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Abstract

Background: Computational pharmacology can uniquely address some issues in the process of drug development by
providing a macroscopic view and a deeper understanding of drug action. Specifically, network-assisted approach is
promising for the inference of drug repurposing. However, the drug-target associations coming from different sources
and various assays have much noise, leading to an inflation of the inference errors. To reduce the inference errors, it is
necessary and critical to create a comprehensive and weighted data set of drug-target associations.

Results: In this study, we created a weighted and integrated drug-target interactome (WinDTome) to provide a
comprehensive resource of drug-target associations for computational pharmacology. We first collected drug-target
interactions from six commonly used drug-target centered data sources including DrugBank, KEGG, TTD,
MATADOR, PDSP Ki Database, and BindingDB. Then, we employed the record linkage method to normalize drugs
and targets to the unique identifiers by utilizing the public data sources including PubChem, Entrez Gene, and
UniProt. To assess the reliability of the drug-target associations, we assigned two scores (Score_S and Score_R) to
each drug-target association based on their data sources and publication references. Consequently, the WinDTome
contains 546,196 drug-target associations among 303,018 compounds and 4,113 genes. To assess the application of
the WinDTome, we designed a network-based approach for drug repurposing using mental disorder schizophrenia
(SCZ) as a case. Starting from 41 known SCZ drugs and their targets, we inferred a total of 264 potential SCZ drugs
through the associations of drug-target with Score_S higher than two in WinDTome and human protein-protein
interactions. Among the 264 SCZ-related drugs, 39 drugs have been investigated in clinical trials for SCZ treatment
and 74 drugs for the treatment of other mental disorders, respectively. Compared with the results using other
Score_S cutoff values, single data source, or the data from STITCH, the inference of 264 SCZ-related drugs had the
highest performance.

Conclusions: The WinDTome generated in this study contains comprehensive drug-target associations with
confidence scores. Its application to the SCZ drug repurposing demonstrated that the WinDTome is promising to
serve as a useful resource for drug repurposing.

Background
Computational pharmacology plays an important role in
the drug development, given that the traditional
approaches have the low success rate and the increasing

cost [1,2]. It provides a macroscopic view and a deeper
understanding of the molecular mechanisms of drug
action by integrating multiple data sets through a variety
of informatics approaches [3]. Among these approaches,
network-assisted method provides a unique platform by
interrogating the relationships among drugs, proteins,
and diseases to predict drug repurposing [3,4]. The drug
repurposing (also called repositioning or re-profiling) is
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a process to identify novel indication for already existing
drugs [5]. It is an essential strategy for drug development
due to its capability of identifying novel indications of an
approved drug, which in turn accelerates the drug develop-
ment process [5,6]. Therefore, some studies have applied
the computational approaches to drug repurposing based
on drug-disease/side-effect association [7], genome-wide
association studies (GWAS) [8], or gene expression profiles
[9]. However, inferences of new drug indication heavily
rely on the drug-target association (also called interac-
tome). Therefore, reliable drug-target data are fundamental
and crucial for supporting drug action inferences.
During the last decade, many effects involving a multi-

tude of methods has been made to the determination of
the interactions between drugs and their targets. A number
of databases have been created to systematically store the
drug-target interactions such as SuperTarget [10], Psy-
choactive Drug Screening Program (PDSP) [11], Drug
Gene Interaction Database (DGIdb) [12], and STITCH
(’search tool for interactions of chemicals’) [13]. According
to the nature of data generation, these existing drug-target
databases can be categorized into three groups: expert-
curated [10-12,14-20], predicted [12,17,21,22], and integra-
tive [10,12,13,21-29]. The expert-curated drug-target asso-
ciations are manually extracted from the literature,
including the small-scale studies and high-throughput
screening (HTS). The small-scale studies possess the
highest reliability while the HTS studies have issues about
systematic errors on quality control and hit selection [30].
Predicted drug-target associations are inferred from known
drug targets or other drug actions. Although the reliability
of this type of data is not comparable to that of the expert-
curated associations, the predicted associations provide
researchers potential drug targets or off-targets for further
investigation [21]. The integrative databases consist of the
expert-curated and predicted associations such as STITCH,
whose quality relies on the original data sources and com-
prehensive evaluation of the data. Additionally, it is not
easy to trace back to the original data and assess their relia-
bility if the integrated database did not provide the original
data sources. Moreover, addressing the issues of data
redundancy and both drug and target identifiers’ heteroge-
neities is another major problem during the data
integration.
In this study, we integrated drug-target associations from

six commonly used drug-target centered data sources and
assigned a reliability assessment for each drug-target asso-
ciation to create one weighted and integrative drug-target
interactome (WinDTome). In the process of building the
WinDTome, we addressed the intrinsic issues of redun-
dancy and heterogeneous identifiers by using the public
drug-centered databases and gene-centered databases. The
WinDTome will serve as a fundamental with assessments

for the network-assisted computational pharmacology for
drug repurposing. To illustrate its application, we used
schizophrenia (SCZ) as an example. We started with the
known medicines used to treat SCZ and SCZ candidate
genes to predict the non-SCZ drugs that might have poten-
tials for SCZ treatments based on the higher confident
drug-target associations in WinDTome and protein-protein
interactions. We inferred 264 drugs that might have poten-
tial to treat the SCZ. Among them, 39 drugs and 74 drugs
have been investigated to treat SCZ and other mental dis-
orders based on the clinical trial records in the database
“clinical trials.gov”, respectively. We further compared the
performance of this process with the results based on other
score cutoff values, single data sources, and the high confi-
dent data from STITCH. The comparative results showed
that the WinDTome is promising for providing the funda-
mental of drug-target interactions for drug repurposing.

Materials and methods
Sources of drug-target interactome
We integrated drug-target interactions that were extracted
from six public data sources. They were DrugBank [14],
Kyoto Encyclopedia of Genes and Genomes (KEGG) Drug
[24], Therapeutic Target Database (TTD) [23], Manually
Annotated Targets and Drugs Online Resource (MATA-
DOR) [10], NIMH Psychoactive Drug Screening Program
(PDSP) Ki Database [11], and BindingDB [15].
DrugBank is a freely available web-enable database that

contains detailed drug data with comprehensive drug target
and drug action information [14]. We downloaded the file
“drugbank.xml” from the DrugBank website on February
2014. From the file, we obtained the drug information such
as drug’s status, descriptive indication, target’s UniProt
accession numbers (ACs), references, and external links to
ChEBI [31], PubChem Compound (CID) and Substance
(SID).
KEGG Drug is a comprehensive information resource

for approved drugs in Japan, USA, and Europe [24]. We
accessed the data of KEGG Drug through KEGG FTP ser-
ver on May 2014, and extracted drugs, targets, and exter-
nal links to DrugBank and PubChem Substance and the
drug targets and corresponding genes’ Entrez Gene IDs.
TTD is a database that contains the known and explored

therapeutic protein and nucleic acid targets, the disease,
pathway information and the corresponding drugs. The
approved drugs, experimental drugs, and clinical trial
drugs, and their primary targets were obtained from a
comprehensive search of literatures and FDA labels [23].
The data set of TTD was downloaded on October 2013.
Drug-target associations along with drug’s status and
structuralized indication are available in the file
“TTD_download.txt”. The drug’s external links to ChEBI,
PubChem Compound, and PubChem Substance were
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obtained from the file “TTD_crossmatching.txt”. The tar-
get’s UniProt ACs are available in the “TTD_uniprot_all.
txt” file.
MATADOR is a resource for direct and indirect pro-

tein-chemical interactions that was assembled by auto-
mated text mining followed by manual curation. Each
interaction contains links to PubMed abstracts or
OMIM entries that were used to deduce the interaction
[10]. The data set of MATADOR was on March 2007.
Drug-target associations, including both direct and
indirect interactions, are available in the “matador.tsv”
file. PubChem Compound CID and UniProt AC were
utilized to represent a drug’s identifier and a target’s
identifier, respectively.
The PDSP Ki database is a repository for numerous

drugs’ and drug candidates’ affinity (i.e., Ki values) infor-
mation [11]. The data was downloaded on January 2011.
We obtained the drug-target associations along with
their references, drug’s PubChem CID, and gene sym-
bols from the “kidb110121.txt” file.
The BindingDB a public, web-accessible database of

measured binding affinities, focusing chiefly on the
interactions of protein considered to be drug targets
with small, drug-like molecules [15]. We downloaded
the data on June 2014. We extracted drug-target asso-
ciations and references from the file “BindingDB_All.
tsv”, in which UniProt AC was used to represent the
target’s identifier. We also extracted the drugs’ external
links to DrugBank, ChEBI, PubChem Compound and
Substance from the TSV file.

Drug and target name normalization
We created the WinDTome that consists of the drug-
target associations from six databases. To normalize
drug and target names from the six sources, we utilized
the drug information from PubChem and gene/protein
information from Entrez Gene and UniProt. PubChem
is an open and comprehensive database with informa-
tion on the biological activities of small molecules col-
lected from 276 data sources. It contains three linked
databases: Substances, Compounds, and Bioassay [32].
In this study, we utilized the Compound CIDs and their
synonyms as a major part of drug normalization. We
first downloaded the “CID-Synonym-filtered” file from
PubChem on April 2014. If external links for PubChem
Compound in the original data sources are not available,
we utilized the string exact matching approach to link
the drug’s names to PubChem CIDs by the synonyms.
For those cannot match to PubChem CID, we kept the
original names from their corresponding data sources.
We assigned a unified identifier (UID) to each drug and
also kept the five identifiers including drug name,
DrugBank ID, PubChem CID, PubChem Substance ID
(SID), ChEBI ID.

In this study, we utilized the gene symbols to repre-
sent the drug targets by matching the gene ID and sym-
bol to UniProt ACs. The human gene information and
annotation are available in the “gene_info” file, which
was downloaded from NCBI Gene on May 2014 [33].
The file provides gene’s ID, name, symbol, and taxon-
omy information. We utilized the gene ID, name, and
symbol to present the drug target and gene taxonomy to
filter out the targets that not belong to human. The
UniProt is built as a depository of protein knowledge
including sequence and functional information [34]. The
data set of UniProt is available at http://www.uniprot.
org/downloads (accessed May 2014). The mapping file
“idmapping.dat” was served as a linkage between
UniProt AC and Entrez Gene ID, and it helps to normalize
heterogeneous target name or identifier in different drug
target databases to Entrez Gene ID.

Drug and target classification
For further exploring the drug and target classification,
we explored the Anatomical Therapeutic Chemical
(ATC) code and Protein Analysis Through Evolutionary
Relationships (PANTHER) protein class tool to classify
the normalized drugs and targets, respectively. The ATC
Classification System, controlled by the World Health
Organization Collaborating Centre for Drug Statistics
Methodology (WHOCC), is used for the classification of
drugs. This pharmaceutical coding system hierarchically
categorizes drugs into different groups based on the
drugs’ therapeutic and chemical properties. In this
study, the drug’s ATC code is obtained from both Drug-
Bank and KEGG. PANTHER is a comprehensive,
curated database of protein families [35]. The analysis
was performed on January 2014. The UniProt ACs used
in PANTHER as protein IDs were converted to Entrez
Gene IDs for being compatible with the unified target
ID in WinDTome. In order to simplify the drug targets’
protein classes, we assigned the “protein class” as level
1 class. In the study, we utilized level 2 classes.

Scoring system
We designed two scoring systems to assess the reliability
of the drug-target associations in the WinDTome: Score_S
and Score_R. For each drug-target pair, the Score_S is its
frequency of the presence in the six sources. If a drug-tar-
get association exists in all the six sources, its Score_S will
be 6, and it was considered a highest reliable association.
As discussed in the introduction section, some drug-

target associations might originated from HTS studies,
which have the limitation of the specificity and accuracy
in drug-target associations. To distinguish the HTS stu-
dies from small-scale studies needs a large amount of
manual checking, which requires extensive time for
domain experts to accomplish it. In order to address this

Huang et al. BMC Systems Biology 2015, 9(Suppl 4):S2
http://www.biomedcentral.com/1752-0509/9/S4/S2

Page 3 of 13

http://www.uniprot.org/downloads
http://www.uniprot.org/downloads


issue, we developed a Score_R to assess a drug-target asso-
ciation’s reliability based on the number of references and
the reference’s specificity. For each drug-target association
(x), Score_R was calculated by the following equation:

SR(x) =
n∑

i=1

dri · tri
f 2ri

n is the number of PubMed references supporting the
association x; ri represents the ith reference supporting
the association x; fr is the number of drug-target asso-
ciations supported by the reference r; dri and tri repre-
sent the numbers of drugs and targets reported in the
reference r, respectively. An HTS study tends to have
either high d and low t or low d and high t. Thus, given
that two references have the same frequency in entire
the data set, the reference of HTS study would have a
lower score than the specific drug-target study does.
Moreover, Score_R was also constructed of an intuitive
assumption: the more references, the higher score.
Thus, Score_R was a score of an accumulation of all the
specificity scores of the references related to a drug-target
association. The higher Score_R of a drug-target associa-
tion represents the higher reliability.

Network-based inference of potential drugs to treat SCZ
To demonstrate the application of WinDTome for drug
repurposing, we inferred the drugs that have not yet
been approved for SCZ treatment (non-SCZ drugs) as
potential SCZ drugs based on the drugs used to treat
SCZ (SCZ drugs) and their known targets. The ratio-
nale of this inference was based on the assumption
that drugs having same targets with SCZ drugs, or
drugs whose targets have direct interactions with SCZ
drug target, might be potential SCZ drugs. In our pre-
vious study, we collected 32 SCZ drugs [36]. In this
study, we updated the drug list by manually checking
the drugs’ indication field in the DrugBank. For each
drug, if the field contains any keyword of “schizophre-
nia,” “schizophrenic,” “schizotypy,” or “schizotypal,” it
may be a known SCZ drug. After manually check, we
obtained 41 SCZ drugs. Then we obtained their targets
from the DrugBank as known SCZ drug targets.
Starting the known SCZ drug targets and drug-target

associations from WinDTome, we first obtained a
group of non-SCZ drugs having associations with SCZ
drugs’ targets. Secondly, from drug-target associations
from WinDTome, we obtained another group of non-
SCZ drugs by requiring their target proteins are
encoded by SCZ candidate genes [37] and these target
proteins have interactions with known SCZ drug target
proteins. The protein-protein interactions used here
were obtained from the Protein Interaction Network
Analysis (PINA) [38] (accessed in December 2012).

During the two processes, we further required the drug-
target associations with Score_S ≥ 3 in WinDTome.

SCZ-relevant clinical trials
To evaluate the potential of the drugs that we inferred to
treat SCZ, we exploited the SCZ-relevant clinical trials col-
lected in the ClinicalTrials.gov (https://clinicaltrials.gov/).
The ClinicalTrials.gov is a web-based resource that pro-
vides the information of publically and privately supported
clinical studies on a wide range of diseases and conditions.
To identify evidences of existing SCZ-relevant clinical
trials to support the predictive potential SCZ drugs, we
searched the drug names against ClinicalTrials.gov by
setting the “Conditions” as “schizophrenia” and the
“Interventions” as the name of each potential SCZ drug.

Results
Overview of the normalized drug-target interactome
After extracting drug-target interactome from the six
databases, we normalized drug names and target names
for uniting identifiers and Entrez Gene IDs, respectively
(Figure 1). In this process, heterogeneous identifiers of
drugs and targets were mapped to the unified identifier
systems (see Materials and Methods) to reduce the
redundant drug-target associations among these sources.
To further purify the data of WinDTome, we removed
the drug-target associations in which 1) the length of
the drug name is less than three, 2) the drug name is a
numerical digit, and 3) the target does not belong to the
human. Thus, we obtained in a total of 546,196 drug-
target associations composing of 303,018 drugs and
4,113 human targets (Supplementary Table S1, Addi-
tional file 1). We further summarized the number of
drugs, targets, and interactions for each database and
their overlap proportion between any two databases
(Table 1). We defined the proportion as the number of
intersections divided by the smaller number of the two
sources to represent the coverage of the overlap in the
smaller data source. Among the 15 values of overlap
proportion among the six databases, only three of the
drug and target overlaps were much than 50%, and no
values of the interactions were much than 50%. The
results showed that, though some duplicated drug-target
associations existed among the six drug-target databases,
most of them had the lower overlap proportions. The
observation indicated that these six sources have diverse
types of drug-target association, which may be comple-
mentary to each other. Among these drugs, 1,572 were
approved drugs, according to DrugBank and TTD. They
had 3,041 targets and formed 22,059 drug-target
associations.
After the normalization of drug-target interactome

extracted from different sources, we further classified
the drugs and the proteins by ATC drug classification
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system and PANTHER protein class tool, respectively.
Supplementary Table S2, Additional file 2 shows the
number of drugs in each drug class. Based on the drug’s
ATC annotation from DrugBank and KEGG, among the
303,018 drugs in WinDTome, 1,856 had ATC codes, of
which 1,502 drugs had one ATC code while 354 drugs

had multiple ATC codes. Supplementary Table S3,
Additional file 2 summarizes the number of protein tar-
gets in each protein class in WinDTome. Among the
4,113 protein targets in WinDTome, 2,888 were found
in PANTHER. Among them, 2,240 had been annotated
to be one single protein class while the rest 648 targets

Figure 1 The generation of the weighted and integrated drug target interactome (WinDTome). The processes of building WinDTome
included three steps: data extraction and pre-processing (left); drug and target name normalization; and integration (right). The name
normalization is the process to convert heterogeneous identifiers into one unified identifier. In this study, we utilized external data sources to
convert heterogeneous drug and target identifiers into unified drug and target identifiers, respectively.

Table 1 Summary of the drugs, targets, and their interactions in six data sources and their overlap

Overlap (numbera/proportionb)

Source DrugBank KEGG TTD MATADOR PDSP BindingDB

Drug DrugBank 4,316 0.679 0.369 0.590 0.045 0.269

KEGG 761 1,121 0.467 0.550 0.135 0.231

TTD 1,594 524 14,073 0.405 0.069 0.425

MATADOR 447 417 307 758 0.199 0.170

PDSP 195 151 340 151 4,947 0.004

BindingDB 1,162 259 5,984 129 22 290,874

Target DrugBank 2,102 0.622 0.510 0.108 0.324 0.182

KEGG 295 474 0.418 0.409 0.283 0.348

TTD 479 198 940 0.113 0.434 0.526

MATADOR 198 194 106 1,840 0.262 0.040

PDSP 47 41 63 38 145 0.152

BindingDB 372 165 494 73 22 2,048

Drug-target DrugBank 9,886 0.440 0.200 0.092 0.039 0.149

KEGG 1,553 3,532 0.166 0.254 0.067 0.117

TTD 1,976 586 22,791 0.032 0.042 0.386

MATADOR 906 898 341 10,687 0.023 0.017

PDSP 384 237 490 247 11,762 0.007

BindingDB 1,471 415 8,804 179 81 503,378
aThe value on the diagonal line of each matrix represents the numbers of drug/target/drug-target pair in each source. The value under the diagonal line of each
matrix shows the number of overlap between two sources.
bThe value above the diagonal line of each matrix shows the proportions of overlap between two sources. The proportion is defined as the number of
intersection dividing by the smaller number of the two sources.
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have been annotated to be multiple protein classes. The
top 5 protein classes of drug’s targets in WinDTome
were receptor, transporter, oxidoreductase, kinase, and
enzyme modulator.

Drug-target network and its scoring system
To measure the reliability of each drug-target association
in WinDTome, we designed two scores (Score_S and
Score_R) were designed to. Score_S and Score_R were cal-
culated based on diverse supports: the former was from
the number of the concordance of the six sources while
the latter was from the summation of the specificities of
reference papers. Table 2 shows the numbers of drugs, tar-
gets, and drug-target interactions and the average Score_R
in each group of Score_S of WinDTome and those in the
subset with drug having ATC code. Figure 2A and Figure
2B show the distributions of Score_S and Score_R, respec-
tively. To examine the consistency between the two scores,
we performed Pearson correlation analysis. Figure 2C
shows the Score_S and Score_R had a positive correlation
(r = 0.423). Additionally, the correlation between Score_S
and Score_R was 0.546 if we only considered the drug-tar-
get associations in which the drugs have ATC codes. Based
on the correlation between Score_S and Score_R, we uti-
lized the Score_S ≥ 3 as a threshold for further analysis.

Application of WinDTome for drug repurposing using SCZ
as an example
To illustrate the application of WinDTome for drug
repurposing, we utilized the SCZ as an example. We
collected 41 known SCZ drugs and their 41 target pro-
teins. Among the 41 proteins, 34 existed in the drug-tar-
get interactions in the WinDTome with highly confident
associations (Score_3 ≥ 3) and were targeted by 224
non-SCZ drugs. These non-SCZ drugs were defined as
the first set of potential SCZ drugs. From the 51 pro-
teins, we obtained 563 proteins having interactions with
them. Among them, 24 were encoded by SCZ-related
genes, from which we obtained 46 non-SCZ drugs that
targeted the 7 SCZ-related proteins from WinDTome
with highly confident associations (Score_S ≥ 3). We

defined them as the second set of potential SCZ drugs.
After putting them together, we obtained the 264
unique non-SCZ drugs and 41 unique proteins (34 SCZ
drug targets and 7 SCZ-related proteins).
To assess if these non-SCZ drugs have potential to treat

SCZ, we utilized the clinical trial studies to examine how
many drugs have been investigated in schizophrenia or
other mental diseases. After querying the 264 non-SCZ
drugs against ClinicalTrials.gov, we found that 39 non-
SCZ drugs have been investigated in the 82 SCZ-relevant
clinical trials and more 74 non-SCZ drugs have been
investigated in the 1,831 mental disorders-relevant clinical
trials, respectively. There were 512 drugs in the 82 SCZ-
relevant clinical trials. Figure 3 summarized that the over-
lap between the 264 non-SCZ drugs and the drugs in
SCZ-relevant clinical trials, listed the 39 drugs and their
identification methods (directly from SCZ drug targets, or
from target interactors), and also summarized the number
of non-SCZ drugs that have been investigated in the other
mental diseases in the ClinicalTrials.gov.
Table 3 shows the detail number of the clinical trials

and the ATC categories of these 39 drugs. The 39 drugs
had 24 targets, and Table 4 shows their protein classes.
We observed that most of them were either receptors or
transporters. Figure 4 represents the expanding SCZ
drug-target network plus potential SCZ drugs. To make
the figure simple, we did not include the interactions
among SCZ drug targets or the interactions among SCZ-
related proteins. Additionally, if a potential SCZ drug had
associations with multiple SCZ genes/SCZ drug targets,
or a SCZ drug target had associations with multiple SCZ
drugs, we utilized the associations with the highest
Score_S and Score_R to represent the existence of the
potential SCZ drugs. The network mainly contained
three subnetworks including Olanzapine-centered sub-
network, Clozapine-centered subnetwork, and a subnet-
work containing Asenapine, Imipramine, and Risperdone.

Evaluation of prediction performance
Based on the data from WinDTome (Score_S ≥ 3), we
inferred 264 potential SCZ drugs. According to the

Table 2 The distribution of the drugs, targets, their associations, and their Score_R and Score_S scores

All drugs Drugs having ATC codes

Score_Sa #Drugs #Targets #Drug-targets Score_Rb #Drugs #Targets #Drug-targets Score_Rb

≥ 1 303,018 4,113 546,196 0.059 1,856 2,872 24,381 0.358

≥ 2 8,269 946 13,728 0.534 1,202 589 3,284 1.644

≥ 3 1,034 358 1,588 2.480 753 291 1,256 2.905

≥ 4 367 122 434 4.217 367 122 434 4.217

≥ 5 87 27 88 4.569 87 27 88 4.569

≥ 6 2 1 2 4.725 2 1 2 4.725
aThe score was calculated based on the occurrence of the drug-target interaction in the six databases.
bThe score was calculated according to the references of drug-target associations.
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clinical trial records in the ClinicalTrials.gov, among
them, 39 drugs have been investigated in the schizo-
phrenia treatment and 74 drugs have been investigated
in the intervention of other mental diseases. To further
evaluate the performance of the prediction, we designed
three comparative strategies, including utilizing different
score thresholds, single data source, and the data
from external integrative database STITCH. Table 5
summarizes the comparative results.
Using the data in WinDTome whose Score_S no less

than 2 or 1, we performed the inference process as the
data with Score_S were no less than 3, respectively, and
calculated the proportion of the potential SCZ drugs that
have been investigated to treat SCZ in the clinical trials.
We observed that the proportion of the potential SCZ
drugs found in SCZ-relevant clinical trials based on
Score_S ≥ 3 as a threshold (14.8%) was higher than that
of the threshold Score_S ≥ 2 (5.6%) and the threshold
Score_S ≥ 1 (0.5%), respectively. Similarly, the proportion

of the potential SCZ drugs found in other mental disor-
ders, according to clinical trials using the threshold of
Score_S ≥ 3 was higher than those based on the other two
thresholds (28.0% vs. 7.5% and 0.8%).
We repeated the inference process by using the data

from each data source for the WinDTome creation. Some
performance based on single data sources were higher
than those based WinDTome with Score_S ≥ 2 or Score_S
≥ 1; however, none of them is higher than those of using
WinDTome with Score_S ≥ 3. It implies that the scoring
system we used is promising in conducting network phar-
macology studies, and the recommending cutoff of
Score_S is reasonable.
Finally, we performed the prediction using the data

from the STITCH for potential SCZ drugs. We
extracted 455,430 high confident (combined score ≥ 0.7)
drug-target associations among 199,133 drugs and 9,379
unique human proteins from STITCH. We obtained
29,405 non-SCZ drugs having associations with known

Figure 2 Distributions and comparison of Score_S and Score_R. A) The y-axis represents the frequency of drug-target association’s Score_S.
The label above a bar shows the exact number of the frequency. B) The y-axis represents the frequency of drug-target association’s Score_R.
The label above a bar shows the exact number of the frequency. C) This bar chart shows the average Score_Rs of all drug-target associations
and the associations involving the drugs with ATC codes (represented as “Drug_ATC”) in each group of Score_S, respectively. The label above a
bar represents the average value of Score_R. The error bar is shown and defined as the standard error of the mean (SEM) of the Score_Rs in
each group of Score_S. The r value is the Pearson correlation coefficient between Score_S and Score_R.
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SCZ drug targets and 5,447 non-SCZ drugs targeting
the 51 SCZ-related proteins. In total, we obtained
32,282 unique non-SCZ drugs. In the ClinicalTrials.gov,
we found 100 out of the 32,282 potential SCZ drugs in
SCZ-relevant clinical trials and 241 potential SCZ drugs
in other mental disorders-relevant clinical trials.
In summary, the comparative results indicated that the

scoring strategy designed in this study provides an
assessment of the reliability of the drug-target associa-
tions, and WinDTome provides weighted drug-target
associations.

Discussion
In this study, we built a weighted and integrated drug-
target interactome (WinDTome) to provide a funda-
mental for computational drug repurposing. In WinD-
Tome, we assigned two scores for each drug-target
association, which provides an assessment of the reliabil-
ity of the drug-target associations. Starting from the
drug-target associations in WinDTome and SCZ known
drugs and their targets, we inferred the potential drugs
for SCZ treatment. The illustration indicates that
weighted WinDTome provides one promising source for
drug repurposing.

We inferred the 264 potential candidate drugs that
could be used to treat SCZ. Among them, 39 potential
drugs have been investigated in schizophrenia according
to the clinical trial records from the clinicaltrials.gov.
We further checked the indications of these drugs in
DrugBank and TTD and then categorized them into six
indication groups: depression, anxiety, Parkinson’s dis-
ease, insomnia, attention deficit hyperactivity disorder
(ADHD), and others (Table 3). Most of them are related
to mental disorders. Among the 264 potential SCZ
drugs, 113 have been investigated in the mental disor-
ders. Among them, the drugs treating depression have
the most number of clinical trials. It is not surprising
that the four potential SCZ drugs - citalopram, paroxe-
tine, sertraline, and fluvoxamine - might have relevant
mechanisms and resembling biological pathways with
existing SCZ drugs because depression is one of the
negative symptoms of schizophrenia. In addition to the
positive and negative symptoms, SCZ patients are highly
inclined to have comorbidities such as anxiety disorders,
depression, and diabetes [39,40]. Interestingly, in the
study “NCT01401491” (an identifier in the Clinical-
Trials.gov) [41], Fluvoxamine was combined with cloza-
pine to treat schizophrenia patients, and the clinical

Figure 3 The 39 potential SCZ drugs and their comparison with other drugs with clinical trials. Target type means the category of the
potential SCZ drug’s target. It indicated that inference methods for the potential SCZ drugs. SCZ: schizophrenia; MTL: mental disorders.
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improvement was observed in the investigators’ patients.
The investigators found that fluvoxamine could reduce the
clozapine-induced side effects of metabolic disturbance
and obesity. The use of fluvoxamine as a co-administration
for the treatment of cognitive impairments in patients with
schizophrenia has been reported [42,43], and the potential
of Fluvoxamine for treating schizophrenia was also pro-
posed [44]. In the 39 potential SCZ drugs with clinical

evidences, we also found that betahistine and sibutramine
are used to treat obesity. Betahistine, a nervous system
drug, and Sibutramine, a centrally acting antiobesity pro-
duct, were proposed to be co-administrations for treating
schizophrenia patients, respectively [45,46]. These findings
were consistent to the a previous study mentioning that
prescribed co-administrations of antipsychotics drugs and
atypical substances that have been increasing for treating

Table 3 Potential drugs for schizophrenia treatment

Potential SCZ drug Indicationa ATC codes Number of SCZ clinical trials

Citalopram Depression N06AB04; N06AB10 13

Atomoxetine ADHDb N06BA09 8

Memantine Parkinson’s disease N06DX01 6

Paroxetine Depression N06AB05 6

Sertraline Depression N06AB06 5

Fluvoxamine Depression N06AB08 4

Lorazepam Anxiety N05BA06 4

Ondansetron Nausea and vomiting A04AA01 4

Dexmethylphenidate ADHD N06BA11 3

Fluoxetine Depression N06AB03 3

Methylphenidate ADHD N06BA04 3

Benztropine Parkinson’s disease 2

Betahistine Obesity N07CA01 2

Clonidine ADHD C02AC01; N02CX02; S01EA04; S01EA03 2

Famotidine Peptic ulcer disease A02BA03 2

Guanfacine Hypertension C02AC02 2

Mirtazapine Depression N06AX11 2

Pergolide Parkinson’s disease N04BC02 2

Reboxetine Depression N06AX18 2

Zolpidem Insomnia N05CF02 2

Agomelatine Depression N06AX22 1

Bromocriptine Parkinson’s disease G02CB01; N04BC01 1

Buspirone Anxiety N05BE01 1

Cinnarizine Nausea and vomiting N07CA02 1

Cyproheptadine Allergies R06AX02 1

Desipramine Depression N06AA01 1

Dexmedetomidine Anxiety N05CM18 1

Diazepam Anxiety N05BA01; N05BA17 1

Dopamine Parkinson’s disease C01CA04 1

Levodopa Parkinson’s disease N04BA01; N04BA04 1

Methamphetamine ADHD N06BA03 1

Naratriptan Migraine headaches N02CC02 1

Nitrazepam Insomnia N05CD02 1

Nizatidine Peptic ulcer disease A02BA04 1

Pramipexole Parkinson’s disease N04BC05 1

Promethazine Allergies D04AA10; R06AD02; R06AD05 1

Sibutramine Obesity A08AA10 1

Trazodone Depression N06AX05 1

Zotepine N05AX11 1

Total 82
aThe information of drug indication was obtained from DrugBank and TTD.
bADHD: attention deficit hyperactivity disorder.
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SCZ patients along with various comorbidities [47]. More-
over, both Parkinson’s disease and schizophrenia are
related to the dopaminergic system [48]. Thus, the four
Parkinson’s disease drugs - benztropine, pergolide, levo-
dopa, and pramipexole - may also have potential for schi-
zophrenia treatment [49-51].
The inference strategy for drug repurposing started

with the known drugs that have been used to treat SCZ

and their targets. The underlying assumption is that the
potential drugs for a given disease should have similar
molecular mechanisms or actions to the known drugs.
Therefore, this strategy provides a methodology for any
diseases with effective medicines. To examine the
robustness of the network-based drug repurposing
methodology in this study, we further performed the
similar inference of drug repurposing using colon cancer
as another example. We manually collected 12 approved
colon cancer drugs from DrugBank (aflibercept, bevaci-
zumab, capecitabine, cetuximab, fluorouracil, irinotecan,
leucovorin, oxaliplatin, panitumumab, raltitrexed, regor-
afenib, and trimetrexate) and 38 drug targets (human
genes), and the colon cancer associated genes from Cancer
Gene Census [52]. By implementing the same processes of
network-based inference, we obtained 26 potential colon
cancer drugs with high confident associations with known
colon cancer drug targets. Among them, 16 were found in
clinical trials whose condition was “colon cancer.” The
numbers of these 16 drugs’ colon cancer relevant trials, as
well as the drugs’ indications and ATC codes, are provided
in Supplementary Table S4, Additional file 2. In addition,
the protein classes of these 16 potential colon cancer drug
targets are provided in Supplementary Table S5,
Additional file 2. In summary, this preliminary result
further suggested that the network-based inference for
drug repurposing by using the drug-target associations in
WinDTome is promising.
The inference of drug repurposing mainly relies on the

drug-target interactome. In this study, based on the ana-
lysis of Score_S and Score_R distributions, we mainly
employed highly confident drug-target associations
(Score_S ≥ 3) to identify the candidates. However, some
potential candidates will be missed compared to the
inference based on the concept of off-target and drug tar-
get similarity. Thus, integrating the other data, such as
drug structure similarity, off-target information, and tar-
get similarity, might improve further the performance.
Therefore, it still is necessary to develop a more compre-
hensive scoring system for the drug-target associations.
Additionally, in this study, we mainly employed the direct
protein-protein interactions (PPIs) of the drug targets
and disease genes, which is restricted to the network
environment information. In the future, we will consider
the effects of drug targets on the disease genes in the
context of PPI networks.

Conclusion
In this study, we generated a weighted and integrated
drug-target interactome (WinDTome), which provides a
reliable source of drug-target interactome. We utilized
the WinDTome along with a network pharmacology
approach for drug repurposing for SCZ as an example.
Eventually, we successfully obtained 264 potential SCZ

Table 4 Protein classification of the potential SCZ drug
targets

Protein class Protein Potential SCZ drugs with
clinical trials

Receptor ADRA1A Trazodone

CHRM1 Benztropine Desipramine

DRD1 Pergolide Dopamine

DRD2 Bromocriptine Pergolide

Pramipexole Dopamine

Buspirone Levodopa

DRD3 Bromocriptine Pergolide

Pramipexole Dopamine

DRD4 Pramipexole Levodopa

Dopamine

DRD5 Dopamine

HRH1 Betahistine Cinnarizine

Cyproheptadine Desipramine

Promethazine Mirtazapine

HRH2 Famotidine Nizatidine

HTR1A Naratriptan Buspirone

HTR1B Naratriptan

HTR1D Naratriptan

HTR2A Mirtazapine Zotepine

Trazodone

HTR2C Agomelatine Mirtazapine

Transporter SLC6A2 Atomoxetine Desipramine

Methamphetamine Reboxetine

Methylphenidate Sibutramine

SLC6A3 Dexmethylphenidate Methylphenidate

SLC6A4 Citalopram Fluoxetine

Fluvoxamine Paroxetine

Methamphetamine Sertraline

Sibutramine Trazodone

Transporter; GABRA1 Lorazepam Diazepam

Receptor Nitrazepam Zolpidem

GABRG2 Lorazepam Diazepam

GRIN2B Memantine

HTR3A Ondansetron Mirtazapine

(Not available) ADRA2A Dexmedetomidine Clonidine

Mirtazapine Guanfacine

ADRA2B Clonidine

ADRA2C Dexmedetomidine Clonidine
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drugs, including 39 drugs that have been found in exist-
ing SCZ-relevant clinical trials and 74 drugs that have
been investigated in other mental disorders. We further
compared the results with the inference using different
thresholds, single data source, and the data from the
commonly used database STITCH. The comparative
result further demonstrated that the WinDTome is pro-
mising for further systems pharmacology study.
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