently used procedures to define
regions in a GWAS are the sliding-window approach
and LD-block approach. A sliding-window approach
defines regions by assigning a pre-determined window
size or selecting a window size subject to an optimiza-
tion criterion, and then a multilocus association test is
performed in each window. It provides a convenient way
to define regions and then scan each chromosome
sequentially; however, the defined chromosomal seg-
ments may not have a biological function. An LD-block
approach defines regions by determining LD/haplotype
blocks, and then a multilocus association test is
performed in each block. It uses a data-driven procedure
to define blocks and then focuses on the examination of
biologically meaningful blocks; however, use of different
LD measures or block identification algorithms may
obtain different blocks and hence draw different
conclusions.

In this paper, we propose a two-stage genome-wide
association scan, consisting of a single-locus association
scan for the first stage and a gene-based association scan
for the second stage. In comparison with a single-locus
association test, the proposed method has the following
merits: 1) biological information is incorporated into the
definition of study regions, 2) tests are more powerful
relative to single-locus association tests, 3) the multiple-
testing problem is alleviated, and 4) the impact of genes
can be evaluated directly and results are easier to
interpret and generalize. Compared with a sliding-
window approach, a gene-based approach contains
richer information in a biological sense; compared
with an LD-block approach, the regions analyzed by a
gene-based approach are more stable and the analysis
involves less intensive computation.

The proposed method was used to identify disease genes
susceptible to rheumatoid arthritis (RA). We analyzed
Genetic Analysis Workshop 16 Problem 1 RA data. The
data consisted of 2,062 Illumina 550 k SNP chips from
868 RA patients and 1,194 normal controls collected by
the North American Rheumatoid Arthritis Consortium
[1]. Genotype data of 545,080 SNPs, which were probed
on an Illumina 550 k SNP chip, were provided. A
dichotomous disease status of RA and 530,720 auto-
somal SNP markers were analyzed in this GWAS.

Methods
We illustrate the flow of the proposed two-stage genome-
wide association scan as follows. At the first stage, we
quantify trend effects of alleles for autosomal SNPs by

calculating p-values of the exact version of the Armitage
trend test [2], which is a powerful and valid association
test even for analyses of rare-allele loci and Hardy-
Weinberg-disequilibrium loci. The exact p-value of the ith

SNP is the sum of probabilities for the permutations
with statistics at least as extreme as the observed statistic.
A logistic regression can be carried out if genetic and/or
environmental effects should be adjusted.

At the second stage, we carry out a genome-wide
gene-based association scan. All SNPs are divided
into two types: inter-gene SNPs and intra-gene SNPs
according to the annotation information. Inter-gene
SNPs are treated as singletons, and their p-values
and the corresponding physical positions are denoted

as { , , , }p r Rr
Singleton = 1 and { , , , }r r RSingleton = 1 ,

respectively. Intra-gene SNPs within the same
gene are bound as an SNP cluster, and the p-value
of the sth intra-gene SNP within the t th gene
and the corresponding physical posit ion are

d e no t e d a s { , , , , , , },p s S t Ts t t
Singleton = =1 1 a nd

{ , , , , , , },s t ts S t TSingleton = =1 1 , respectively. We use

physical position of the first SNP within a gene to
represent the gene location for a result display in the
Results section.

To evaluate total effects of genes (SNP clusters) on RA,
we combine p-values of intra-gene SNPs within a gene by
using the truncated product p-value method [3]. The
combination is based on multiplication of p-values, less
than some pre-specified cut-off threshold, from single-
locus association tests. The test statistic for the tth gene is
defined as:
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p-Values of genes and the corresponding physical

positions are denoted as { , , , }p t Tt
Cluster = 1 and

{ , , , } { , , , },t tt T t TCluster Singleton= = =1 11 . In accor-

dance with the sorted physical positions,

{ , , , } {( , , , ),( ,( )k r tk R T r R t= + = = =1 1 1sort Singleton Cluster ,, , )},T

p-values of inter-gene SNPs and genes are arranged in
order. Finally, false-discovery rate (FDR) correction [4] is
applied to all R+T p-values to adjust for multiple testing.
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Results
We calculated exact p-values of the Armitage trend test
for 530,720 autosomal SNPs in the study of RA.
According to the Illumina 550 k SNP-chip annotation
file, all SNPs were partitioned into 285,823 inter-gene
SNPs and 244,897 intra-gene SNPs, which were located
on 15,635 genes. The truncated product p-value statistics
with θ = 0.05 in Eq. (1) and the empirical p-values were
calculated for 15,635 genes.

We removed 1,088 SNPs with a minor allele frequency of
zero, resulting in the removal of 1,078 inter-gene SNPs

and 10 genes. In total, 300,370 p-values of genes and
inter-gene SNPs were sorted according to their physical
positions. FDR was applied to these p-values and FDR-
adjusted p-values in -log10 scale, -log10(PFDR), were
displayed (see Figure 1(A)). A high peak of association
signals was observed on chromosome 6 (symbol: red
square). Zooming in to chromosome 6, we found a 5-Mb
region with strong association signals (see Figure 1(B)).
Further zooming in to the 5-Mb region (1,090 Mb-1,095
Mb in cumulative physical position), 55 out of 57 genes/
SNPs across the human genome satisfying -log10(PFDR) >
40 were located in this region (see Figure 1(C)). In

Figure 1
Genome-wide gene-based association mapping of RA data. The horizontal axis denotes the physical position of
SNPs (scale in Mb) and the vertical axis denotes the FDR-adjusted p-values (scale in -log10). A, FDR-adjusted p-values
(scale in -log10) of genome-wide gene-set association tests; B, Association signals on chromosome 6; C, Association signals on
a chromosomal region between 1,090 Mb and 1,095 Mb (in cumulative physical position).
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addition, the top three association signals were found
at C6orf10, BTNL2, and HLA-DRA. Their individual
-log10(PFDR) values were as high as 302.65.

The -log10(PFDR) values of the top 100 significant loci
were all greater than 20 (data not shown). Among the
100 loci, 86 genes/SNPs were located in a region
between 30,041,240 bp and 33,797,498 bp on chromo-
some 6. The region overlapped with the human major
histocompatibility complex (MHC) region, which is well
known proven to be one of the most important genomic
regions related to RA [5]. There were 14 genes on other
chromosomes, and some have already been proven to
be associated with RA. For example, gene C5 had a
-log10(PFDR) of 20.46 in our study, and this gene has
been shown to be an RA-associated gene [1].

We compared the results of single-locus association tests
and gene-based association tests under two thresholds of
significance, -log10(PFDR) = 3 and -log10(PFDR) = 7. For a
threshold of -log10(PFDR) = 3, the exact Armitage trend tests
identified 433 SNPs among a total of 529,632 SNPs and
gene-based association tests identified 849 genes/SNPs
among a total of 300,370 genes/SNPs. In total, 463 genes/
SNPs were identified by gene-based association tests but
failed to be detected by single-locus association tests. On
the other hand, 69 intra-gene SNPs revealed by the exact
Armitage trend tests failed to be identified by gene-based
association tests, including 65 SNPs located on individual
genes and 2 SNP pairs located on two individual genes. For
a threshold of -log10(PFDR) = 7, the exact Armitage trend
tests identified 141 SNPs among a total of 529,632 SNPs
and gene-based association tests identified 308 genes/SNPs
among a total of 300,370 genes/SNPs. We found that 157
genes/SNPs found by gene-based association tests failed to
be identified by the exact Armitage trend tests; however,
only 10 intra-gene SNPs identified by the exact Armitage
trend tests but not by gene-based association tests, where
all of the 10 SNPs were on individual genes. The intra-gene
SNPs missed by gene-based association tests were not in
the list of top 100 genes/SNPs.

We compared our results with other studies. Association
of two previously reported genes [1,6], PTPN22 and
IL2RB, were confirmed by our method. The adjusted
p-value -log10(PFDR) of the two important genes were
13.29 and 4.75 in our study, respectively. We also
compared our results with the other contributions in
GAW16 Group 16 - Gene- or region-based association
tests. In spite of the use of various methods and
procedures, some consistent results were obtained. The
genes included AGPAT1 (62.04) [7], HLA-C (65.47) [8],
and PHF19 (10.21) [9], where the numbers in parenth-
eses were -log10(PFDR) in our study. In addition, we also
identified some novel RA-associated genes/SNPs that

have not been reported before, for example, NOTCH4,
TAP2, and TNXB. The adjusted p-value -log10(PFDR) of
the three genes were 153.79, 108.33, and 108.09 in our
study, respectively. The roles of these genes/SNPs in RA
are not clear and merit further study.

To consider strong effects of HLA genes and extensive LD
in the human MHC region, we replaced the exact
Armitage trend test at the first stage with a logistic
regression model adjusting for the status of shared-
epitope alleles. After adjusting for the effect of DRB1
shared-epitope alleles, we found that the results of the
top three loci, C6orf10, BTNL2, and HLA-DRA, remained
the same, and all of the aforementioned genes were still
highly significant. The major difference was that 44% of
the top inter-gene SNPs in the human MHC region were
not longer significant after the adjustment of shared-
epitope alleles.

Discussion
Under the proposed two-stage association mapping
framework, there are different methods that can be
applied to integrate SNP information within a gene, for
example, combination of test statistics, principal-com-
ponents analysis, and multiple regression analysis. This
paper considers a p-value combination, which has been
broadly used in a GWAS [3,10,11]. SNPs in a disease-
gene region are more likely to present association signals
compared with SNPs in a disease-gene-free region.
Therefore, combination of the p-values will strengthen
association signals and increase power of association
tests in a disease-gene region. However, this method may
miss a relatively small number of intra-gene SNPs that
can be detected by single-locus association tests. The
proposed gene-based association test provides a power-
ful alternative but is not intended to substitute for a
single-locus association test.

Unlike some researchers who have performed p-value
combination in sliding windows [3,10,11], we combine
p-values to evaluate a total impact of SNPs within each
gene in a GWAS. There are multiple types of p-value
combination methods. This paper considers a truncated
product p-value statistic because of its good performance
in our previous simulation study [12,13]. However, in
the analysis of RA data, we also calculated empirical
p-values of different combination methods including the
minimum p-value statistic and Fisher’s product p-value
statistic for the top significant genes. All of the methods
obtained similar empirical p-values, implicating the
strong association of the identified genes.

An extended application of p-value combination meth-
ods is to study biological pathways or protein networks
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of complex diseases. p-Values of SNPs within genes
involved in a pathway/network can be combined to
evaluate the global effect of a pathway/network and then
used to identify disease-specific pathways and networks.
The applications highlight the potential of p-value
combination methods in genetic/genomic dissection of
complex diseases.

Strong effects of HLA genes on RA and extensive LD in
the human MHC region, where the genes are located, are
issues that should be taken into consideration in the
analysis of the RA data. An analysis that does not
consider the issues may overstate genetic association in
this region. To circumvent the issues, an alternative
approach may be to replace the exact Armitage trend test
at the first stage with a logistic regression model
containing covariates of the HLA loci and/or SNPs in
LD with the HLA loci. Marginal effects of tested genes/
SNPs can be evaluated independently after conditioning
out the effects of LD and HLA genes. We only adjust the
status of DRB1 shared-epitope alleles in this paper and
the analysis can be further enhanced by considering
additional information on LD structure and HLA genes
in the future.

Conclusion
This study introduces a two-stage genome-wide gene-
based association scanning procedure. Compared with
some existing single-locus and multilocus methods, this
method has practical merits in aspects of biology,
computation, and statistics. We applied this method to
analyze GAW16 Problem 1 RA data. Compared with the
results from other RA association studies, our analysis
not only successfully confirmed association of previously
reported genes but also identified novel RA-associated
genes/SNPs.
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