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Abstract

Objective: Methods exist to appropriately perform association analyses in pedigrees. However,
for genome-wide association analysis, these methods are computationally impractical. It is
therefore important to determine alternate methods that can be efficiently used genome-wide.
Here, we introduce a new algorithm that considers all relationships simultaneously in arbitrary-
structured pedigrees and assigns weights to pedigree members that can be used in subsequent
analyses to address relatedness. We compare this new method with an existing weighting
algorithm, a naïve analysis (relatedness is ignored), and an empirical method that appropriately
accounts for all relationships (the gold standard).

Methods: Framingham Heart Study Genetic Analysis Workshop 16 Problem 2 data were used
with a dichotomous phenotype based on high-density lipoprotein cholesterol level (1,611 cases and
4,043 controls). New and existing algorithms for calculating weights were used. Cochran-Armitage
trend tests were performed for 17,333 single-nucleotide polymorphisms on chromosome 8 using
both weighting systems and the naïve approach; a subset of 500 single-nucleotide polymorphisms
were tested empirically. Correlations of p-values from each method were determined.

Results: Results from the two weighting methods were strongly correlated (r = 0.96). Our new
weighting method performed better than the existing weighting method (r = 0.89 vs. r = 0.83),
which is due to a more moderate down-weighting. The naive analysis obtained the best correlation
with the empirical gold standard results (r = 0.99).

Conclusion: Our results suggest that weighting methods do not accurately represent tests that
account for familial relationships in genetic association analyses and are inferior to the naïve
method as an efficient initial genome-wide screening tool.
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Background
Many researchers have already ascertained and collected
DNA on large pedigrees for linkage studies. The ability to
use these familial cases in association studies is appeal-
ing not only because of the decrease in ascertainment
cost, but also because these cases are more likely to be
due to a genetic cause and therefore can be more
informative for genetic research [1]. However, the use of
these cases results in correlated observations and treating
these cases and controls as independent will increase the
false-positive rate [2].

There are a few methods developed for association
testing in pedigrees of arbitrary size. One approach is to
assume independence for the calculation of the point
estimate of the random variable of interest and to adjust
the variance, hence altering the statistic or confidence
intervals [3]. However, currently this method has only
been developed for a limited number of test statistics.
Another approach is to use generalized estimating
equations (GEE). However, GEE does not take into
account the full pedigree structure in the development of
the correlation matrix and has been shown to fail due to
singularity in the correlation matrix and sparse data [4].
Empirical methods, which can applied to a wide variety
of statistics, have been developed for association testing
in pedigrees [5]. While empirical methods address
several of the issues associated with the GEE and
variance-correction methods, the number of simulations
required in these methods to reach genome-wide
significance is too time intensive for a complete
genome-wide association study.

An approach for screening the whole genome using
arbitrarily structured pedigrees that is efficient and
provides accurate and reliable estimates is needed.
Assigning weights, which are designed to account for
familial correlation, to pedigree members appears to be a
promising approach. If appropriate weights can be
established, then analyses of related individuals could
proceed using those standard statistical techniques that
allow incorporation of weights. Because many statistical
methods allow for weights (e.g., chi-square test and
regression analysis), the use of weights has the flexibility
of both qualitative and quantitative traits and allows for
the examining of different genetic patterns (e.g., dom-
inance and maternal effects). Previously, an algorithm
was proposed that used pairwise relationships to
determine weights [6]. The purpose of this paper is to
introduce a new weighting algorithm that considers all
relationships simultaneously and to examine the use of
both weighting algorithms as methods for association
testing in pedigrees of arbitrary size. We also compare
findings with a naïve analysis in which cases and
controls in pedigrees were treated as independent (that

is, familial relationships were simply ignored), and an
empirical method that appropriately accounts for all
relationships and is used as the gold standard.

Methods
Study population and phenotype
We used the real Framingham Heart Study data (Genetic
Analysis Workshop 16 Problem 2). This dataset had
6,752 subjects with both phenotype and genotype data.
Most (96.6%) of these individuals reside in pedigrees
with three generations at most. We defined a dichot-
omous phenotype based on high-density lipoprotein
cholesterol level (HDL) at first examination. Individuals
were considered to be low (cases) or high (controls) for
HDL based on a threshold of <50 mg/dL for women and
<40 mg/dL for men [7]. Those on cholesterol treatment
at the time of the exam were excluded from the analysis.
We further excluded individuals with more than 2%
missing genotype data. This resulted in a sample size of
5,654 individuals with phenotype and genotype infor-
mation (1,611 cases and 4,043 controls) and most
(92.7%) resided in a pedigree, with an average related-
ness closer than avunculars (average coefficient of
kinship = 0.165).

Genotyping
We used chromosome 8 data from the Affymetrix
GeneChip® Human Mapping 500 k Array Set and
excluded any single-nucleotide polymorphism (SNP)
that failed Hardy-Weinberg equilibrium (p < 0.001), that
had greater than 2% missing data, and had a minor allele
frequency of less than 1%. We further removed SNPs that
had sparse data and thus were not valid for use in chi-
square trend testing. This resulted in a total 17,333 SNPs
for analysis.

Weighting algorithms
The previously published weighting algorithm of Brown-
ing et al. is based on pairwise measures of relatedness
[6]. That is, each relative pair is considered separately,
even if multiple, and non-independent, pairs exist in the
same pedigree. This method also excludes all controls
from pedigrees that contain cases. The inverse of the
prior kinship coefficients matrix is used. Each pedigree
member considered in the analysis is assigned half the
column sum of that matrix as their weight. The
Browning method has been implemented in the software
CCREL, which was used to extract weights for pedigree
members.

We developed a new method to assign weights to
individuals that simultaneously accounts for all relation-
ships. We use simulation to determine the weights as
follows: 1) unique alleles are assigned to all founders
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(For example, the first founder is given alleles 1 and 2,
the second founder 3 and 4, the third founder 5 and 6
and so forth.), 2) a gene-drop is performed (simulated
mendelian inheritance), 3) pedigree members weights
were assigned as the average of the reciprocals of the
number of times each of their alleles were observed in
pedigree members to be used in the subsequent analysis,
4) step 3 was repeated 10,000 times and weights were
averaged across simulations. Figure 1 contains an
illustration of this process. We used simulations because
the determining of all possible proportions of allele
sharing for all individuals in a pedigree simultaneously
is an intractable problem in large arbitrary structured
pedigrees.

Two data sets were tested: a “full” data set for which
weights were determined for all pedigree members that
were to be used in a subsequent association analysis; and
a “no pedigree control” set, which excluded controls
that were in pedigrees with cases, and weights were

re-calculated omitting these controls. The method of
Browning et al. was only designed for the latter scheme
and therefore is considered only in the “no pedigree
control” comparisons.

Statistical analysis
Cochran-Armitage trend tests were performed on both
the “full” and “no pedigree control” data sets using a
naïve test (ignoring relationships) and with our new
weights and Browning’s weights (no pedigree control
data only) for all markers. SAS was used to perform the
weighted and naïve trend tests. Five hundred SNPs were
randomly selected and empirical, gold standard trend
tests were performed using the software package
PedGenie [5]. The empirical p-values were based on
100,000 simulations for the null distribution. Correla-
tions of the p-values resulting from each method were
calculated. For ease in presentation, the -log10 (p-values)
are plotted for the figures.

Figure 1
Weighting simulations for a small nuclear family.
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Results
Chromosome 8 results
There were 68 negative weights assigned using the
method of Browning et al. (49 of which were essentially
zero, ≤3 × 10-15). Because standard weighting techniques
(including SAS) will not allow negative weights, these
were set to have zero weight. Our new weighting method
always results in positives scores between 0 and 1. The
effective total sample size (sum of weights) for our new
method was 1,961 compared with 1,802 for the method
of Browning et al. The average difference between the
weights for the two algorithms was 0.012 (standard
deviation of 0.071).

The distributions of p-values for the Cochran-Armitage
trend test for the “full” and “no pedigree controls” data
sets and by the different methods are shown in Table 1.
For all methods, the use of the full data set resulted in
fewer significant p-values (p < 0.05) compared with the
“no pedigree control” set, thus raising the question
regarding study design for selection of controls, although

for the empirical method the difference was small (147
and 144). For both data sets, the naïve method resulted
in the largest number of significant p-values. For the “no
pedigree control” data set, both weighting methods had
a similar distribution of p-values.

The p-values from the naïve and weighting methods for
both data sets were highly correlated (all r > 0.7),
although substantial variance is observed (Figure 2). The
naïve method most often resulted in smaller p-values:
between 71.1-71.8% of the p-values for the SNPs
compared with any weighting method/data set combi-
nation. A stronger correlation with less spread was
observed between the two weighting methods (r =
0.96; Figure 2D). The correlation of the p-values did
not change when stratified by minor allele frequency.

Empirical results
Figure 3 shows the correlations between the empirical values
and all other methods for 500 SNPs. The naïve p-values have
the greatest correlation with the gold standard empirical

Table 1: Summary of the distribution of ptrend values

Full No pedigree controls

ptrend New weights Naïve Empirical Browning weights New weights Naïve Empirical

N = 17,333
<1 × 10-4 11 22 NA 15 15 108 NA
1 × 10-4 ≤ p<1 × 10-3 4 48 NA 28 44 186 NA
1 × 10-3 ≤ p < 0.01 51 333 NA 186 240 723 NA
0.01 ≤ p < 0.05 333 985 NA 695 816 1,615 NA
Total < 0.05 399 1,388 NA 924 1,115 2,632 NA
≥0.05 16,933 15,945 NA 16,409 16,218 14,712 NA

N = 500
<1 × 10-4 0 2 1 1 1 21 1
1 × 10-4 ≤ p<1 × 10-3 2 9 2 13 19 33 6
1 × -3 ≤ p < 0.01 14 56 33 32 49 101 36
0.01 ≤ p < 0.05 68 139 108 134 132 162 104
Total < 0.05 84 206 144 180 201 317 147
≥0.05 416 294 356 320 299 183 353

Figure 2
Chromosome 8 -log10 (ptrends) values for the different methods.
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p-values for both data sets (r = 0.998 and r = 0.987; Figure 3B
and 3F). In addition, a strong unidirectional relationship
was observed. For both data sets, the naïve p-values were
smaller than the empirical p-values.

While our new weighting method and the method of
Browning et al. produced similar p-values (r = 0.96;
Figure 2D), our new method appeared to be slightly
more correlated with the empirical p-values (r = 0.888 vs.
r = 0.825, Figure 3D and 3E). However, neither
weighting method obtained a correlation with the gold
standard as high as the naive method and neither
exhibited a unidirectional relationship with the empiri-
cal method as consistent as the naïve method. For the
full data, comparing p-values from our new weighting
method to the empirical results, 28.4% of the p-values
from our weighting method were smaller than the
empirical method p-values, the remaining 71.6% were
larger. For the “no pedigree control” data set, 62.8% of
the p-values from our weighting method were smaller
and 37.2% were larger than the equivalent empirical
p-values, and the Browning method had 54.2% p-values
that were smaller and 45.8% that were larger.

The correlation between the empirical results from the
full data set and the “no pedigree control” data set was

low (r = 0.326, Figure 3C), with no strong unidirectional
relationship: 57% of the time the “no pedigree control”
empirical p-value was less than the full set empirical
p-value.

Discussion
In this study we found that our new weighting method
performed similarly to the weighting method of Brown-
ing et al. (r = 0.96), but had the advantages of always
generating positive weights; producing higher effective
sample size (1,961 vs. 1,802), which will increase power;
and resulting in a stronger correlation with the empirical
p-values. The increase in effective sample size observed is
most likely because pairwise methods can overly down-
weight multiple individuals belonging to the same
pedigree. Results from both weighting methods were in
high correlation with results from both the naïve and
empirical approaches. However, the naïve approach had
almost perfect correlation with empirical results, and
while always anti-conservative, the high correlation and
consistency in directional difference arguably make it a
superior alternative to either weighting method for a
first-pass screening method.

There are limitations of this study that may have lead to
the naïve approach performing the best in these analyses.

Figure 3
The -log10 (ptrends) values empirical comparisons. Reported correlations are based on original ptrends and not the -log-
transformed values.
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The average pairwise kinship coefficient for the pedigree
members was 0.165, indicating that on average the
relationships were closer than avunculars; however, this
may not be sufficient relatedness to illustrate the
strength of methods that attempt to adjust for related
individuals. Second, the weights assigned are based on
expected sharing and hence this will differ from observed
sharing on a SNP-by-SNP basis. Thus, weights could
both under- and over-estimate specific SNP-sharing
producing more varied results. Another limitation is
that we have examined only a qualitative trait. Because
quantitative trait analysis is often more powerful than a
qualitative analysis, it is possible that correcting for
familial relationships would have a greater affect. Also,
we have only examined familial correlation to adjust for
inflated p-values and have not examined other sources of
inflation such as population stratification. Finally, while
it has been suggested that using individual weights can
effectively adjust for familial correlations in analyses,
this may be an over-simplification of the problem.

In a previous study it was found that the method of
Browning et al. was valid and had power similar to
variance correction methods [6]. However, the lower
correlation of the weighting tests with the empirical
approach and the fact that weighting methods can
appear both conservative and anti-conservative com-
pared with the empirical (see Table 1) indicate that
weighting methods are not providing equivalent tests to
those available in previously validated methods for
pedigree association testing [3,5]. Hence, any equiva-
lence of power that was previously noted [6] may not be
due to an equivalence of the tests, and it could be that
the “no pedigree control” design adopted in our
application of the method of Browning et al. is superior.
We found that the empirical p-values from the “full” and
“no pedigree control” data sets were not highly
correlated and that more significant p-values were
generated in the “no pedigree control” design. Further
work is needed to clarify the role that weighting methods
can play and to elucidate optimal study designs.

Conclusion
Our results suggest that association tests using weights
do not accurately represent tests that extend standard
genetic association methods to familial relationships in
pedigree data. Furthermore, they are inferior to the naïve
method for a screening tool. The high correlation and
unidirectional relationship between the empirical and
naïve methods suggests that the naïve method is the
superior way to efficiently perform a first-pass screen for
association analyses in pedigree data. Due to the
anticonservative nature of the naïve method, however,

significant thresholds may need to be lowered for the
initial screen, and the results that surpass thresholds
from the first-pass must be followed by a second-step
analysis that can accurately determine significance by
accounting for the familial structure. This two-step
approach is efficient and will lead to results that are
equivalent to a full primary screen using tests that
account for familial relationships in genetic association
analyses.
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