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Abstract
We propose two new haplotype-sharing methods for identifying disease loci: the haplotype sharing
statistic (HSS), which compares length of shared haplotypes between cases and controls, and the
CROSS test, which tests whether a case and a control haplotype show less sharing than two
random haplotypes. The significance of the HSS is determined using a variance estimate from the
theory of U-statistics, whereas the significance of the CROSS test is estimated from a sequential
randomization procedure. Both methods are fast and hence practical, even for whole-genome
screens with high marker densities. We analyzed data sets of Problems 2 and 3 of Genetic Analysis
Workshop 15 and compared HSS and CROSS to conventional association methods. Problem 2
provided a data set of 2300 single-nucleotide polymorphisms (SNPs) in a 10-Mb region of
chromosome 18q, which had shown linkage evidence for rheumatoid arthritis. The CROSS test
detected a significant association at approximately position 4407 kb. This was supported by single-
marker association and HSS. The CROSS test outperformed them both with respect to significance
level and signal-to-noise ratio. A 20-kb candidate region could be identified. Problem 3 provided a
simulated 10 k SNP data set covering the whole genome. Three known candidate regions for
rheumatoid arthritis were detected. Again, the CROSS test gave the most significant results.
Furthermore, both the HSS and the CROSS showed better fine-mapping accuracy than
straightforward haplotype association. In conclusion, haplotype sharing methods, particularly the
CROSS test, show great promise for identifying disease gene loci.
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Background
With the current advances in genotyping technology,
genome-wide association studies for detecting genes
involved in complex diseases have recently become feasi-
ble. However, the computational and statistical method-
ology for analyzing such studies needs optimization and
standardization. Various methods and strategies have
been investigated [1-3]. The typical association study of
candidate regions uses single locus tests, such as the chi-
square test or the transmission disequilibrium test [4].
The advantage of single-locus tests is that haplotype infer-
ence can be avoided. However, it is expected that there is
more information contained in haplotypes as a result of
the underlying evolutionary processes [5,6]. Therefore,
association analysis based on haplotypes is believed to be
more powerful, in particular if the common disease-com-
mon variant theory applies. According to this, the genetic
variants related to a complex disease are old mutations
and are common in the population (minor allele frequen-
cies > 5%). Subsequent mutations and recombinations in
the ancestral haplotype at which the disease mutation
occurred shortened the haplotypes that descended from
this ancestor. However, in the current generation the hap-
lotypes will still share a fragment around the disease
locus. The size of the reduced ancestral haplotype frag-
ments varies as a result of the uneven nature of such
recombination and mutation processes. We hypothesize
that there is a difference in haplotype patterns between
cases and controls at regions associated with the disease
and we present two new methods based on this hypothe-
sis: the haplotype-sharing statistic (HSS), which is an
improvement of a statistic described by Van der Meulen et
al. [7,8], and the CROSS test, which was published in an
earlier form [9]. The test statistics of these two haplotype-
sharing methods will be described and their performance
will be compared to standard association methods.

Methods
Materials
Data from both Problems 2 and 3 of Genetic Analysis
Workshop 15 (GAW15) were analyzed. From Problem 2,
we used a data set of the North American Rheumatoid
Arthritis Consortium (NARAC) of 2300 single-nucleotide
polymorphisms (SNPs) covering 10 Mb of chromosome
18q, a region that had shown linkage evidence for rheu-
matoid arthritis (RA) [10]. This data set contained 460
cases and 460 controls, the latter being recruited from a
New York City population. Problem 3 provided simulated
RA data on 9187 SNPs distributed over the entire genome.
We used Replicates 1 through 10 of the affected sib-pair
nuclear families for analysis. From each family, haplo-
types transmitted to the first affected sib were used as cases
and non-transmitted haplotypes as controls, regardless of
the affection status of the parents. We had no prior knowl-
edge of the answers.

Haplotype inference
The 920 subjects of the NARAC data set were phased using
the phasing program 2SNP [11]. This program recon-
structed the 1840 haplotypes for all 2300 SNPs in approx-
imately 20 minutes. The construction of the simulated
data sets allowed extraction of phased haplotypes and
these data sets were analyzed without phase ambiguities
or missing alleles.

Statistical analysis
Haplotype sharing between two haplotypes X and Y from
the perspective of each locus k, denoted as h(X, Y; k), can
be evaluated as the number of consecutive SNPs in the tel-
omeric and centromeric directions carrying the same alle-
les including locus k. Given a sample of case haplotypes
X1,...,XN and a sample of control haplotypes Y1,...,YM, four
measures of haplotype sharing at locus k are defined as
follows:

case sharing: 

;

control sharing: 

;

cross sharing: ;

overall sharing: 

.

The first haplotype sharing method, the HSS, compares
the case haplotype sharing with control haplotype shar-
ing. In contrast to the earlier HSS [7,8], in this manner the
HSS corrects for linkage disequilibrium (LD) other than
that caused by the disease mutation. We hypothesize that
haplotype sharing will be larger among cases than among
controls at loci involved in the disease and at other loci in
LD with them, because i) haplotypes containing a risk
allele are more likely to be similar to each other and dis-
similar to haplotypes containing a non-risk allele; and ii)
haplotypes containing the risk allele may be shared over
longer stretches. The first factor is explained from the con-
cepts of association and LD. The second factor can be
explained by presumably shorter coalescence times of dis-
ease alleles and hence fewer recombination events in the
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sample of cases compared to the sample of wild-type alle-
les in controls. The HSS at locus k is defined as

where sdSHCASE(k) and sdSHCTR(k) are the estimates of the
standard deviation of the mean haplotype sharing at locus
k accounting for LD among cases and controls, respec-
tively. When N and M are large, SHCASE(k) and SHCTR(k)
follow a normal distribution (Central Limit Theory) and,
because SHCASE(k) and SHCTR(k) are independent, signifi-
cances of tHSS(k) can be derived from a t-distribution with
N + M - 2 degrees of freedom (i.e., N - 1 from the cases and
M - 1 from the controls). The main statistical problem in
evaluating mean haplotype sharing is how to calculate the
variance of the mean sharing between all pairs of haplo-
types. Generally, haplotypes will share alleles in groups
and this means that haplotype agreement between haplo-
type pairs is not independent. For the HSS, we derived an
unbiased estimate from the theory of U-statistics for the
standard deviation of the mean haplotype sharing (see
Appendix).

The second haplotype-sharing method is the CROSS test.
This hypothesizes that a case and a control haplotype are
different from each other in the region of a disease locus
and will therefore show less haplotype sharing (cross
sharing; SHCROSS) than two random haplotypes (SHALL).
This test incorporates more information on allele fre-
quency differences between cases and controls (i.e., the
single SNP association "signal") than the HSS. Unlike the
HSS, an equivalent U-statistics variance of the cross shar-
ing can not be estimated because of the correlation
between SHCROSS and SHALL. Therefore, the variance of the
cross sharing is estimated from a sequential randomiza-
tion procedure in which case and control status is ran-
domly permuted over the haplotypes as long as the
interim significance estimate remains interesting (i.e., p-
value < 0.1). In order to render this test fast and hence fea-
sible for whole-genome screens with a high density of
SNPs, the significance is not determined from the rand-
omization procedure, but the variance of SHCROSS(k) -
SHALL(k) is estimated from a maximum of 200 randomi-
zations, which is a sufficient number to provide a reason-
ably accurate variance estimate. The CROSS test at locus k
is then defined as

Note that a negative value implicates positive association.
As a result of the correlation between SHCROSS and SHALL,
the tails of the zCROSS(k) distribution are not properly

approximated by a normal distribution, leading to down-
ward biased p-values for extreme z-values. Therefore, the z-
values are transformed to a chi-square distribution with ν
degrees of freedom:

With an appropriately chosen ν, the distribution resem-
bles the true z-score distribution, especially in the tails, so
that realistic p-values are obtained. The best choice for ν
typically depends on the sample size and on the individ-
ual chromosome. For the current study, we empirically
derived the value for ν that minimized the bias in p-values
in non-associated regions.

In order to compare the performances of the HSS and
CROSS, we also performed single-SNP and haplotype-
association analysis. Single-SNP association was tested by
means of a chi-square test. For haplotype association, fre-
quencies of haplotypes of five consecutive SNPs were
counted and a log-likelihood ratio test was performed
including only haplotypes with n > 10 to assess the signif-
icance of the difference between cases and controls (our
own software, available on request).

We used a conservative Bonferroni correction to correct
for multiple testing. Hence, in the real data, a result was
considered significant if the -log(p-value) was larger than
-log(0.05/2300) = 4.65, and in the simulation study if the
-log(p-value) was larger than -log(0.05/9187) = 5.25 and
suggestive if it was larger than -log(0.10/9187) = 4.95.

Results
NARAC data set (Problem 2)
The running time of all analyses for 2300 SNPs and 920
individuals was 80 minutes on a single laptop PC
(Celeron 1500 MHz), which is sufficiently fast to be
acceptable for whole-genome association studies.

The results are presented in Figures 1 and 2. The CROSS
test revealed a significant association with a -log(p-value)
of 6.6 at position 4407 kb from the first SNP. The odds
ratio based on allele frequencies at this location is 1.41
(1.16–1.72, 95% CI). A second, non-significant peak (-
log(p-value) = 4.1) was found near 4863 kb from the first
SNP, with a corresponding odds ratio of 1.21 (0.99–1.51,
95% CI). Although the HSS peaks at the same two loca-
tions (-log(p) = 4.2 and 3.2, respectively), these results
were not significant. The same holds for the single-marker
chi-square test.

Figure 2 focuses on the associated region around 4407 kb.
The CROSS test did not show a clear peak at a particular
locus. Instead, several SNPs in the region were associated,
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which was to be expected because the CROSS test is based
on haplotype sharing and tests at subsequent loci were
highly correlated. However, the HSS and the single-
marker chi-square test were not informative about the
exact disease locus either. Nevertheless, the CROSS identi-
fied a small region of 20 kb (4,400–4,420 kb) as the can-
didate region.

Simulated data set (Problem 3)
Figure 3 shows the results of the genome-wide SNP asso-
ciation analyses. Genome-wide significant associations

were observed for all statistical methods at chromosomal
regions 6p21 and 11q23.1, and we found a suggestive
result at 18q22.2 for the CROSS test only. These regions
are known candidate regions for rheumatoid arthritis. The
CROSS test showed the most significant results: for 6p21
the mean of the -log(p)-values for the ten replicates was
443.6 (range 370.3–552.0); for 11q23.1 it was 22.8
(range 6.4–33.9); and for 18q22.2 it was 4.95 (range 1.8–
10.6). None of the methods detected other associated
regions.

Analysis results of the NARAC data setFigure 1
Analysis results of the NARAC data set. Results of the CROSS test (green line), the HSS (pink line) and single-marker 
association (black line) are plotted for all 2300 SNPs on chromosome 18q.

Region showing the strongest association in the NARAC data setFigure 2
Region showing the strongest association in the NARAC data set. The CROSS (green line), the HSS (pink line) and 
single-SNP association (black line) -log(p-values) are plotted for the 150-kb region showing the strongest association.
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Type I errors and power are shown in Table 1. Both hap-
lotype-sharing methods had the correct type I errors. On
chromosome 11 both the HSS and the CROSS tests had
more power than the standard association analyses, while
on chromosome 18 only the CROSS test had more power.
The significance of the effect on chromosome 6 was so
strong that all methods had 100% power in this region.

Discussion
The results of our analyses on both the NARAC data and
simulated genome-wide data show that the CROSS test is
a powerful statistic for identifying disease loci. The CROSS
combines information on differences in haplotype shar-
ing, which are also used by the HSS, and on allele fre-
quency differences, which are the basis of association
analysis.

In the NARAC data, the CROSS test revealed a significant
association (-log(p-value) = 6.6) approximately 4407 kb

from the starting SNP. Odds ratios of 1.41 were observed
at multiple SNPs in this region. A second suggestive peak
was observed near 4863 kb (-log(p-value) = 4.1). This
result was not significant after applying the conservative
Bonferroni multiple testing correction, but because the
significances outside of the associated region seemed to
range up to a -log(p) of ~3, this result might indicate a rel-
evant association as well. The HSS and the single-SNP
association test peaked at the same locations as the
CROSS, but these tests did not reach significance. Further-
more, the HSS and single-SNP association analyses were
not specific enough because multiple signals at other posi-
tions reached the same significance level as the 4407 kb
peak. The CROSS test did not identify a particular SNP as
the causal one, which is inherent to the way the test was
developed, but a candidate region as small as 20 kb could
clearly be identified.

Table 1: Type I error and power

Type I errora Powerb

Method 0.05 0.005 0.0005 Chr 6 Chr 11 Chr 18

Single-SNP association 0.051 0.0048 0.00057 1.0 0.7 0.1
Haplotype association 0.053 0.0052 0.00051 1.0 0.8 0.1
HSS 0.052 0.0046 0.00031 1.0 1.0 0.1
CROSS 0.051 0.0051 0.00061 1.0 1.0 0.4

aType I results at three different significance levels were determined from the Replicates 1 to 10 of SNPs on all chromosomes except 6, 11, and 18.
bPower is determined as the fraction of replicates showing a significant result (p < 0.05/9187) in a 1-Mb region around SNP6_153 on chromosome 
6, SNP11_389 on chromosome 11, and SNP18_269 on chromosome 18.

Analysis results of the simulated data set in the regions 6p21 (a), 11q23.1 (b), and 18q22.2 (c)Figure 3
Analysis results of the simulated data set in the regions 6p21 (a), 11q23.1 (b), and 18q22.2 (c). On the x-axis, the 
cumulative position with respect to the start of chromosome 1 is given. The black, blue, pink, and green lines represent the 
mean of the -log(p-values) of the ten replicates of single-SNP association, five-SNP haplotype association, HSS, and CROSS, 
respectively.
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When applied to the simulated 10 k SNP array data, the
HSS and CROSS tests showed significant results in the
known candidate regions for rheumatoid arthritis, i.e.,
6p21 and 11q23.1, and the CROSS was suggestive of asso-
ciation at 18q22.2 after Bonferroni correction. The type I
errors of these haplotype-sharing methods were as
expected and no significant associations in other regions
were observed. Similar results were found by single-SNP
and five-SNP haplotype association analysis, but the
CROSS test showed more power in each associated region.

The strength of single-SNP association analysis was infe-
rior to that of our two haplotype sharing methods, sug-
gesting that the latter indeed contain more information.
The HSS and CROSS showed more significant results and
sharper peaks than the five-SNP haplotype analysis. This
might imply that HSS and CROSS have a better mapping
accuracy than a fixed-length or sliding-window haplotype
method. This could result from the fact that HSS and
CROSS use the variable length over which haplotypes are
the same, whereas a sliding window method may use
either too much or too little information. The finding that
both the HSS and the CROSS test accurately identify the
disease locus might seem to conflict with the results of the
NARAC data, in which the exact locus could not be pin-
pointed. However, the SNP density of the NARAC data is
about 80-fold higher than in the simulated data set and
multiple highly correlated SNPs were expected to be asso-
ciated causing broader peaks.

We did not investigate the robustness of the haplotype
sharing methods to haplotype reconstruction errors or
missing alleles. Although this analysis would be interest-
ing and remains necessary, the focus of this paper was to
introduce and describe the HSS and the CROSS test. The
effects of phase ambiguities and missing alleles on the
HSS and CROSS will be the topic of future work.

Conclusion
The HSS and in particular the CROSS test show great
promise for identifying and fine-mapping disease genes of
complex diseases. They are useful for whole genome asso-
ciation screens because the analytical form of the HSS and
the sequential randomization for estimating variance of
the CROSS test renders them fast enough and hence prac-
tical to use even for marker densities of 500,000 SNPs/
genome.

Appendix
The mean haplotype sharing is a U-statistic:

. Denote the mean

and variance of the sharing of two haplotypes at locus k,

h(Xi, Xj; k), by μk and σk
2, respectively. We state that, given

a data set {X1,...,XN},

where

is an unbiased estimate of the variance of a U-statistic. We
will derive that Sh(k)2 is an unbiased estimate of var(h(Xi,
Xj; k)) = σk

2, because from this finding, it simply follows
that S(k)2 is an unbiased estimator of var(U), as

It is simple to derive that 

 is an unbiased estimator of σk
2 (proof left to the reader). 

This estimator is of the order 4, as in the second term each 
haplotype pair is considered twice. To speed up the calcu-
lation, this estimator can be rewritten to an estimator of 
the order 2 as follows:
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