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Abstract

The paper describes the motivation of SOMs (Self Organising Maps) and how they are generally more accessible
due to the wider available modern, more powerful, cost-effective computers. Their advantages compared to
Principal Components Analysis and Partial Least Squares are discussed. These allow application to non-linear data,
are not so dependent on least squares solutions, normality of errors and less influenced by outliers. In addition
there are a wide variety of intuitive methods for visualisation that allow full use of the map space. Modern
problems in analytical chemistry include applications to cultural heritage studies, environmental, metabolomic and
biological problems result in complex datasets. Methods for visualising maps are described including best
matching units, hit histograms, unified distance matrices and component planes. Supervised SOMs for classification
including multifactor data and variable selection are discussed as is their use in Quality Control. The paper is
illustrated using four case studies, namely the Near Infrared of food, the thermal analysis of polymers, metabolomic
analysis of saliva using NMR, and on-line HPLC for pharmaceutical process monitoring.

Introduction
The analysis of multivariate data from laboratory instru-
ments using computational methods has been a subject of
academic pursuit since the 1970s, often loosely called che-
mometrics [1-22]. The early pioneers of the 1970s were
primarily analytical chemists such as Bruce Kowalski and
Luc Massart, although Svante Wold was on the interface
of analytical and organic chemistry. Methods such as PCA
(Principal Components Analysis) [22-27] and PLS (Partial
Least Squares) [28-34] were developed and widespread
applications reported in the literature. Much of the early
applications involved problems such as Near Infrared Cali-
bration, deconvolution of Gas Chromatography Mass
Spectrometry or High Performance Liquid Chromatogra-
phy signals and determining of components in mixtures
using Ultraviolet Visible Spectroscopy of mixtures. These
types of datasets slowly became widespread with the
spread of computerised instruments in laboratories. The
spread of these methods was particularly pronounced as

from the mid 1990s when user friendly software became
widely available.
These pioneering methods were first primarily devel-

oped as applied to traditional analytical chemistry. Data
had several features that made these methods suitable.
The first is that most data was linear and additive. Often
great efforts were made to ensure that signals were
within a linear region as defined by the Beer-Lambert
law, and also above the limit of detection. The second is
that residuals (or noise) could often be approximated by
a normal distribution. Sometimes if noise was shown to
be heteroscedastic, data was scaled to overcome this lim-
itation. The third was that on the whole the number of
samples was limited, typical published reports in the
early literature involved between 20 and 50 samples. A
fourth feature was that most early chemometrics involved
predictive modelling. The aim was to measure a para-
meter, such as the concentration of a compound in a ser-
ies of mixture spectra, to a given degree of accuracy :
usually the concentration of a series of reference samples
was known accurately and the aim, would be to deter-
mine this using, for example, mixture spectroscopy.
Finally, desktop computing power was limited and so
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algorithms such as NIPALS (nonlinear iterative partial
least squares) [35] and cross-validation [36] were devel-
oped especially to be efficient both in cpu time and mem-
ory useage.
Over the years, the software packages first marketed in

the 1980s or early 1990s, such as Infometrix’s Pirouette
[37], Camo’s Unscrambler [38], Umetrics SIMCA [39]
and Eigenvector’s PLS toolbox [40] amongst many others,
were improved, but in most cases this has been in the
interface and user-friendliness, keeping up to date with
modern expectations for computer users. The underlying
philosophy of PCA and PLS has hardly changed. A lot of
effort is required to update software and it is labour
intensive and risky to enter new markets.
However much has changed during the last few

decades.
1. Computers have become more powerful. Moore’s

law originally suggested that computing power per unit
cost doubles every year [41]. Taking a more conservative
estimate of a doubling every 18 months, this means that
in the 30 years since 1981, computing power has
improved around 220 or around a million fold. Put
another way, a calculation that took a week on a typical
desktop in 1981 would take around 0.6 s in 2011 for
equivalent unit cost . Although these are approximations,
many readers can see how kilobytes of memory in 1981
translate into gigabytes in 2011. The ZX80 marketed in
the UK in 1980 for £99.95 consisted of 4 kb memory. An
equivalent price taking inflation into account in 2010 is
£320 [42]. Certainly typical PCs could be purchased with
between 3 Gb and 4 Gb memory in 2010, with prices
below £400, so this rate of increase (of memory, speed
and discspace) per unit cost holds. Therefore we can per-
form calculations on our desks that might have required
expensive access to institutional mainframes many years
ago. Hence relatively computer intensive methods are
now feasible.
2. The capability of analytical instruments has

increased dramatically. Using autoinjectors and self pro-
grammable instruments, rapid sample throughput can be
achieved. In addition most instruments are much more
stable so require less manual tuning, hence many samples
can be throughput. In some applications such as NMR,
the advance in automated data collection is dramatic. In
addition automating methods for data storage and retrie-
val mean less manual interpretation of spectra and chro-
matograms. Hence the amount of the data to be studied
has increased substantially.
3. Finally, whereas traditional analytical chemistry

exists and will continue to exist, the range of problems
being routinely study in analytical laboratories has chan-
ged. Biology, medicine, cultural heritage, archaeology and
environment are all legitimate and ever increasing areas
that the analytical chemist can contribute to. These

problems are not necessarily linear ones, we do not for
example expect the amount of a compound found in a
cultural artefact to be linearly related to its age, nor do
we expect the concentration of a biomarker to be linearly
related to the progression of a disease. The vast majority
of datasets fail normality tests and so cannot be safely
analysed using statistics dependent on assumptions of
normality. Outliers are quite common and have a poten-
tially strong influence using least squares methods.
Whereas traditional linear approaches can be adapted to
these situations, the adaptations are often clumsy, and
most users of packaged software are unaware of these.
Hence modern developments pose the need for differ-

ent approaches to those traditionally employed by che-
mometricians. Over several decades there have been
developed approaches for machine learning. The origina-
tors were primarily computer scientists and had access to
powerful institutional computers. The early descriptions
were somewhat theoretical and mainly applied to well
established reference datasets, but have spread rapidly in
areas such as economics, medicine and biology. They
were developed primarily for data mining.
Self Organising Maps (SOMs) were first proposed by the

Finnish computer scientist, Teuvo Kohonen [43-45]. The
original use was primarily to visualise data. There is a slow
but steady increase in their useage within analytical chem-
istry [46-51]. The key barriers to use of SOMs are as
follows.
1. There are less user-friendly packages around com-

pared to traditional chemometrics approaches. Many
chemists want simple plug in packages that require lim-
ited or no knowledge of programming, unlike, for exam-
ple, bio-informatics experts who are usually happy to
edit or adapt code. This also means that advocates of
niche chemometrics packaged software do not have
these yet as part of their repertoire and therefore are
unlikely to advocate their useage.
2. The packages are computationally intense, although

as discussed above, this is no longer a serious barrier.
However many chemists read literature of a few years
ago, and old habits die hard so are not familiar with
their potential.
3. Often specialist expertise is required at the moment,

unlike for PCA where there are innumerable cheap or
free facilities. This expertise is not always available in
laboratories, and can be costly to hire.
4. The results are not reproducible, differing each

time. This should not be a serious barrier, and one
approach is to repeat the SOM many times over to
reach a consensus or stable solution.
5. SOMs have much potential for graphical output. Up

to recently it has been costly to publish papers in colour,
so the potential for data display was somewhat limited in
print journals. Many scientists follow the lead of existing
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published work and as such did not encounter sufficient
publications that fully illustrated their potential. With the
growth of on-line publishing and cheaper colour printing
there are many more recent examples, however, it takes
time for new ideas to filter down the line.
6. Finally, up to recently SOMs have been less adapted

to quantitative useage, which is important for their
acceptance to most chemists. However there are now
starting to be published new adaptations.
Hence many of the barriers to use of SOMs as a tool

for the chemist are gradually disappearing. The desire of
many laboratory based chemists to analyse data them-
selves still poses a problem: in areas such as biology and
medicine it is usual for there to be separate data analysis
groups, so novel computational approaches can be
adopted much faster and do not need to wait for com-
mercial package developers.
In this paper we will describe the basis of SOMs and

their most recent developments, illustrated by case stu-
dies as applicable to complex chemical datasets.

Case studies
Details of the case studies have already been published
elsewhere. In this section we provide basic details, and
refer the reader to the in-depth references for further
experimental details. It is not necessary to understand
the methods for data preparation to appreciate this
paper, although it is crucial these are performed cor-
rectly for meaningful analysis. The reader is referred to
the original papers for more details on preprocessing
including the motivation behind choice of methods.

Case study 1 : NIR of food
This dataset [3,50] consists of 72 Near Infrared spectra
of
1. 18 samples of Corn Oils
2. 30 samples of Olive Oils
3. 16 samples of Safflower Oils
4. 8 samples of Corn Margarines.
The data has been preprocessed using Multiplicative

Scatter Correction, wavelength selection and mean cen-
tring prior to data analysis. The aim is to classify sam-
ples using NIR spectra into one of four groups.

Case study 2 : thermal profiles of polymers
This dataset consists of the thermal profiles of 293 sam-
ples, involving monitoring the change in physical proper-
ties as they are heated. The polymers can be divided into
two types namely class A of 92 amorphous polymers and
class B of 201 semi-crystalline polymers. In turn, each type
consisted of nine different groups as listed in Table 1.
More detail is discussed elsewhere [3,51-54].
The aim is to determine which group a polymer

belongs to from their thermal properties. There is also a

secondary structure to the samples in that the groups
can be divided into two types.

Case study 3 : NMR metabolic profiling
This case study consists of 96 NMR spectra of saliva
extracts, involving a 2 x 16 x 3 design, where there are 2
treatments (mouthwash or control), 16 donors and 3 sam-
pling days [3,55,56]. The samples can therefore be classi-
fied in one of three ways. For example, there are 6 samples
from each donor, 3 of which are treated and 3 not, each
taken on different sampling days. Therefore we may
expect some distinct groupings due to donor as well as
treatment, each grouping influenced by different biomar-
kers (or regions of the spectrum – called variables). Sam-
pling day is a dummy factor in that it should have no
significant influence on the spectra.
The NMR spectra are preprocessed using baseline cor-

rection, bucketed into regions and then scaled by square
rooting and centring. The aims are to determine whether
there are groups in the data due to individuality and treat-
ment, and what parts of the spectra are responsible for
these distinctions, which give a clue as to which biomar-
kers are significant.

Case study 4 : on-line HPLC for process monitoring
This dataset involves monitoring the first stage of a
three stage continuous process. More details have been
described elsewhere [57-59]. 309 samples were recorded
using on-line HPLC over a period of 105.11 hours. 12
peaks were chosen from the chromatograms and their
areas were recorded after baseline correction, square
rooted and summed to a constant total in each chroma-
togram and used to monitor the process.
Sample numbers 63 to 92 (21.71h to 32.17h) were

defined as the NOC (Normal Operating Conditions)
region, that is the part of the process considered to be “in
control” or typical of the process. For subsequent sam-
ples the aim is to see whether they have characteristics of
the in control region or not. If not, it is diagnostic of a
problem with the process, as the expected relative peak
areas have deviated from the norm.

Table 1 Samples for case study 2

Type Group

Amorphous A 92 Polystyrene (PS) A 35

Acrylonitril- Butadiene-Styrene (ABS) B 47

Polycarbonate (PCarb) C 10

Semi-crystalline B 201 Low Density Polyethylene (LDPE) D 56

Polypropylene (PP) E 45

High Density Polyethylene (HDPE) F 30

Polyamide6 (PA6) G 20

Polybutylene Terephthalate (PBT) H 10

Polyethylene Terephthalate (PET) I 40
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Basic SOM algorithm
The basic SOM algorithm has been described in detail
elsewhere [3,51] and we will focus just on the main defi-
nitions and steps in this section without mathematical
detail. The algorithm described in this section is the
unsupervised and original one.

Maps, component planes and best matching units
Figure 1 illustrates a schematic of a SOM. A map is made
up of cells (or units). In the case illustrated the map con-
sists of 30 cells, or a 6 x 5 map. Usually we visualise just
the front of the map, which relates to the samples or
objects in the dataset. However behind the cells are com-
ponent planes. These correspond to the variables used to
create the map. If there are for example 100 spectral
wavelengths, there will be 100 component planes. These
“hidden” layers correspond to analytical measurements
such as spectra or chromatograms. Behind each cell is an
array equivalent to a spectrum, if there are 30 cells, there
will be 30 such arrays. In the case illustrated there are
just 3 variables, so three component planes. Each sample
in the training set has a corresponding BMU (or best
matching unit) in the map. This is the cell that a sample
is most similar to. Ideally the samples in the training set
are spread around the map. In the case illustrated there
are 10 samples, 6 from a blue group and 4 from a brown
group. They slot into 10 corresponding cells.

Size of map
The size of the map can be controlled, and usually if it is
represented as a grid as in Figure 1, the number of hori-
zontal and vertical cells is different. A good rule is to
make the grid about three times the number of samples,
this is to allow the samples to spread around. Occasion-
ally more than one sample fits into a single cell. This may
be because the samples are extremely similar or that the
number of cells in the map is small relative to the num-
ber of samples.

Iterative development of map
Usually a map is usually developed from a random start-
ing point. A starting map consists of a set of component
planes, that is a randomly generated vector is associated
with each unit or cell in the map.
The next step is to randomly pick a sample from the

dataset and identify which cell is its BMU. Then the cells
close to the BMU are identified. The number of cells is
given by a parameter called the neighbourhood width, a
large neighbourhood width implies that many cells are
identified, and small neighbourhood width, only a few.
The process involves making the component planes of the
neighbouring cells a little more similar to the central
(BMU). Figure 2 illustrates a BMU and its neighbours.

This procedure is continued many times, often several
thousands of times, each time a fresh sample is chosen.
The number of iterations should be many times the
number of samples to ensure each sample is chosen sev-
eral times. The chance that a sample is never chosen is
[(N-1)/N]T where N is the number of samples, and T
the number of iterations. If there are 100 samples, this
chance is 4 x 10-5 for 1,000 iterations and 2 x 10-44 for
10,000 iterations. The age of the universe is around 4 x
1017 seconds, so even if SOMs were calculated continu-
ously on a dataset from the time of the big bang, and
10,000 iterations could be performed on a superfast
computer in 1 s, a sample would still only have a chance
of one thousand, million, million, million, millionth of
being missed out after 10,000 iterations, rather like
some unimaginable quantum mechanical event of walk-
ing through a wall. For 1,000 iterations there is an extre-
mely remote chance a sample is left out. If however
there are 500 samples in the training set, and only 1,000
iterations are used, the chance that a sample is left out
is 0.13 or 13%. Hence the number of iterations should
in part be related to the number of samples, although if
a sample is left out altogether it still can be fitted into
the map, but has no influence on training.
As the number of iterations increase, the region of

cells that is adjusted around the BMU is reduced, and
the amount of adjustment (often called the learning
rate) also reduces. This means that the maps start to
stabilise. The more the iterations the more computa-
tionally intense the SOM, and sometimes it is possible
to reach an acceptable solution fast. Most SOMs are
developed using a random starting point, although there
are modifications that allow an initial map that reduces
the number of iterations by basing it on the pattern of
the samples, e.g, as obtained via PCA.

Variables
The variables that are used to describe the map usually
are the raw measurements, such as spectral intensities
or chromatographic peaks. Under such circumstances it
is possible to interpret the component planes to provide
chemical insight. However sometimes the number of
variables is large, and it can be time consuming to use
all the original variables, especially if some are primarily
noise. Hence an alternative is use functions of the vari-
ables such as Principal Components.

Geometry of SOMs
The simplest geometry is as a rectangular map. The rec-
tangle refers to the arrangement of cells and not the
shape of the cells. Often the cells are represented as
hexagons, as we will do in this paper, but can be repre-
sented by squares.
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However there is no obligation to restrict the maps to
rectangular ones, and circular, cylindrical or spherical
maps can be visualised. One problem of rectangular
maps is that samples at the edges tend to be farther

away from other groups of samples to those in the mid-
dle, that may have many more neighbours. Some data-
sets do, indeed, have extreme groups of samples, and so
the rectangular approach is the most appropriate. But in
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Figure 1 Principle of SOMS (a) A 6 x 5 map (b) Component Planes (c) Best Matching Units.
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other cases there may well not be any reason to separate
out samples that are on the extreme edges and so a
spherical or cylindrical representation is more appropri-
ate. The trouble with the latter representations are that
they are harder to visualise on paper.
A representation though can be retained in a compu-

ter, and the aim is not so much to present a graph to
the user but to use the co-ordinates of samples to show
which are most similar, then having other geometries
could be worthwhile. In this paper we will restrict

representations primarily to the most common type of
map, which is rectangular, and use hexagonal cells.

Visualising SOMs
Best matching units
The most basic approach is to represent the samples on
the map is via their BMUs (Best Matching Units). Figure 3
represents the BMUs of 30 x 20 maps obtained from case
studies 1 and 2, together with the scores of the first two
PCs. For case study 1 (NIR of food) the number of cells

Figure 2 A BMU and its neighbours.

Figure 3 Plot of scores of the (left) first two PCs and (right) BMUs of (top) case study 1 – NIR of four foods and (bottom) thermal profiles of
nine groups of polymers.
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(600) far exceeds the number of samples (72) and as such
the samples are well separated. The map of case study 2 is
somewhat more crowded with a ratio of cells : samples of
around 2 : 1 and as well will see in the section on ‘Hit his-
tograms’, some cells are the BMUs of more than one sam-
ple. However still the samples are reasonably well spread
out.
The SOM map visualisation has some advantages over

the corresponding PC scores plot. First of all the full
space is used efficiently. In PC scores plots sometimes
there can be crowded as there may be many samples
that have to be represented in scores space. In other
cases, the space is used inefficiently with lots of blank
space. The second advantage is that there is no need to
choose which PCs are to be used for visualisation.
Third, there are many more options for graphical repre-
sentation as discussed in this paper.
Figure 3 represents samples projected onto the scores of

the first two PCs for case studies 1 (NIR of food) and 2
(polymers), with a corresponding SOM representation
together with BMUs. For case study 1, although the
groups are tightly clustered, the majority of the PC space
is wasted, and basically meaningless as there are no sam-
ples and no information available for the “empty” regions.
The groups are so tightly clustered that we cannot see any
structure within the groups. For case study 2, again much
of the PCspace is wasted, and the groups overlap consider-
ably, the symbols becoming quite crowded and hard to
distinguish. These problems are no longer disadvantages
in the SOMs. In addition there are a large number of ways
of shading and representing symbols.
People that are not trained data analysis experts often

find SOMs easier to understand and interpret, a map
being more intuitive than a scores plot or complex
graph.
Note that BMUs can also be used for predicting the

provenance of unknown samples, or a test set, simply by
seeing which places in the map they fit into. This con-
cept of having a “board” where unknown samples are
slotted into is also intuitively easier for most users to
understand than predicted positions of points on a
graph.

Hit histograms
A hit histogram can be consider as a three dimensional
projection of the BMU map. The hit histograms for case
studies 1 and 2 are illustrated in Figure 4. In each cell
that corresponds to a BMU for the training set, there is
a vertical bar that represents the hits. Each sample in
the training set will be represented on the map.
For case study 1, there are 72 samples and each hits a

different cell in the map, so there are 72 vertical bars.
The map is of size 30 x 20, or consists of 600 cells, so
there is plenty of room for the samples to spread
around. We notice that for case study 2, there are 293
samples, or roughly half the number of samples com-
pared to the map. Some samples have the same cell for
their BMU, for example, there are several samples of
HDPE - see Figure 3 for interpretation of symbols - on
the bottom right corner that overlap with each other.
This is not clear on the BMU map, which is clarified in
the hit histogram.
If there is more than one sample associated with an

individual BMU, then either this is tolerated or a map
with more cells can be generated. The problem with
maps that have more cells is that they are slower to
train. For case study 2, most people would tolerate a
small level of overlap.

Class map
If samples fall into groups, or classes, this additional
information can be used to shade the background on
the SOM. A cell is shaded in the colour of its closest
BMU. If more than one BMU is equidistant from the
cell, it is shaded in a combination of colours, according
to how many BMUs from each group it is closest two.
For example if a cell is closest to two BMUs from class
A and one from class B, it is shaded in 2/3 the colour of
class A and 1/3 of class B. The class diagrams for case
studies 1 and 2 are illustrated in Figure 5. In the right
column, the BMUs are also presented.
Different types of structure can be represented on

such diagrams. For case study 2, we would classify the
samples into amorphous or semi-crystalline or else into
one of nine groups. The two types of information can

Figure 4 Hit histograms for (a) left : case study 1 (b) right : case study 2.
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be presented on a single diagram. The background
represents the two main types of polymer, whereas the
BMUs represent the nine groups, as demonstrated in
Figure 6.

Unified distance matrix
The U matrix (or Unified Distance Matrix) was first
described by Ultsch and Siemon [60]. The aim of a U-
Matrix is to show the similarity of a unit to its neigh-
bours and hence reveal potential clusters present in the
map. If there are classes present in the data, then the
border between neighbouring clusters can be interpreted
as a class border. The ‘unified distance’ of each unit is
calculated as the sum of the similarities between the
weight vector of a map unit and the weight vectors of
its immediate neighbours. The lower it is the more simi-
lar the neighbouring cells are. When going from one
class to another, we anticipate that the barrier will be
high.
A U matrix ideally separates different groups. Figure 7

represents the U matrices for case studies 1 and 2,
which can be represented as flat projections or in three
dimensions. These should be compared to Figure 5.

Consider case study 1. Corn margarine is on the bottom
right and can be seen to be quite different to the others.
Safflower oil and corn oil are on the left and are seen to
be fairly similar. Sometimes the original division of sam-
ples into groups is not always reflected in large differ-
ences in the corresponding spectra. A close examination
of the U matrix for case study 2 suggest that there is
some substructure in certain of the polymer groups.

Component planes
Each variable has its own component plane. Figure 8
represents component planes for three of the NIR wave-
lengths. Each has a different profile. Variable 1 has a
very high intensity in the top right hand corner, suggest-
ing it is highly diagnostic (or of high intensity) for Olive
oil. It has its lowest intensity in the bottom centre
group (Safflower oil). Variable 2 is highly intense in
corn margarine but of low (or negligible) intensity for
all the other groups. Variable 3 is primarily diagnostic of
corn margarine and olive oil. This representation is a
slice through the weights vector, scaling the highest (or
most positive) weight to 1 and the lowest (or least posi-
tive) to 0 for each of the variables.

 

Figure 5 Class diagrams of (top) case study 1 and (bottom) case study 2. BMUs are indicated in the right hand column.
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Component planes can be regarded as an analogue of
loadings plots, allowing one to determine which variables,
if any, are markers (or diagnostic) of a group of samples.
There are a number of ways of doing this, but one is to
see how similar a component plane of a variable is to its
class component plane [56] . A class component plane
can be represented by 1s for all cells are closest to BMUs
for that class, 0 for cells that are closest to BMUs for
another class, and an intermediate value if there are
neighbouring BMUs from the class of interest and one or
more other classes, rather like the class maps, but in this
situation each single class has its own corresponding
plane. All component planes for the variables are likewise
scaled between 0 and 1. Multiplying the two and sum-
ming provides an index for how strongly a variable repre-
sents a particular class and can be employed as a form of
variable selection or ranking. If there are two classes (or
groups) in the data it is possible to subtract the index of
one class (B) from that of the other (A). A positive value
represents a marker for class A and a negative value for
class B. The magnitude of this difference allows ranking
of variables according to their perceived relative impor-
tance as markers. Where there are more than two groups,
the index can be calculated for each of the groups, and
subtracted from the index calculated from the groups left
out. For example a marker for class A would have a posi-
tive value if the index for class A minus the index for all
other groups together is positive.

Supervised SOMs
Method
SOMs as originally described were primarily for visuali-
sation or exploratory data analysis. However adaptations
have been described that allow SOMs to be used in a

supervised method, that is for predictive modelling
[55,56,61-63].
Figure 9 illustrates the main idea behind supervised

SOMs. In addition to the variable component planes,
another set of component planes are added that corre-
spond to the class membership. If there are four
classes, there are four such planes. These have a value
of 1 if a cell corresponds to a sample definitely belong-
ing to a specified class, and 0 if definitely not inter-
mediate values are possible where there is uncertainly.
Initially the values are randomly set to a value between
0 and 1. These then are used as extra planes in the
training. The relative weight or importance of the vari-
able and class planes can be adjusted. If the class infor-
mation has a relative weight of 0, the result is the same
as an unsupervised map. If the relative weight is very
high, the objects are in effect forced into a class
structure.
When there are many classifiers it is possible to train

the map separately for each classifier [56] . For case
study 3 (NMR of saliva), the samples can be classified
according to whether they were treated with mouthwash
or according to sampling day or donor. For unsuper-
vised SOMs these factors are mixed together. The
supervised maps are illustrated for each of the three fac-
tors in Figure 10 and compared to unsupervised equiva-
lents. Note that the training for each of the factors is
quite different, so the samples are positioned in different
cells in each of the supervised maps. For the unsuper-
vised SOMs the BMUs are the same, the difference
being the shading. Note also that the maps have not
been fully forced to provide complete class separation
(which can be controlled by adjusting the relative
weights of the two types of information).

Figure 6 Superimposing different types of information.The BMUs shaded dark blue, red and light green represent amorphous polymers (blue
background) whereas the remaining classes represent semi-crystalline polymers (red background).
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Figure 7 U Matrices for (top) case study 1 and (bottom) case study 2.
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Figure 8 Component planes for three variables (or spectral wavelengths) in case study 1 (top), together with the class map (bottom) for
reference.
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However a dramatic difference can be seen when
comparing the supervised and unsupervised version of
the sampling day. In the former the samples are clearly
divided into their day of sampling because this has
forced the model, but in the latter they are more or less
randomly distributed, as this factor has little or no influ-
ence, being a dummy factor (Case study 3). Hence
supervised SOMs can overfit models. However, an
advantage over, for example PLS type approaches is that
it is possible to specify the relative importance of the
classifier and the measured variable, whereas in PLS
they have equal importance.
Supervised SOM representations can, therefore, in

themselves, be misleading under certain circumstances,
but if correctly employed can be used safely in many
situations and as such do provide valuable tools as
described below. Note that there is not much literature
on how to optimise the relative weights of the class and
variable information. However in methods such as PLS,
the relative importance of these two types of information
is usually fixed so that they are equal, and an advantage
of supervised SOMs is that this can be adjusted.

Determining significant variables
One of the most important uses of supervised SOMs
involves determining what variables are important
[55,56] for the purpose of defining a class or group of
samples, often called marker variables. These may, for

example, be characteristic chromatographic peaks or
wavelengths. The SOMDI (SOM Discrimination) helps
define which variables are significant. The principles are
similar to those described in the section on ‘Component
plans’, with a number of additional features. The first is
that maps can be forced (or trained) separately for each
type of grouping. For case study 3, there are three types
of grouping, so an unsupervised SOM would mix these
together. A supervised SOM would distinguish these
causes of variation and hence can be employed in cases
where there several different factors.
Figure 11 illustrates the component planes for two

variables, one a marker for treatment in case study 3,
and one for donor J in the same case study. These com-
ponent planes should be compared to the supervised
SOMs in Figure 10. For donor J note a dark red cluster
of cells in the bottom right of the map, and compare to
the light cells (representing high weights) in the compo-
nent plane in Figure 11. Remember too that the compo-
nent planes for donors and treatment type are not
comparable. This allows different variables to be found.
For each class, variables can be ranked according to the
similarity of their (supervised) component plane and the
supervised map for the corresponding class and factor.
Although a similar exercise could also be performed

for the unsupervised map, this only makes sense if the
class of interest is the predominant factor and shows
grouping in the map.

Variables 

Classifiers 

Figure 9 Principles of supervised SOMs.
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Determining the number of significant variables
In this section we describe how to determine which
variables are most significant, or are the most likely to
be markers, for each class or grouping. However this
does not necessarily mean they are significant, it simply

ranks variables in order of importance. In case study 3,
we expect there to be several strongly significant vari-
ables for the treatment type, but none for the sampling
day, which is a dummy variable. Yet all variables will be
ranked for each type of factor.

  Unsupervised   

 

  Supervised   

Treatments (2 groups) 

 

 

 

Sampling days (3 days) 

 

 

 

Donors (16 donors) 

 

 

 

Figure 10 Comparison of Unsupervised and Supervised SOMs for case study 3 (NMR of saliva) trained according to each of the possible three
factors or classifiers. Training set BMUs are indicated on the class plots.
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There are a number of ways of determining signifi-
cance. One way [55] is to reform the map many times,
from different random starting points. A factor that is
significant will remain significant (or a “positive marker”)
over all the iterations. A variable this is not significant
will only randomly appear on the list as a positive mar-
ker, and will sometimes appear as a negative marker. If
the SOM is reformed 100 times, then a marker that
appears to be a positive marker in all 100 iterations can
be viewed as having 99% confidence of being a true mar-
ker. A marker that is positive some of the time and nega-
tive other times is not a stable marker and therefore not
considered significant. Of course the more the times the
SOM is formed the higher the confidence level. It is
recommended to form models around a hundred times,
to obtain a 99% confidence level, unless the number of
samples is much less than this. Naturally this method
requires good computing power. If 10,000 iterations are
required to form a SOM, then this is repeated 100 times,
1 million iterations are needed. This can be expedited
using parallel processors, such as quadcore or even clus-
ter computers, using for example parallel processing in
Matlab using Linux. Although many packages may have

been written prior to the widespread advent of parallel
processors, it is a simple task to code SOMs into most
modern environments using widespread programming
tools.

Predictive modelling
It is possible to perform predictive modelling to deter-
mine what class an unknown is a member of. In such
circumstances the sample is not part of the original
training set, but after training, a test set of samples that
are left out [3] can then be assessed. The BMU of each
sample in the test set can then be obtained, and the %
CC (percentage correctly classified) can be calculated. If
the BMU of the test set sample is on the boundary of
two classes, then the sample is apportioned to each
class, for example, if a BMU for a test set sample is
equidistant between the BMU of training set samples
from classes A and B, it is assigned as belonging 50% to
each of these classes. If this happens a lot, one solution
would be to increase the resolution of the map.
Using an independent test set protects against overfit-

ting. By increasing the relative importance of the classi-
fier, apparently excellent separation between groups can
be obtained but this is not always meaningful. An exam-
ple is sampling day in case study 3 (Figure 10). Whereas
the %CC of the training set is 92.36%, that for the test set
is 38.19%, only slightly above a random model of 33.33%
as there are three sampling days [55]. For treatment, the
%CC for the training set of 94.72% is reduced to 70.79%
in the test set which is well above a random model.
Another problem arises if new (unknown) samples are

members of none of the predefined groups. We will
show how to deal with this in the next section.

SOMs in quality control
SOMs have a role in QC (Quality Control) or MSPC
(Multivariate Statistical Process Control) [57]. Such pro-
blems involve one class classifiers [64]. The NOC (Nor-
mal Operating Conditions) samples are a set of samples
that are considered “normal”, that is of acceptable qual-
ity. The aim of MSPC is to determine whether future
samples belong to this group and if so with what confi-
dence. If they do not there may be some problem with
the process.
A SOM can be obtained from the NOC samples. A

problem here is that an unknown sample will always
find its place on the map, as there will always be a
BMU for any sample, even if the match is not very
good. An additional measure, that is not normally taken
into account, determining whether a sample is a mem-
ber of a group or not, is how well the sample fits into
the map [57].
Figure 12 illustrates the principle using case study 4

(the pharmaceutical process). The map (represented
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Figure 11 Component planes for supervised SOMs for case study 3,
illustrating marker variables for donor J and for treatment. These
should be compared to the supervised SOMs in Figure 10. Note
light colours indicate a high level of the variable.
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here as a U matrix) consists of 30 samples chosen to be
the NOC region. There is only one group (or class) of
samples under consideration, and in this situation the
question is whether an unknown or new sample fits well
into the pre-existing group rather than which of a set of
pre-existing groups a sample belongs to. The way to do
this is to look at the similarity (or distance) of the
unknown sample to all cells in the map. If it is far from
all the cells then it does not belong to the existing
group and as such would be regarded as out of control.
If it is close to some of these cells (in other words, simi-
lar to some samples from the NOC region) it fits into
the group. In the figure a grid is formed of the distances
(or dissimilarities) to the map. The left hand diagram
represents a sample that fits well into the class model,
and so can be regarded as in control, and the right hand
a sample that does not fit well and is out of control.
This additional measure can be used in other situa-

tions, for example, we may measure the properties of 6
polymers, and want to test whether an unknown sample
is a member of the prefedined group or a new group
that was not part of the original test set.

Conclusion
SOMs have a strong potential in chemistry. Although
there is a small and growing literature and reports
have been available over many years, as yet these tech-
niques are not as widespread as more common meth-
ods such as PCA and PLS, probably because many
hands-on chemists mainly want to use commercial
plug-in packages. Yet SOMs have tremendous flexibil-
ity and many of the limitations of the past, such as
problems with computer power, are no longer so ser-
ious. In analytical chemistry, SOMs can be adapted to

specific situations, for example by using supervised
SOMs or in Quality Control, and so have a much
wider applicability than just visualisation.
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