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Abstract

The prediction of small complexes (consisting of two or three distinct proteins) is an important and challenging subtask
in protein complex prediction from protein-protein interaction (PPI) networks. The prediction of small complexes is
especially susceptible to noise (missing or spurious interactions) in the PPI network, while smaller groups of proteins are
likelier to take on topological characteristics of real complexes by chance.
We propose a two-stage approach, SSS and Extract, for discovering small complexes. First, the PPI network is weighted
by size-specific supervised weighting (SSS), which integrates heterogeneous data and their topological features with an
overall topological isolatedness feature. SSS uses a naive-Bayes maximum-likelihood model to weight the edges with
two posterior probabilities: that of being in a small complex, and of being in a large complex. The second stage, Extract,
analyzes the SSS-weighted network to extract putative small complexes and scores them by cohesiveness-weighted
density, which incorporates both small-co-complex and large-co-complex weights of edges within and surrounding the
complexes.
We test our approach on the prediction of yeast and human small complexes, and demonstrate that our approach
attains higher precision and recall than some popular complex prediction algorithms. Furthermore, our approach
generates a greater number of novel predictions with higher quality in terms of functional coherence.

Introduction
Most cellular processes are performed not by individual
proteins acting alone, but by complexes consisting of mul-
tiple proteins that interact (bind) physically. Protein com-
plexes comprise the modular machinery of the cell,
performing a wide variety of molecular functions, so deter-
mining the set of existing complexes is important for
understanding the mechanism, organization, and regula-
tion of cellular processes. Since proteins in a complex
interact physically, protein-protein interaction (PPI) data,
made available in large amounts by high-throughput
experimental techniques, is an important resource in the
study of complexes. PPI data is frequently represented as a
PPI network (PPIN), where vertices represent proteins and
edges represent interactions between proteins. Protein
complexes are groups of proteins that interact with one

another, so they are usually dense subgraphs in PPI net-
works. Many algorithms have been developed to discover
complexes from PPI networks based mainly on this idea
[1-6].
It has been noted that the distribution of complex sizes

follows a power law distribution [7], meaning that a large
majority of complexes are small. Thus the discovery of
small complexes is an important subtask within complex
discovery. An inherent difficulty is that the strategy of
searching for dense clusters becomes problematic: fully
dense (ie. cliques) size-2 and size-3 clusters correspond to
edges and triangles respectively, and only a few among the
abundant edges and triangles of the PPI network represent
actual small complexes. Furthermore, high-throughput
PPI data suffers from significant amounts of noise, in
terms of false positives (spuriously detected interactions)
as well as false negatives (missing interactions). This pre-
sents a challenge for complex discovery from PPI data,
and is especially severe for the discovery of small com-
plexes, which is much more sensitive to extraneous or
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missing edges: for a size-2 complex, a missing co-complex
interaction disconnects its two member proteins, while
only two extraneous interactions are sufficient to embed it
within a larger clique (a triangle).
Our proposed approach to address these challenges con-

sists of two steps. First, we weight the edges of the PPI
network with the probabilities of belonging to a complex,
in a size-specific manner. Second, we extract the small
complexes from this weighted network. In the first step,
our weighting approach, called size-specific supervised
weighting (SSS), integrates three different data sources
(PPIs, functional associations, and literature co-occur-
rences) with their topological characteristics (degree,
shared neighbours, and connectivity between neighbours),
as well as an overall topological isolatedness feature. SSS
uses a supervised maximum-likelihood naive-Bayes model
to weight each edge with two separate probabilities: that
of belonging to a small complex, and of belonging to a
large complex. In the second step, our complex extraction
approach, called Extract, uses these weights to predict and
score candidate small complexes, by weighting their densi-
ties with a cohesiveness function [5] that incorporates
both small and large co-complex probabilities of edges
within and around each cluster.
In our previous approach, Supervised Weighting for

Composite Networks (SWC [8]), we integrated diverse
data sources (including topological characteristics) with a
supervised approach to accurately score edges with co-
complex probabilities, and attained good performance in
predicting large complexes (of size greater than three) in
yeast and human. However, SWC’s performance in scor-
ing edges from small complexes is unsatisfactory. This is
because edges in small complexes have radically different
topological characteristics from edges in large complexes.
And since there are a far greater number of edges from
large complexes than from small complexes, the learned
model reflects the features of the former rather than the
latter. Thus, here we use a model for small complexes spe-
cifically, which captures the characteristics of their edges
more accurately.
By integrating two additional data sources (functional

associations and literature co-occurrences) with supervised
learning, our approach reduces the amount of spurious
interactions among the PPIs. Complexes tend to be char-
acterized by certain topological characteristics in the PPI
network (for example, they tend to be densely connected
and bordered by a sparse region), but smaller groups of
proteins are likelier to take on such characteristics by
chance. Integrating topological features from multiple data
sources reduces the discovery of false positive complexes,
as it is less likely that all data sources share such character-
istics by chance in a random set of proteins.
An important topological characteristic of complexes

is that they tend to be topologically isolated, or bordered

by a sparse region. Many complexes exhibit a core-
attachment structure [9], where distinct complexes can
share common subsets of proteins (called the core),
with variations among the remaining proteins (attach-
ments). Since distinct complexes can share proteins,
they overlap in the PPI network, and thus are not
expected to be completely isolated; nonetheless, proteins
in small complexes with core-attachment structures are
still more isolated than those in large complexes. Thus
we incorporate an isolatedness feature derived from an
initial posterior probability calculation, which contri-
butes to discriminating between edges in small com-
plexes, large complexes, or in no complex.
Predicted complexes are typically given some score

indicative of confidence in the prediction. The weighted
density of the predicted complex is frequently used for
this purpose (for example in [4,8]): assuming the edge
weights represent co-complex estimates, the weighted
density averages over the weights of all the edges within
the predicted complex, giving an overall measurement
of the prediction’s reliability. However, for predicted
small complexes the weighted density is derived from
only one or three edges (corresponding to size-2 or
size-3 clusters respectively), making it susceptible to
noisy edge weights. Thus we incorporate a cohesiveness
function in scoring predicted complexes, which includes
both internal edges within the cluster, as well as out-
going edges around the cluster.
We test our approach on the prediction of small com-

plexes in yeast and human, and obtain improved perfor-
mance in both organisms. In the rest of the paper, we first
describe each of the two steps of our approach. Next we
describe our experimental methodology, and finally pre-
sent and discuss our results.

Methods
In this section, we describe our approach for predicting
small protein complexes, which consists of two stages:
first, size-specific supervised weighting (SSS) of the PPIs;
second, extracting small complexes from this weighted
PPI network.

Size-specific supervised weighting (SSS) of the PPI
network
SSS uses supervised learning to weight each edge of the
reliable PPI network with two posterior probabilities,
that of being a small-co-complex edge (ie. of belonging
to a small complex), and that of being a large-co-com-
plex edge, given the edge’s features. These features con-
sist of diverse data sources, their topological
characteristics, and an isolatedness feature derived from
an initial calculation of the posterior. We first describe
the data sources and features we use, then describe our
weighting approach.
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Data sources and features
We use three different data sources (PPI, functional
association, and literature co-occurrence) together with
their topological characteristics as features. Each data
source provides a list of scored protein pairs: for each
pair of proteins (a, b) with score s, a is related to b with
score s, according to that data source. For both yeast
and human, the following data sources are used:
• PPI : PPI data is obtained by taking the union of physi-

cal interactions from BioGRID [10], IntAct [11] and
MINT [12] (data from all three repositories downloaded
in January 2014). In addition, in yeast we also incorporate
the widely-used Consolidated PPI dataset [13]. We unite
these datasets, and score and filter the PPIs, using a simple
reliability metric based on the Noisy-Or model to combine
experimental evidences (also used in [14]). For each
experimental detection method e, we estimate its reliability
as the fraction of interactions detected where both inter-
acting proteins share at least one high-level cellular-com-
ponent Gene Ontology term. Then the reliability of an
interaction (a, b) is estimated as:

reliability(a, b) = 1 −
∏

i∈Ea,b
(1 − reli)

ni,a,b

where reli is the estimated reliability of experimental
method i, Ea,b is the set of experimental methods that
detected interaction (a, b), and ni,a,b is the number of
times that experimental method i detected interaction (a,
b). The scores from the Consolidated dataset are discre-
tized into ten equally-spaced bins (0−0.1, 0.1−0.2, . . .),
each of which is considered as a separate experimental
method in our scoring scheme. We avoid duplicate count-
ing of evidences across the datasets by using their publica-
tion IDs (in particular, PPIs from the Consolidated dataset
are removed from the BioGRID, IntAct, and MINT
datasets).
• STRING : Predicted functional association data is

obtained from the STRING database [15] (data down-
loaded in January 2014). STRING predicts each associa-
tion between two proteins a and b (or their respective
genes) using the following evidence types: gene co-occur-
rence across genomes; gene fusion events; gene proximity
in the genome; homology; co-expression; physical interac-
tions; co-occurrence in literature; and orthologs of the lat-
ter five evidence types transferred from other organisms
(STRING also includes evidence obtained from databases,
which we discard as this may include co-complex relation-
ships which we are trying to predict). Each evidence type
is associated with quantitative information (e.g. the num-
ber of gene fusion events), which STRING maps to a con-
fidence score of functional association based on co-
occurrence in KEGG pathways. The confidence scores of
the different evidence types are then combined

probabilistically to give a final functional association score
for (a, b). Only pairs with score greater than 0.5 are kept.
• LIT : Co-occurrence of proteins or genes in PubMed

literature (data down-loaded in June 2012). Each pair (a,
b) is scored by the Jaccard similarity of the sets of papers
that a and b appear in:

s =
|Aa ∩ Ab|
|Aa ∪ Ab|

where Ax is the set of PubMed papers that contain pro-
tein x. For yeast, that would be the papers that contain the
gene name or open reading frame (ORF) ID of x as well as
the word “cerevisiae"; for human that would be the papers
that contain the gene name or Uniprot ID of x as well as
the words “human” or “sapiens”.
For each protein pair in each data source, we derive

three topological features: degree (DEG), shared neighbors
(SHARED), and neighborhood connectivity (NBC). For
each data source, the edge weight used to calculate these
topological features is the data source score of the edge.
• DEG : The degree of the protein pair (a, b), or the sum

of the scores of the outgoing edges from the pair:

DEG(a, b) =
∑

x∈Na\{b}
w(a, x) +

∑

x∈Nb\{a}
w(b, x)

where w(x, y) is the data source score of edge (x, y),
Na is the set of all neighbours of a, excluding a.
• NBC : The neighborhood connectivity of the protein

pair (a, b), defined as the weighted density of all neighbors
of the protein pair excluding the pair themselves:

NBC(a, b) =

∑
x,y∈Na,b

w(x, y)

min(|Na,b|,λ)(min(|Na,b|,λ) − 1)

where w(x, y) is the data source score of edge (x, y); Na,b

is the set of all neighbours of a and b, excluding a and b
themselves; l is a dampening factor.
• SHARED : The extent of shared neighbors between

the protein pair, derived using the Iterative AdjustCD
function (with two iterations) [4].
This gives a total of twelve features: the three data

sources PPI, STRING, and LIT , and nine topological fea-
tures (three for each data source), DEGPPI , DEGSTRING,
DEGLIT , SHAREDPPI , SHAREDSTRING, SHAREDLIT ,
NBCPPI , NBCSTRING, and NBCLIT . In addition, a feature
called isolatedness is incorporated after an initial calcula-
tion of the posterior probabilities, as described below.
Size-specific supervised weighting of the PPI network (SSS)
In this step, we weight the edges of the PPI network with
our size-specific supervised weighting (SSS) approach. We
use a highly-reliable subset of the PPI network, by keeping
only the top k edges with the highest PPI reliability scores.
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In our experiments we set k = 10000, but similar results
are obtained for other values of k. SSS uses supervised
learning to weight each edge with three scores: its poster-
ior probability of being a small-co-complex edge (ie. of
belonging to a small complex), of being a large-co-com-
plex edge, and of not being a co-complex edge, given the
features of the edge. These features consist of the twelve
features described above (PPI, STRING, LIT , and nine
topological features), as well as an isolatedness feature
which is derived from an initial calculation of the posterior
probabilities. We use a naive-Bayes maximum-likelihood
model to derive the posterior probabilities.
Each edge (a, b) in the network is cast as a data instance,

with its set of features F. Using a reference set of protein
complexes, each edge (a, b) in the training set is given a
class label lg-comp if both a and b are in the same large
complex; it is labelled sm-comp if both a and b are in the
same small complex; otherwise it is labelled non-comp.
Learning proceeds by the following steps (illustrated in
Figure 1):
1 Minimum description length (MDL) supervised dis-

cretization [16] is performed to discretize the features
(excluding the isolatedness feature). MDL discretization
recursively partitions the range of each feature to mini-
mize the information entropy of the classes. If a feature
cannot be discretized, that means it is not possible to find
a partition that reduces the information entropy, so the
feature is removed. Thus this step also serves as simple
feature selection.
2 The maximum-likelihood parameters are learned for

the three classes lg-comp, sm-comp, and non-comp:

P(F = f |sm − comp) =
nsm, F = f

nsm

P(F = f | lg−comp) =
nlg, F = f

nlg

P(F = f |non − comp) =
nnon, F = f

nnon

for each discretized value f of each feature F (exclud-
ing the isolatedness feature). nsm is the number of edges
with class label sm-comp, nsm,F = f is the number of
edges with class label sm-comp and whose feature F has
value f ; nlg is the number of edges with class label lg-
comp, nlg,F = f is the number of edges with class label lg-
comp and whose feature F has value f ; nnon is the num-
ber of edges with class label non-comp, and nnon,F = f is
the number of edges with class label non-comp and
whose feature F has value f .
3 Using the learned models, the class posterior prob-

abilities are calculated for each edge (a, b) using the
naive-Bayes formulation:

P((a, b) is sm−comp|F1 = f1, F2 = f2, ...) =

∏
i P(Fi = fi|(a, b) is sm − comp)P(sm − comp)∑

class∈{sm−comp,lg−comp,non−comp}
∏

i P(Fi = fi|(a, b) is class)P(class)

The posterior probabilities are calculated in a similar
fashion for the other two classes lg-comp and non-comp.
We abbreviate the posterior probability of edge (a, b)
being in each of the three classes as P(a,b),sm, P(a,b),lg , and
P(a,b),non.
4 A new feature ISO (isolatedness) is calculated for each

edge (a, b), based on the probability that the edge is iso-
lated (not adjacent to any other edges), or is part of an iso-
lated triangle:

ISO(a, b) = ISO2(a, b) + ISO3(a, b)

Figure 1 Flowchart of our approach consisting of size-specific supervised weighting (SSS) and Extract.
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ISO2(a, b) = P(a,b),sm
∏

x∈{a,b},y∈Na,b

P(x,y),non

ISO3(a, b) =
∑

c∈Na∩Nb

(P(a,b),sm|P(a,c),smP(b,c),sm
∏

x∈{a,b,c},y∈Na,b,c

P(x,y),non)

where Nx denotes the neighbours of x, excluding x.
The ISO feature is discretized with MDL.
5 The maximum-likelihood parameters for the ISO

feature are learned for the three classes.
6 The posterior probabilities for the three classes, P(a,

b),sm, P(a,b),lg , and P(a,b),non, are recalculated for each
edge (a, b), this time incorporating the new ISO feature.

Extracting small complexes
After using SSS to weight the PPI network, the small com-
plexes are extracted. This stage, called Extract, consists of
two steps (see Figure 1): first, the small-co-complex prob-
ability weight of each edge is disambiguated into size-2
and size-3 complex components; next, each candidate
complex is scored by its cohesiveness-weighted density,
which is based on both its internal and outgoing edges.
In the disambiguation step, the small-co-complex prob-

ability weight of each edge (a, b) = P(a,b),sm, which denotes
the probability of being in a small (either size-2 or size-3)
complex, is decomposed into two component scores (we
use the term score instead of probability since its deriva-

tion is not probabilistic): P′
(a,b),sm2 , which is the score of

being in the size-2 complex composed of a and b; and
P′
(a,b),sm3,abc , which is the score of being in the size-3 com-

plex composed of a, b, and c. Intuitively, if an edge is con-
tained within a triangle with high edge weights, then it is
likelier to be a size-3 complex corresponding to the trian-
gle rather than a size-2 complex; thus its size-2 compo-
nent score should be reduced based on the weights of
incident triangles:

P′(a, b), sm2 = P(a, b), sm −
∑

x∈Na∩Nb
P(a,b),smP(a,x),smP(b,x),sm

Similarly, if an edge is contained within a triangle with
high edge weights, and is also within another triangle
with low edge weights, then it is likelier to form a size-3
complex with the former triangle rather than the latter;
thus its size-3 component score corresponding to a spe-
cific triangle should be reduced based on the weights of
its other incident triangles:

P′
(a,b),sm3,abc = P(a,b),sm −

∑
x∈Na∩Nb\{c}

P(a,b),smP(a,x),smP(b,x),sm

In the next step, each candidate complex is scored by
weighting the density of the cluster with its cohesive-
ness, which is adapted from cluster cohesiveness as
described in [5]. Here, we define cohesiveness of a clus-
ter as the ratio of the sum of its internal edges’ weights

over its internal plus outgoing edges’ weights, where the
internal weights are the component scores as calculated
above, and the external weights are the posterior prob-
abilities of being either small or large co-complex edges.
The cohesiveness of a size-2 cluster (a, b) and a size-3
cluster (a, b, c) respectively are:

Coh(a, b) =
P′

(a,b),sm2

P′
(a,b),sm2 +

∑
x∈{a,b},y∈Na,b

(P(x,y),sm + P(x,y),lg)

Coh(a, b, c) =
P′

(a,b),sm3,abc + P′
(a,c),sm3,abc + P′

(b,c),sm3,abc

P′
(a,b),sm3,abc + P′

(a,c),sm3,abc + P′
(b,c),sm3,abc +

∑
x∈{a,b,c},y∈Na,b,c

(P(x,y),sm + P(x,y),lg)

We then define the score of a cluster as its cohesive-
ness-weighted density, or the product of its weighted
density and its cohesiveness. The score of a size-2 clus-
ter (a, b), and a size-3 cluster (a, b, c) respectively are:

score(a, b) = Coh(a, b)P′
(a,b),sm2

score(a, b, c) = Coh(a, b, c)
(P′(a, b), sm3, abc + P′(a, c), sm3, abc + P′(b, c), sm3, abc)

3

Results and discussion
Experimental setup
In our main experiments, we compare our two-stage
approach (weighting with SSS, small complex extraction
with Extract) against using the original PPI reliability
(PPIREL) weighted network with standard clustering
approaches to derive small complexes:
Markov Cluster Algorithm (MCL) [1] simulates sto-

chastic flow to enhance the contrast between regions of
strong and weak flow in the graph. The process con-
verges to a partition with a set of high-flow regions (the
clusters) separated by boundaries with no flow.
Restricted Neighborhood Search Clustering (RNSC)

[2] is a local search algorithm that explores the solution
space to minimize a cost function, calculated according
to the number of intra-cluster and inter-cluster edges.
RNSC first composes an initial random clustering, and
then iteratively moves nodes between clusters to reduce
the clustering’s cost. It also makes diversification moves
to avoid local minima. RNSC performs several runs, and
reports the clustering from the best run.
IPCA [3] expands clusters from seeded vertices, based

on rules that encode prior knowledge of the topological
structure of protein complexes’ PPI subgraphs. Whether
a cluster is expanded to include a vertex is determined
by the diameter of the resultant cluster and the connec-
tivity between the vertex and the cluster.
Clustering by Maximal Cliques (CMC) [4] first gener-

ates all the maximal cliques from a given network, and
then removes or merges highly overlapping clusters
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based on their inter-connectivity as follows. If the over-
lap between two maximal cliques exceeds a threshold
overlap thres, then CMC checks whether the intercon-
nectivity between the two cliques exceeds a second
threshold merge thres. If it does, then the two cliques
are merged; otherwise, the clique with lower density is
removed.
Clustering with Overlapping Neighborhood Expan-

sion (ClusterONE) [5] greedily expands clusters from
seeded vertices to maximize a cohesiveness function,
which is based on the edge weights within a cluster and
the edge weights connecting the cluster to the rest of
the network. It then merges highly-overlapping clusters.
Proteins’ Partition Sampler v2.3 (PPSampler2) [6]

partitions the PPI network into clusters using a Markov-
chain Monte-Carlo approach to optimize an objective
function. Novelly, it incorporates the size distribution of
clusters in the objective function, and thus accounts for
the sizes of complexes found in actual biological sys-
tems, where most of the complexes are small.
Any predicted complex with size greater than three is

discarded. We run these algorithms with a range of values
for their respective parameters, and select the settings that
give the optimal performance for predicting small com-
plexes. The parameter settings used in our experiments
are given in Table 1.
We also investigate the performance of using our SSS-

weighted network with standard clustering approaches,
and using the PPIREL network with our Extract approach.
We perform random sub-sampling cross-validation,

repeated over ten rounds, using manually curated com-
plexes as reference complexes for training and testing. For
yeast, we use the CYC2008 [17] set which consists of 408
complexes, of which 259 are small (composed of two or
three proteins). For human, we use the CORUM [18] set
(filtered to remove duplicates and small complexes that
are subsets of large ones), which consists of 1352 com-
plexes, of which 701 are small. In each cross-validation
round, t% of the complexes (large and small) are selected
for testing, while all the remaining complexes are used for
training. Each edge (a, b) in the network is given a class
label lg-comp if a and b are in the same large training
complex; otherwise it is labeled sm-comp if a and b are in

the same small training complex; otherwise its class label
is non-comp. Learning in SSS is performed using these
labels, and the edges of the network are weighted using
the learned models. Small complexes are then extracted
from the weighted network. The predicted complexes are
evaluated by matching them with only the small test
complexes.
We design our experiments to simulate a real-use sce-

nario of complex prediction in an organism where a few
complexes might already be known, and novel complexes
are to be predicted: in each round of cross-validation, the
training complexes are those that are known and leveraged
for learning to discover new complexes, while the test
complexes are used to evaluate the performance of each
approach at this task. Thus we use a large percentage of
test complexes t = 90%. In yeast, this gives about 233
small test complexes and 26 small training complexes per
cross-validation iteration; in human, this gives about 631
small test complexes and 70 small training complexes.

Evaluation methods
We use precision-recall graphs to evaluate the predicted
clusters, by matching the generated clusters with the refer-
ence test complexes, and calculating recall (sensitivity) and
precision. We require a generated cluster to be identical to
a complex to be considered a correct match. Each cluster
P is ranked by its score, which is either the cohesiveness-
weighted density (for Extract), or weighted density (for
other clustering algorithms). To obtain a precision-recall
graph, we calculate and plot the precision and recall of the
predicted clusters at various cluster-score thresholds.
Given a set of predicted clusters P = {P1, P2, . . .}, a set of
test reference complexes C = {C1, C2, . . .}, and a set of
training reference complexes T = {T1, T2, . . .}, the recall
and precision at score threshold d are defined as follows:

Recalld =
|{Ci|Ci ∈ C ∧ ∃Pj ∈ P, score(Pj) ≥ d,Pjmatches Ci}|

|C|

Precisiond =
|{Pj|Pj ∈ P, score(Pj) ≥ d ∧ ∃Ci ∈ C,Cimatches Pj}|
|{Pk|Pk ∈ P, score(Pk) ≥ d ∧ ∃Ti ∈ T,Timatches Pk}|

The precision of clusters is calculated only among
those clusters that do not match a training complex, to
eliminate the bias of the supervised approach (SSS) for
predicting training complexes well. As a summarizing
statistic of a precision-recall graph, we also calculate the
area under the curve (AUC) of a precision-recall graph.
To measure the quality of a predicted complex, we

derive the semantic coherence of its Gene Ontology
(GO [19]) annotations across the three GO classes, bio-
logical process (BP), cellular compartment (CC), and
molecular function (MF). First, we derive the BP seman-
tic similarity between two proteins as the information

Table 1 The six clustering algorithms and their
parameters used for small complex discovery.

Clustering algorithm Parameters

CMC overlap thres = 1, merge_thres = 1

ClusterONE all default

IPCA -P1 -T0.4

MCL -I 2

RNSC -e10 -D50 -d10 -t20 -T3

PPSampler2 -f1DenominatorExponent 1 -f2
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content of their BP annotations’ most informative com-
mon ancestor [20]. Then we define the BP semantic
coherence of a predicted complex as the average BP
semantic similarity between every pair of proteins in
that complex (likewise for CC and MF).

Prediction of small complexes
In this section we compare the performance of small com-
plex prediction using our weighting approach (SSS) versus
PPI reliability (PPIREL), and using our complex extraction
algorithm (Extract) versus other clustering algorithms
(CMC, ClusterOne, IPCA, MCL, RNSC, PPSampler2).
Figure 2a shows the performance of prediction of yeast
small complexes, in terms of precision-recall AUC. Our 2-
stage approach (SSS + Extract) outperforms all other
approaches tested here, including using the PPIREL or
SSS-weighted networks with standard clustering algo-
rithms, or the PPIREL-weighted network with Extract.
Furthermore, when using standard clustering algorithms
to discover small complexes, weighting the network with
SSS gives improved performance compared to using

PPIREL (especially for ClusterOne, MCL, RNSC, and
PPSampler2).
Figure 2b shows the precision-recall graphs comparing

our approach (SSS + Extract) to the baselines of standard
clustering algorithms applied on a PPIREL network.
While our approach has lower precision among the initial
top predictions (at recall less than 5%), beyond that we
attain substantially greater precision: for example, at 40%
recall, our approach attains more than three times the
precision than the other clustering approaches (28% ver-
sus 9%). Furthermore, we attain substantially higher recall
as well. Figure 2c shows the precision-recall graphs when
the standard clustering algorithms are applied on the
SSS-weighted network. Using the SSS-weighted network,
most of the clustering algorithms achieve improved preci-
sion in the mid-recall ranges, as well as gains in recall.
However, our approach (SSS + Extract) still maintains
greater precision in most of the recall range.
Figure 3 shows the performance of prediction of human

small complexes. The prediction of complexes in human
is much more challenging than in yeast, so the AUCs

Figure 2 Performance of small complex prediction in yeast, (a) precision-recall AUC, (b) and (c) precision-recall graphs.
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achieved here are correspondingly lower. Nonetheless, our
approach (SSS + Extract) still outperforms all the other
approaches, including using the PPIREL or SSS-weighted
networks with standard clustering algorithms, or the
PPIREL-weighted network with Extract. When using stan-
dard clustering algorithms to discover small complexes,
weighting the network with SSS gives improved perfor-
mance only for CMC and IPCA, while performance
remains the same or decreases for the other clustering
algorithms.
Figure 3b and 3c show the corresponding precision-

recall graphs. As in yeast, our approach (SSS + Extract)
outperforms the standard clustering algorithms applied on
the PPIREL-weighted network by achieving substantially
higher recall, as well as greater precision in almost the
whole recall range (Figure 3b). Using the SSS instead of
the PPIREL-weighted network, CMC and IPCA achieve
higher precision, while the other clustering algorithms suf-
fer from lower precision or recall (Figure 3c).
In the following section we investigate how the various

techniques incorporated in SSS and Extract improve the
performance of small complex prediction.

How do SSS and Extract improve performance?
Figures 2 and 3 showed that weighting the network with
SSS improves yeast small complex prediction in four of six
clustering algorithms, while it only improves human com-
plex prediction in two clustering algorithms. To investi-
gate the benefits of SSS weighting, we compare the
performance of the weighting approaches in classifying
edges as belonging to small complexes. Each weighting
approach is used to weight the edges of the network, and
the precision-recall graph is obtained by varying a thresh-
old on the edge weights. Figure 4a shows the precision-
recall graph for classification of yeast small complex edges.
SSS achieves much higher precision than classifying by
PPIREL, as the SSS weights more accurately reflect mem-
bership in small complexes. This leads to improved perfor-
mance by clustering algorithms when applied to the SSS-
weighted network to predict small yeast complexes. On
the other hand, when classifying edges in small human
complexes, Figure 4b shows that SSS has lower precision
than PPIREL at the lower recall range, with only similar or
marginally better precision at higher recall ranges. Thus,
only two clustering algorithms obtain improved

Figure 3 Performance of small complex prediction in human, (a) precision-recall AUC, (b) and (c) precision-recall graphs.
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performance from clustering the SSS-weighted network.
Figure 4 also shows the poor performance of a previously
proposed supervised weighting approach SWC [8], which
learns a model for all co-complex edges in general, as
opposed to distinct models for small and large complexes.
As the number of edges in a complex grows quadratically
with its number of proteins, the edges from large com-
plexes far outnumber those from small complexes, so
SWC’s learned model reflects the characteristics of large
complexes. Thus, SWC suffers from poor performance in
classifying edges from small complexes, demonstrating the
importance of the size-specific modeling of SSS.
The SSSno_iso graph in Figure 4 shows that if the isolat-

edness feature is not incorporated into SSS (in other
words, steps 4 to 6 of SSS are skipped), precision drops
substantially in yeast, showing the utility of the isolated-
ness function in predicting small complex edges. However,
in human, incorporating the isolatedness feature gives
only marginal improvement in precision. Figure 5 shows
the performance of small complex prediction, when SSS is
used with and without the isolatedness feature, with the
complexes derived by Extract. Incorporating isolatedness
gives a noticeable boost to precision in both yeast and
human, demonstrating that isolatedness benefits the

prediction of small complexes by improving the SSS
weighting of edges.
Figures 2 and 3 showed that using Extract to derive

small complexes from the PPIREL network does not per-
form better than using most of the other clustering algo-
rithms (Extract achieves higher recall, at the expense of
precision). We investigate the effect of cohesiveness
weighting in Extract, applied on the SSS network versus
the PPIREL network. Figure 6a shows the performance of
the clustering algorithms applied on the SSS network, with
and without scoring by cohesiveness weighting, for pre-
dicting yeast small complexes. For Extract (where cohe-
siveness weighting is used by default), scoring without
cohesiveness weighting means a cluster’s score is its
weighted density. For the other clustering algorithms
(where weighted density is used by default), scoring with
cohesiveness weighting means a cluster’s score is the pro-
duct of its weighted density and its cohesiveness (ratio of
sum of internal edges over internal and outgoing edges).
With the SSS network, scoring by cohesiveness weighting
improves performance across all clustering algorithms. On
the other hand, Figure 6b shows that, with the PPIREL
network, scoring by cohesiveness weighting decreases per-
formance across most clustering algorithms. Thus,

Figure 4 Performance of classification of small complex edges, in (a) yeast, (b) human.

Figure 5 Performance of small complex prediction with and without isolatedness feature in SSS, in (a) yeast, (b) human.
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cohesiveness weighting appears useful only when edges are
weighted using SSS.
Figure 6c and 6d show the corresponding charts for

human complexes, with and without cohesiveness weight-
ing. With the SSS network, cohesiveness weighting
improves performance in four of seven clustering algo-
rithms; whereas with the PPIREL network, cohesiveness
weighting decreases performance in all clustering algo-
rithms. Thus, in human complexes as well, cohesiveness
weighting appears useful only when edges are weighted
using SSS.

Example complexes
In this section we present some example complexes that
are difficult to predict using the PPIREL network with any
standard clustering algorithm, but can be predicted with
our approach (SSS + Extract). Since the various clustering
approaches output different numbers of predictions, we
consider only the top scoring predicted clusters with a

cross-validation precision level greater than some thresh-
old. For yeast we use a precision threshold of 10%, but for
human we use a lower precision threshold of 2%, since
fewer human complexes are predicted with high precision.
The DNA replication factor A complex in yeast consists

of three proteins, Rfa1p, Rfa2p, and Rfa3p. Figure 7a
shows the PPIREL network around this complex, with
edge widths scaled to PPI reliability scores. The complex
is embedded within two size-4 cliques (with Rad52p, and
Mec1p), with high PPIREL weights. Moreover, Rfa1p is
also connected via high PPIREL weights to many external
proteins, some of which form size-3 cliques as well. As a
result, none of the standard clustering algorithms applied
on the PPIREL network predicted this complex, in any
cross-validation round. Figure 7b shows the SSS network,
with edge widths scaled to the small co-complex posterior
probability scores. The three proteins in the complex
remain interconnected with high edge weights, while the
extraneous edges’ weights are now markedly lowered.

Figure 6 Performance of small complex prediction with and without cohesiveness weighting for scoring clusters, for (a) SSS network
in yeast, (b) PPIREL network in yeast, (c) SSS network in human, (d) PPIREL network in human.

Yong et al. BMC Systems Biology 2014, 8(Suppl 5):S3
http://www.biomedcentral.com/1752-0509/8/S5/S3

Page 10 of 15



Thus, our Extract algorithm is able to retrieve this com-
plex from the SSS network consistently across all cross-
validation rounds where it is tested.
Figure 8 shows two yeast complexes, with an overlap-

ping protein (Sir2p), involved in transcriptional silen-
cing: the chromatin silencing complex, consisting of
Sir2p, Sir3p, and Sir4p, and the RENT complex, consist-
ing of Sir2p, Cdc14p, and Net1p. In the PPIREL network
(Figure 8a), each of the two complexes are connected
via highly-weighted extraneous edges to many external
proteins. Once again, none of the standard clustering
algorithms applied on the PPIREL network could predict
either of these complexes, in any cross-validation round.
In the SSS network (Figure 8b), the chromatin silencing
complex remains connected with high edge weights,
with a marked reduction in the weights of the extra-
neous edges. Thus our Extract algorithm retrieves this
complex from the SSS network consistently across all
cross-validation rounds where it is tested. On the other
hand, in the RENT complex, the weights of two edges
(from Sir2p to the other two proteins) are now even
lower than some of its extraneous edges. As a result,
our Extract algorithm retrieves this complex in only
33% of the cross-validation rounds where it is tested.
Nonetheless, this is still an improvement over using the
PPIREL network with standard clustering algorithms.
Figure 9 shows two human ubiquitin ligase heterodi-

mer complexes with an over-lapping protein: the
UBE2V1-UBE2N and UBE2V2-UBE2N complexes. In
the PPIREL network (Figure 9a), UBE2N is connected
via highly-weighted edges to many other external pro-
teins, forming a number of size-3 cliques with them.
The UBE2V1-UBE2N complex is embedded within two
size-3 cliques, making it difficult to discover: none of

the standard clustering algorithms predicted this com-
plex in any cross-validation round. On the other hand,
the UBE2V2-UBE2N complex is relatively isolated as
UBE2V2 is not connected to any other external protein,
allowing CMC and IPCA to predict this complex consis-
tently. In our SSS network (Figure 9b), all extraneous
edges’ weights have been dramatically lowered, leaving
the co-complex edges with high weights. Thus our
Extract algorithm retrieved UBE2V1-UBE2N 78% of the
time, and UBE2V2-UBE2N 100% of the time.

Quality of novel complexes
In this section we compare the number and quality of
high-confidence novel complexes predicted by our
approach (SSS + Extract), against using standard cluster-
ing algorithms on the PPI reliability network. When
weighting the network with SSS, the entire set of refer-
ence complexes is used for training. We filter the pre-
dicted complexes to remove those that match any
reference complex, and to keep only high-confidence
predictions: the score of each predicted complex is
mapped to a precision value, using the cross-validation
results, and only predicted complexes with estimated
precision greater than a confidence threshold are kept.
For yeast, this confidence threshold is 0.5; for human, a
lower threshold of 0.1 is used, since much fewer com-
plexes are predicted with high precision.
Figure 10a shows the number of high-confidence

novel complexes predicted in yeast, and their average
BP, CC, and MF semantic coherence, using the different
approaches. Compared to the other approaches, SSS
with Extract generates more than twice as many high-
confidence novel predictions, with equal or greater qual-
ity: our predicted complexes have greater coherence

Figure 7 DNA replication factor A complex in yeast, in (a) PPIREL network, (b) SSS network.
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than ClusterOne, MCL, or PPSampler2 (p <.05 in at
least one of BP, CC, or MF), and similar coherence with
the other approaches. The CYC2008 reference com-
plexes have much higher BP and CC coherence, but
lower MF coherence.
Figure 10b shows the corresponding charts for human

predictions. Again, our approach generates more high-
confidence novel predictions than the other approaches,

with equal or greater quality: our predicted complexes
have greater coherence than ClusterOne, MCL, RNSC,
or PPSampler2 (p <.05 in at least one of BP, CC, or
MF), and similar coherence with the other approaches.
Our predicted complexes have similar semantic coher-
ence compared to the Corum reference complexes.
Finally, we briefly mention two novel complexes, pre-

dicted by our approach, that we have validated via a

Figure 8 Chromatin silencing complex and RENT complex in yeast, in (a) PPIREL network, (b) SSS network.

Figure 9 Two human ubiquitin ligase complexes, in (a) PPIREL network, (b) SSS network.
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literature scan. Our approach predicts a high-scoring
yeast cluster consisting of Cap1p and Cap2p, which is
not found in our reference database of complexes. How-
ever, a literature scan revealed this to be the capping
protein heterodimer, which binds to actin filaments to
control filament growth [21]. Our approach also predicts
a novel high-scoring human cluster consisting of PKD1
and PKD2. A literature scan revealed that these two
proteins, which are involved in autosomal polycystic kid-
ney disease, have been found to form a PKD1-PKD2
heterodimer [22].

Conclusion
The size of protein complexes has been noted to follow a
power distribution, meaning that a large majority of com-
plexes are small (consisting of two or three distinct pro-
teins). Thus the discovery of small complexes is an
important subtask in protein complex prediction. Predict-
ing small complexes from PPI networks is inherently chal-
lenging. Small groups of proteins are likelier to take on
topological characteristics of real complexes by chance:
for example, fully dense groups of two or three proteins
correspond to edges or triangles respectively, but only a
few of these actually correspond to small complexes.

Furthermore, the prediction of small complexes is espe-
cially susceptible to noise (missing or spurious interac-
tions) in the PPI network, as these can easily disconnect a
small complex, or embed it within a larger clique.
We propose a two-stage approach, SSS and Extract, for

discovering small complexes. First, the PPI network is
weighted by size-specific supervised weighting (SSS),
which integrates heterogeneous data and their topological
features with an overall topological isolatedness feature,
and uses a naive-Bayes maximum-likelihood model to
weight the edges with their posterior probabilities of being
in a small complex, and in a large complex. Integrating
other data sources into the PPI network can help reduce
noise, while incorporating the topological features across
multiple data sources makes it less likely that random pro-
tein groups take on topological characteristics of com-
plexes by chance. In our second stage, Extract, the SSS-
weighted network is analyzed to extract putative small
complexes and score them by cohesiveness-weighted den-
sity, which incorporates both small-co-complex and large-
co-complex weights of internal and outgoing edges. This
reduces the impact of noisy edge weights in deriving reli-
able scores for predictions, as more edge weights around
the candidate complex are utilized.

Figure 10 Number of high-confidence novel predictions, and their semantic coherences, in (a) yeast, (b) human.
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While a few previous approaches have used supervised
learning to weight PPI edges, none of them have done so
in a complex-size-specific manner, or incorporated isolat-
edness as a feature in this way. Our adaptation of cohesive-
ness to address the problem of the small number of edge
weights available in scoring small complexes is also novel.
We test our approach on the prediction of yeast and

human small complexes, and demonstrate that our
approach outperforms some commonly-used clustering
algorithms applied on a PPI reliability network, attaining
higher precision and recall. Furthermore, our approach
generates a greater number of novel predictions with
higher quality in terms of Gene Ontology semantic coher-
ence. Nonetheless, the performance of small complex pre-
diction still lags behind that of predicting large complexes,
especially for human complexes.
We note that a significant challenge for human com-

plex prediction is insufficient PPI data. An estimate of
the human interactome size is around 220, 000 PPIs [23].
Our human PPI data consists of around 140, 000 PPIs,
and with an estimated false-positive rate of 50%, this
means that our human PPI network represents only a
third of the true human PPI network. In comparison, in
yeast an estimate of the interactome size is around 50,
000 PPIs. Our yeast PPI data consists of around 120, 000
PPIs, so even with an estimated false-positive rate of 50%,
our yeast PPI network can be believed to be a good
representation of the actual yeast PPI network. The
much poorer representation of the true human interac-
tome partially explains the poorer performance of our
approach on human complexes.
Nonetheless, there is still room for further work on

complex detection techniques that may improve the pre-
diction of small human complexes. A possible future
direction is to adapt other techniques that have proved
useful for large complex prediction, such as GO term
decomposition and hub removal [24], which might
further improve the performance of small complex
prediction.
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