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Electrospray tandem mass spectrometric analysis
of a dimeric conjugate, salvialeriafone and related
compounds
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Abstract

Background: Electrospray tandem mass spectrometry approach is widely used for the rapid characterization of
natural products. This paper describes the gas-phased ESI-MS/MS fragmentation of abietane-type diterpenoids and
their novel dimeric conjugate, salvialeriafone (1) using both positive and negative ion electrospray ionization
quadropole time-of-flight mass spectrometry (ESI-QqTOF-MS/MS) hybrid instrument. Diterpenoids are widely
distributed throughout the plant kingdom and posses interesting biological activities.

Results: ESI-QqTOF-MS (positive ion mode) of diterpenoids 1–6 under collision-induced dissociation tandem mass
spectrometric analysis (CID-MS/MS) showed the characteristic losses of water, carbonmonoxide and propene
molecules, while analysis in negative ion mode showed the characteristic losses of water, carbon monoxide,
methane molecules and methyl radical. Results demonstrated the differences in the product ions and base peaks
due to the differences in the skeleton. A novel dimeric conjugate, salvialeriafone (1) showed characteristic
fragmentation pattern and was found to be more prone to form radical ions, as compared to monomeric
diterpenoids. The fragmentation pathways of characteristic fragments were proposed with the aid of HRESIMS.

Conclusions: Extensive tandem mass spectrometric studies of salvialeriafone (1) and related diterpenoids 2–6 were
conducted and their characteristic fragments were identified. The knowledge of the fragmentation pattern of these
diterpenoids will be useful for the characterization of new dimers of this class of compounds.
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Introduction
Diterpenoids constitute a large class of chemically diverse
metabolites, widely distributed throughout the plant king-
dom with more than 12,000 known examples [1]. Most of
the diterpenoids posses diverse biological properties, such
as antitumor [2], cytotoxic, antibacterial [3], antiplasmo-
dial [4], leishmanicidal, gastroprotection, molluscicidal [5],
antifungal [6], insecticidal [7], rodenticidal [8] and anti-
proliferative activities. Some of them have effects on car-
diovascular and central nervous systems [9].
The genus Salvia constitutes the largest of the plant

family Labiatea with 900 species wide-spread throughout

the world. The genus has yielded various classes of nat-
ural products, including the major class of terpenoids,
particularly the diterpenoids. Diterpenoids of genus Sal-
via are abietane and neo-clerodane types [10]. More
than 400 diterpenoids with different abietane skeletons
have been isolated from Salvia plants [11]. Diterpenoids
from Salvia species showed antinflammatory, antidia-
betic, ipolipidemic and antiaggregating effects [9]. We
have recently isolated salvialeriafone, a dimeric conjugate
from Salvia leriaefolia which exhibit in vitro antiproli-
ferative activity against the human cervical cancer cell
line (Hela) [12]. S. leriaefolia is used for the treatment of
stomach and chronic disorders in Iran.
Many analytical methods including thin-layer chroma-

tography (TLC) [13], high-performance liquid chromatog-
raphy (HPLC) [14-17] and liquid chromatography–mass
spectrometry (LC-MS). [11,18-21] have been used for
the analysis of chemical constituents of Salvia plants.
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Tandem mass spectrometric studies of natural products
revealed the identification of key fragments which can
be helpful for their rapid characterization in the plant
extract utilizing LC-MS/MS approach, particularly for
the thermally labile compounds. The knowledge of
CID-fragmentation pattern of the precursor protonated
(or deprotonated) molecule is essentially required prior
to the analysis quantification of the desired compounds
by LC-MS/MS.
In continuation of our research on the novel

characterization and the fragmentation routes of natural
product compounds [22-24], we report in this manu-
script for the first time the ESI-MS and CID-MS/MS
(+ and – modes) of salvialeriafone and its related abie-
tane diterpenoids isolated from S. leriaefolia. Knowledge
about the characteristic fragments and neutral losses of
diterpenoids can be immensely helpful for the rapid
identification of these compounds in future phytochem-
ical studies.

Material and methods
Standard and reagents
Chemicals and solvents were of analytical and HPLC
grades, respectively, and were purchased from Aldrich-
Sigma (USA). Deionized water (Milli-Q) was used in the
study. Standard diterpenoids were obtained from the
Molecular Bank facility at the Dr. Panjwani Center for
Molecular Medicine and Drug Research (International
Center for Chemical and Biological Sciences), University
of Karachi. The isolation procedure and spectroscopic
data of the standard diterpenoids has already been
reported [12].

ESI-QqTOF-MS analysis
Positive ion mode
The diterpenoids were dissolved in methanol, and working
dilution was prepared in 1:1 acetonitrile-water containing
0.1% trifluoroacetic acid and analyzed by electrospray
ionization (ESI) and collision-induced dissociation (CID),

1
2

3
4

5
6

7

8

9
10

11
12

13

14

15

16
OH

17

18

O

19

O

R1

R2

Name R1 R2 Δ

2 Dehydroroyleanone CH3 - Δ6,7

3 Deacetylnemorone CHO OH -

4 7α-Methoxyroyleanone CH3 OCH3 -

1
2

3

4

5
6

7

8

9
10

11
12

13

14

15 16

17

18 19
12'

1'
2'

3'
4'

7'

9'
10'

11'

O

17'

15'

O

OH

18' 19'

14'

8'

5'
6'

O

OH
13'

20'
16'

HOH

OH

A B

C

C'

B' A'

Salvialeriafone (1)

H

O

O

OH

HC
O

OH

OH

O

O

Cariocal (5) Salvialerione (6)

Figure 1 The structures of diterpenoids 1–6.
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positive ion mode, on QqTOF-MS/MS instrument
(QSTAR XL mass spectrometer Applied Biosystem/ MDS
Sciex, Darmstadt, Germany) at room temperature. High-
purity nitrogen gas was used as the curtain gas and colli-
sion gas delivered from Peak Scientific nitrogen generator.
The ESI interface conditions were as follows: ion spray ca-
pillary voltage of 5500 V, curtain gas flow rate 20 L min-1,
nebulizer gas flow rate 30 L min-1, DP1 60 V, DP2 15 V,
and focusing potential of 265 V. The collision energy was
swept from 05 to 45 eV for MS/MS analysis. Calibration
was performed by using internal calibration process.
Sample was introduced into the mass spectrometer using
a Harvard syringe pump (Holliston, MA) at a flow rate of
5 μL/ min. MS2 Experiment was conducted by selecting
the product ion.

Negative ion mode
The diterpenoids were dissolved in methanol and working
dilutions were prepared in 1:1 acetonitrile-water contain-
ing 4 mM ammonium acetate (0.2 ng/uL taurochloric acid
was used as an internal calibrant) and analyzed by electro-
spray ionization (ESI) and collision-induced dissociation
(CID) negative ion mode on QqTOF-MS/MS instrument
(QSTAR XL mass spectrometer Applied Biosystem/ MDS

Sciex, Darmstadt, Germany) at room temperature. High-
purity nitrogen gas was used as the curtain gas and colli-
sion gas delivered from Peak Scientific nitrogen generator.
The ESI interface conditions were as follows: ion spray
capillary voltage of −4200 V, curtain gas flow rate 20 L
min-1, nebulizer gas flow rate 25 L min-1, DP1 -55 V,
DP2 -15 V, and focusing potential of −265 V. The collision
energy was swept from 20 to 55 eV for MS/MS analysis.
Calibration was performed using internal calibration
process. Sample was introduced into the mass spectrom-
eter using a Harvard syringe pump (Holliston, MA) at a
flow rate of 5 μL/ min. MS2 Experiment was conducted by
selecting the product ion.

Results and discussion
Salvialeriafone (1), along with other diterpenoids 2–6
(Figure 1), were investigated by the positive and negative
ESI-QqTOF-MS analysis. Fragmentation pattern and the
product ion abundance were found to be significantly
influenced by the variation of collision energy. Therefore
MS/MS spectra of all compounds were screened against
collision energies, ranging between 20 to 55 eV (with
stepping up of 5 eV each time). Relative intensities of
product ions of [M+H]+ and [M-H]- versus collision

Figure 2 Relative intensity of product ions versus collision energy in the product ion spectra of compound 1 A. in positive ion mode,
B. in negative ion mode.
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Table 1 Positive ionization HR-ESI-MS data and common neutral losses of diterpenoids 1–6

S.No. [M+H]+ Exact
Mass

Observed
mass

Error
(ppm)

[M+H-H2O]
+ [M+H-CO]+ [M+H-C3H6]

+ [M+H-2H2O]
+ [M+H-

C3H7]
+.

[M+H-C3H6-
H2O]

+
[M+H-

H2O-CO]
+

[M+H-C3H6-
H2O-CO]

+
Base Peak

1 C39H49O7
+ 629.3472 629.3444 −4.58 611 - 569 - 568

[M+H-
H2O-C3H7]

+.

569 - - 569
[M+H-C3H6-

H2O]
+

2 C20H27O3
+ 315.1965 315.1983 5.49 297 - 273 - 272 255 269 227 245

[M+H-C3H6-C2H4]
+

3 C20H27O5
+ 347.1863 347.1871 2.02 329 319 - 311 - - 301 255 283

[M+H-2H2O-CO]
+

4 C21H31O4
+ 347.2227 347.2226 −0.53 315

[M+H-
CH3OH]

+

- - - - 297
[M+H-

CH3OH-H2O]
+

255
[M+H-

CH3OH-H2O-
C3H6]

+

269
[M+H-
CH3OH-
H2O-CO]

+

269
[M+H-

CH3OH-H2O-CO]
+

5 C20H27O5
+ 347.1863 347.1862 −0.57 329 - 311 - - 301 259 281

[M+H-2H2O-CH2O]
+

6 C19H23O3
+ 299.1641 299.1674 10.79 281 - - - 256 239 253 211 256

[M+H-
C3H7]

+.

M
usharraf

et
al.Chem

istry
CentralJournal2012,6:120

Page
4
of

9
http://journal.chem

istrycentral.com
/content/6/1/120



energy ranging were plotted for salvialeriafone (1)
(Figure 2). It was observed that the product ions forma-
tion was at best at collision energy 40 eV (Figure 2A)
in positive ion mode, whereas in negative ionization
mode the product ions were best formed at the optimum
energy collision energy 50 eV (Figure 2B).

Fragmentation pattern in positive ionization
All diterpenoids produced abundant [M+H]+ ions which
were selected as the precursor ions to produce MS/MS
spectra, but the [M+H]+ ion is absent in the MS spectra
of compound 5 which gives the dehydrated peak [M+H-
H2O]+, therefore this ion was selected as a precursor ion
to produce MS/MS spectra of compound 5. HRESIMS
data of all compounds in positive ion mode is presented
in Table 1. All the compounds showed similar fragmen-
tation pattern with minor differences and similar losses
of H2O, CO, C3H6 (Table 1), but the extent of fragmen-
tation and optimium collision energy vary due to differ-
ent substituents and presence of double bonds in the
ring. All these diterpenoid 2–6 showed intense fragmen-
tation and neutral losses, while compound 1 which is a

conjugate of two diterpenoids showed very low fragmen-
tation even at high collision energy. It showed the loss
of propene after the water removal as a base peak, i.e.
[M+H-H2O-C3H6]

+ at m/z 569.2839 (C36H41O6
+, calc.

569.2897). The other ions were produced at m/z
568.2786 (calc. 568.2819) [M+H-H2O-C3H7]

+, 611.3297
(calc. 611.3367) [M+H-H2O]+, 553.2412 (calc. 553.2584)
[M+H-C3H6-CH4]

+. Fragments due to the loss of CO
and other consequent lossess did not appear in the MS/
MS spectra of compound 1 (Figure 3A).
The fragmentation pattern of momeric diterpenoids

2–6 were studied in order to further validate the neutral
lossess and fragmentation pattern of the dimeric conju-
gate, salvialeriafone (1). All diterpenoids showed the
removal of water molecule, i.e. [M+H-H2O]+ except
compound 4 which showed the removal of methanol
due to the presence of methoxy group followed by the
loss of water molecule. A loss of water molecule fol-
lowed by the loss of CO was observed in compounds 2,
3, 5, and 6, while compounds having OH group in ring
B (compounds 3 and 5) showed the loss of two water
molecules, i.e. [M+H-2H2O]+. All analyzed compounds

Figure 3 Product ion spectra of Salvialeriafone (1), A. recorded on positive ion mode at collision enegy 40 eV, B. recorded on negative
ion mode at collision energy 50 eV.
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showed the removal of propene moiety directly from the
[M+H]+ and/or after the removal of H2O and CO
groups. These compounds also showed the neutral los-
sess of ethene and butane molecules. Compounds 3 and
5 having same molecular formula but difference of skel-
eton in ring B produced differentiated base peak and
some other abundant peaks (Table 1). Compound 3
showed the base peak at m/z 283 [M+H-2H2O-CO]+,
while compound 5 showed the base peak at m/z 281
[M+H-2H2O-CH2O]+ and compound 5 also showed the
intense fragments at m/z 217 and 205, while the peak at
m/z 319 [M+H-CO]+ is absent in compound 5. Like
compound 1, compounds 2 and 6 also showed the pres-
ence of abundant peaks of radical cations due to the loss
of propyl radical. Unlike monomeric diterpenoids the
product ion spectra of compound 1 was very simple, hav-
ing only a few peaks in the range of ≥ m/z 486. However,
being a dimer, compound 1 possess two isopropyl and
four hydroxyl substituents, but showed the loss of

substituents equivalent to the loss which are derived
from a monomeric diterpenoid unit. Fragmentation path-
way for the fragments formed due to the removal of CO,
C3H6, and H2O has also proposed as and shown in
Scheme 1 (compound 2 is taken as a representive of
monomeric diterpenoids).

Fragmentation pattern in negative ionization
All diterpenoids 1–6 produced abundant [M-H]- ions,
which were selected as the precursor ions to produce
MS/MS spectra. The QTOF-MS/MS the low-energy col-
lision induced dissociation tandem mass spectrometry
experiments (CID-MS/MS) were optimized and devel-
oped through ramping collision voltage to induce more
product ions and the optimum collision energy for
recording product ion spectra of diterpenoids in negative
ion mode is ranging from 30 to 45 eV HRESIMS data of
all compounds in negative ion mode is presented in
Table 2. In negative ion mode, all the compounds
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Scheme 1 Proposed fragmentation pathway for the fragments of compound 2 formed due to the removal of CO, C3H6, and H2O
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Table 2 Negative ionization HR-ESI-MS data and common neutral losses of diterpenoids 1–6

S.No. [M-H]- Exact
Mass

Observed
mass

Error
(ppm)

[M+H-H2O]
- [M+H-CO]- [M+H-CH4]

- [M+H-CH3]
- [M+H-

C3H7]
-.

[M+H-C3H7- CO]
-. [M+H-

H2O-CO]
-

[M+H-CH4-CO]
- Base Peak

1 C39H49O7
+ 627.3327 627.3372 7.1286 - - - - 584 556 538

[M+H-C3H7-
CO-H2O]

-.

- 584
[M+H-C3H7]

-.

2 C20H27O3
+ 313.1809 313.1789 −6.4452 - 285 297 298 - - - 269 285

[M+H-CO]-

3 C20H27O5
+ 345.1707 345.1694 −3.9046 327 317 - - - - 299 - 317

[M+H-CO]-

4 C21H31O4
+ 345.2071 345.2075 1.0622 315

[M+H-CH2O]
-

- - 330 - - 287
[M+H-CH2O-CO]

-
-

5 C20H27O5
+ 345.1707 345.1698 −2.7458 327 317 - - - - - - 179

6 C19H23O3
+ 297.1496 297.1512 5.3227 - 269 281 282 - - - 253 269

[M+H-CO]-
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showed different fragmentation pattern due to different
substituents and the presence of double bonds in the
ring. These compounds showed the common losses of
H2O, CO, CH4, and CH3 radical, similar to positive ion
mode, except the loss of CH4, and CH3 radical Table 2.
Compound 1, which is a dimer of two diterpenoids,

showed the loss of propene radical as a base peak i.e.
[M-H-C3H7]

-. at m/z 584.2777 corresponding to the mo-
lecular formula C36H40O7 (calc. 584.2779). The other
ions were found to be at m/z 566 [M-H-C3H7-H2O]-,
556 [M-H-C3H7-CO]-, 538 [M-H-C3H7-H2O-CO]- and
528 [M-H-C3H7-2CO]- (Figure 3B). But the lossess of
methane and methyl radical were not appeared in the
product ion spectra of compound 1, in comparision with
other monomeric diterpenoids.
In monomeric compound 2, the removal of CO, i.e.

[M-H-CO]- yielded a base peak at m/z 285, correspond-
ing to the formula C19H25O2 (observed 285.1923,
calc. 285.1923). The other abundant ions were m/z 297
[M-H-CH4]

-, 269 [M-H-CH4-CO]- and 227 [M-H-CH4-
CO-C3H6]

-, while the minor ions at m/z 298 [M-H-
CH3]

-, 270 [M-H-CH3-CO]- and 148 [M-H-CH3-CO]-

were produced due to the loss of CH3 radical. Com-
pounds 3 and 5, having same molecular formula, showed
similar losses of H2O, CO, CO2 from the precursor ions.
The ions are produced at m/z 327 [M-H-H2O]-, 301
[M-H-CO2]

-, 317 [M-H-CO]- , 299 [M-H-CO-H2O]- and
271 [M-H-2CO-H2O]-. As the compound 5 have differ-
ent skeleton in which the ring B has been modified it
produce a base peak at m/z 179.0734 due to the

fragment ion C10H11O3
- (calc. 179.0713), while in com-

pound 3 the base peak was appeared at m/z 317 [M-H-
CO]-. Compound 6 yielded the base peak at m/z 269
[M-H-CO]- and the other ions were found to be at m/z
281 [M-H-CH4]

-, 282 [M-H-CH3]
-., 253 [M-H-CO-

CH4]
- and 254 [M-H-CH3-CO]-. The product ion spec-

tra of compound 1 in negative ionization was very sim-
ple with only a few peaks in mass range of ≥ m/z 499.
Unlike compound 1, compounds 2–6 did not show the
lossess of propene and propyl radical in negative
ionization. Fragmentation pathway for the fragments
formed due to the removal of CO, CH4, and CH3

through negative ionization has also been proposed and
shown in Scheme 2 (compound 6 is taken as a represen-
tive of monomeric diterpenoids).

Conclusion
In conclusion, fragmentation pattern of six abietane-type
diterpenoids and one novel dimeric conjugate diterpen-
oid, salvialeriafone (1) have been studied by using ESI-
QqTOF-MS/MS in both positive and negative ionization
mode. It has been observed that many characteristic
neutral losses and formation of key fragment ions can
provide important structural information about the basic
skeleton of abietane-type diterpenoids having dimeric
linkages. The dimeric conjugate showed somewhat dif-
ferent pattern and less fragmentation as compared to
monomeric diterpenoid analogue. The knowledge of
fragmentation pattern is immensely helpful for the rapid
characterization of abietane-type diterpenoids through
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liquid chromatography coupled with mass spectrometry
in complex mixtures such as plant extracts or herbal for-
mulations by utilizing their analytical amount.
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