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Abstract

Background: The human habitat is a host where microbial species evolve, function, and continue to evolve.
Elucidating how microbial communities respond to human habitats is a fundamental and critical task, as
establishing baselines of human microbiome is essential in understanding its role in human disease and health.
Recent studies on healthy human microbiome focus on particular body habitats, assuming that microbiome
develop similar structural patterns to perform similar ecosystem function under same environmental conditions.
However, current studies usually overlook a complex and interconnected landscape of human microbiome and
limit the ability in particular body habitats with learning models of specific criterion. Therefore, these methods
could not capture the real-world underlying microbial patterns effectively.

Results: To obtain a comprehensive view, we propose a novel ensemble clustering framework to mine the
structure of microbial community pattern on large-scale metagenomic data. Particularly, we first build a microbial
similarity network via integrating 1920 metagenomic samples from three body habitats of healthy adults. Then a
novel symmetric Nonnegative Matrix Factorization (NMF) based ensemble model is proposed and applied onto the
network to detect clustering pattern. Extensive experiments are conducted to evaluate the effectiveness of our
model on deriving microbial community with respect to body habitat and host gender. From clustering results, we
observed that body habitat exhibits a strong bound but non-unique microbial structural pattern. Meanwhile,
human microbiome reveals different degree of structural variations over body habitat and host gender.

Conclusions: In summary, our ensemble clustering framework could efficiently explore integrated clustering results
to accurately identify microbial communities, and provide a comprehensive view for a set of microbial
communities. The clustering results indicate that structure of human microbiome is varied systematically across
body habitats and host genders. Such trends depict an integrated biography of microbial communities, which offer
a new insight towards uncovering pathogenic model of human microbiome.

Background
Metagenomic background
The human body is a content that complex microbial
communities are living inside and on. This microbiome
occupies body habitats and endows us with ecosystem
functions, such as nutrition, pathogen resistance and

immune system development [1,2], to help maintain our
health. Hence systematically defining the “normal” states
of human microbiome is an important step towards
understanding role of microbiota in pathogenesis [3].
However, the majority of microbiomes have been poorly
investigated.
To understand the principle of human microbiome,

prior research concentrated on particular body habitats
[3-8]. For example, Turnbaugh et al. [9] investigated the
gut microbiome in obese and lean twins to address how
host, environmental condition and diet influence the
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microbial components. Grice et al. [10] targeted human
skin microbiome to characterize its topological and per-
sonal variations within multiple sites. Bik et al. [11]’s
research indicated the distinctness of microbial structure
on oral cavity and tongue.
However, human microbial habitats are not isolated

with one another; instead they reveal community struc-
ture correlation across body habitats [12]. In this case,
ensemble of different habitat samples could bring global
and full-scale insights into microbiome. Recent studies
had aggregated microbial samples from different body
habitats to perform a comprehensive study. Costello et
al. [13] surveyed the microbiomes that were gathered
from 27 body habitats of nine adults. Mitreva [12] car-
ried out the extensive sampling on 18 body habitats
from 242 individuals. In order to establish a global
insight of human microbiome, they built a “whole-body”
microbial similarity network where the nodes were con-
sisted of metagenomic samples from multiple human
body sites and the edges as pair-wise phylogenetic simi-
larity of samples were measured in terms of their shared
evolutionary history. Clustering approaches [14] had
been applied on this large-scale similarity network to
group samples that shared more similar phylogenetic
structures with each other within the clusters than other
ones. From these clusters, researchers could infer how
microbial patterns were affected by body habitat, host
gender and environmental condition with time. Costello
et al. [13] proposed a hierarchical clustering algorithm
on a microbial community network and found out per-
sonal microbiota relatively stable within habitats over
time. Turnbaugh et al. [9] identified two distinct func-
tional modules on gut microbiome via principal compo-
nents analysis (PCA) and hierarchical clustering
algorithm, and experimental results disclosed that
microbiome within same clusters carried out similar
ecosystem-level functions. Mitreva [12] adopted a cen-
troid-based clustering algorithm and discovered the co-
variation and co-exclusion of microbiome between dif-
ferent habitats.

Current Limitations
Clustering approach aims to group metagenomic sam-
ples with similar phylogenetic patterns. It can be
achieved by various algorithms that differ significantly in
terms of computational principles and measures, by
which each generated clustering results can be viewed
as taking a different “look” through data (as shown in
Table 1). However, most of prior studies employ one
particular clustering approach, by which the clustering
outputs tend to be specific towards the criterion of the
proposed approach. For example, density-based cluster-
ing algorithm groups samples that are densely con-
nected in similarity network. However, true microbial

communities are not limited to densely connected struc-
tures; samples with sparsely microbial structure widely
exist in the lake [15]. Graph partition-based clustering
such as MCL [16] and K-means clustering [17] explores
the best partition of a network. But these algorithms do
not allow the overlaps between clusters. Therefore, they
are unable to discover shared microbe between two
communities, such as some species that could adapt in
multi-environmental conditions like microbial mats and
biofilms. Hierarchical clustering algorithm [18] learns
the hierarchical structure of a network, which has been
used in [13], but hierarchical structure is determined by
local optimization criterion as such there is no global
objective function, which might lead to small clusters
with only part of similar samples. Distribution-based
clustering approach, like expectation-maximization (EM)
[19], identifies the clusters that follow statistical Con-
dorcet criteria. But statistical model for microbial com-
munity remains rarely known and therefore it is difficult
to evaluate reliability of the results.

Advantage of proposed Ensemble clustering framework
Ideally, a clustering algorithm should be able to exploit
clustering patterns as comprehensive as possible. How-
ever, as we have mentioned above, few algorithms are
capable of taking into consideration all factors. Different
clustering algorithms may produce different partitions of
the network. Given multiple clustering results, we need
to explore their information and output more robust
results that can exploit the complementary nature of
these patterns.
Ensemble clustering was proposed recently which has

been successfully used to solve many community detec-
tion problems [20-23]. Thus, we use ensemble clustering
framework to integrate the various kinds of clusters (here
we call them base clustering results) and output more
comprehensive results. In this study, we first construct a
consensus matrix which measures similarity of samples
based on co-occurrence of samples in base clustering
results [24]. Next we apply Symmetric Nonnegative
Matrix Factorization (NMF) [25] on the consensus
matrix to derive clusters. Symmetric NMF provides a
lower rank approximation of a nonnegative matrix,
which could be easily related to the clustering of the non-
negative data. As mentioned in [25], the factorization of
the consensus matrix will generate a clustering assign-
ment matrix that could capture the cluster structure
inherent in the network.
Unlike prior researches that applied single cluster

algorithm on particular habitat microbiome, our frame-
work assembled clustering algorithms of different
human microbiome in different body habitats. We car-
ried out our experiments to demonstrate its capability
in capturing the microbial community. Experimental
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results showed that predicted clusters were capable of
revealing the spatial and gender roles of human micro-
biota and eventually elaborated human microbiome bio-
geography, which provided new insights about disease
pathogenesis of human microbiome [9,12,13].

Material and methods
In this section, we first briefly introduced the experimental
data, the similarity measurements of metagenomic sam-
ples and GPU based fast similarity matrix computing.
Then we described the schema of ensemble clustering fra-
mework and its phases to structure microbial community.

Experimental data
In this work, we used 1920 metagenomic samples from
the project “Moving pictures of human microbiome”
[26] to build the microbial matrix and similarity net-
work (refer to section “Similarity measurements of
metagenomic samples” for details). A sample of meta-
genomic matrix and network were illustrated in Figure 1

and the similarity matrices of all datasets were shown in
Additional file 2: Table S1. GPU-Meta-Storms [27] were
performed to measure structural similarity of metage-
nomic samples (Efficiency of GPU-Meta-Storms is
shown in Additional file 2: Figure S1). Metagenomic
samples were annotated by two meta-labels: Habitat =
{gut, skin, oral cavity} defined human body habitat the
samples live in, while Gender = {male, female} defined
the gender of host the samples inhabit. Combining the
two meta-labels, each sample was partition into one of
six meta-classes, they were {male & gut, male & skin,
male & oral cavity, female & gut, female & skin, female
& oral cavity}. Table 2 summarized the distribution of
1920 metagenomic samples on three body habitats and
two host genders.

Similarity measurements of metagenomic samples
The scoring function of Meta-Storms [27] compared two
microbial samples’ structure by calculating the maximum
common component of their common phylogenetic tree

Table 1 Summary of four particular clustering approaches

Clustering
Approaches

Characteristics Limitations on microbial pattern

Density-based
clustering

Clusters are defined as connected dense regions in the
network

True microbial community are not limited to densely connected
structures; sparsely microbial structure still exists

Graph partition-
based

clustering

Clusters are generated via graph partitioning techniques Partition based algorithms do not allow the overlaps between clusters.
Therefore, they are unable to discover shared microbe among clusters,
such as some species that could adapt in multi-environmental
conditions like microbial mats and biofilms

Hierarchical
clustering

Clusters are built based on an agglomerative clustering
model that shows relations between the members and
groups

Hierarchical structure is determined by local optimization criterion as
such there is no global objective function, which might lead to small
clusters with only part of similar samples

Distribution-
based

clustering

Clusters are modelled using statistical distributions Statistical models of microbial communities are still unknown and
need to be further explored

Figure 1 An example of (A) similarity matrix and (B) its similarity network. In the matrix, each tile indicates a similarity value between 2
samples by colour gradient from red (high) to green (low). In the network, each node represents a sample, and edges represent similarity values
in the matrix.

Yang et al. BMC Systems Biology 2014, 8(Suppl 4):S7
http://www.biomedcentral.com/1752-0509/8/S4/S7

Page 3 of 12



considering the b-diversity, phylogenetic distance and
abundance of each species (Formula 1). The scoring
function first evaluated the common abundance of each
species on the leaf node, which was considered as the
smaller abundance value in two samples. These abun-
dance values were propagated to their ancestors itera-
tively, and the accumulative common abundance values
at the root node reflected the overall similarity between
the two metagenomic samples, which could be computed
using Similarity (Root) defined in Formula 1.

Similarity(X) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Common Abundance(X) If X is a leaf node

Common Abundance(X)

+Similarity(X.Left)

+Similarity(X.Right)

If X is an internal node (1)

Then we constructed the similarity matrix based on
the pair-wised similarity among all sample pair (Figure 1
(A)). Exploiting the multi-core architecture of the GPU
[28], Formula 1 could be invoked in parallel using a
large number of threads to compute similarity between
different pairs of metagenomic samples. To compute the
pair-wise similarity matrix for N samples, we spawned N
* N threads in the GPU such that each similarity value
in the matrix was processed by an independent thread.

Figure 2 illustrated the GPU computing workflow: to
build the common phylogenetic tree, we first loaded and
initialize abundant specie data from the file system to
main memory; this data was then reloaded to the GPU
for computing. When all threads of the GPU kernel had
been completed (Figure 1, step 3, the key step), these
values were returned back to RAM to populate the simi-
larity matrix, which was then stored in the file system.

Ensemble clustering framework
In this subsection, we proposed a novel ensemble clus-
tering framework, namely Meta-EC, to perform micro-
bial community pattern detection. The framework
consisted of two stages: a generation phase where a con-
sensus matrix was constructed based on base clustering
results and an identification phase in which a symmetric
NMF-based clustering was used to detect reliable clus-
ters from the consensus matrix. The schema of our
Meta-EC algorithm was presented in Figure 3.
Terminology: After computing the pair-wise similarity

matrix of the metagenomic samples, we used it to con-
struct the microbial similarity network that was refor-
matted as a simple undirected graph G = (V, E), where
V defined a vertex set which containeed |V| = N ver-
tices, and E an edge set. A vertex v ∈ V represented a
metagenomic sample and a weighted edge e ∈ E repre-
sented the polygenetic structure similarity of two sam-
ples (Figure 1(B)). A cluster Ci =

(
Vi
c,E

i
c

)
was a

subnetwork of G such that Vi
c ⊂ V and Eic was the set of

edges induced by Vi
c from G. A microbial community of

G was a set of predicted microbial clusters, defined as
{C1,...,Cm}.
Generation phase: When the similarity network was

ready, a set of base clustering results were calculated by

Table 2 1920 microbial samples on six human body
habitats

Gut Skin Oral Total

Male 331 698 366 1395

Female 130 262 133 525

Total 461 960 499 1920

Figure 2 Overview of the GPU based similarity matrix computing.
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applying four clustering algorithms (base clustering algo-
rithms) on the similarity network with different initializa-
tions, as shown in Figure 3(A). The base clustering
algorithms included EM algorithm, K-mean clustering,
hierarchical clustering and density-based clustering, as
present in Table 1 and Additional file 1: Section 1. A con-
sensus matrix W was introduced to measure the co-occur-
rence of samples in clusters of the base clustering results.
Each Wij indicated the number of base clustering results
in which sample i and sample j were assigned to the same
cluster, divided by the total number of base clustering
results. Therefore, matrix W took into consideration all
generated clusters and reflected the co-clusters similarity
between each pair of samples based on different clustering
criterions. The higher the value of Wij, the more likely
sample i and sample j belonged to the same cluster.
Identification phase: When the consensus matrix was

constructed, we applied a symmetric NMF-based clus-
tering algorithm on this matrix to derive the clusters.
The flowchart of this algorithm was shown in Figure 3
(B). The main idea of this algorithm was outlined as
follows:

The symmetric NMF defined in Equation (2) was suita-
ble for network clustering based on similarity matrix W:

minH≥0D
(
W|HHT) (2)

Here D(W|HHT) was a predefined cost function
Kand K was the predefined number of clusters. H was a
cluster indicator matrix in which each entry hi,k denoted
the real-valued membership of sample i belonging to
cluster k. So we could easily infer the clustering assign-
ment of sample i from the i-th row of H. In this study,
we used Kullback-Leibler (KL) divergence [28] as the
cost function, which could be represented as:

D
(
W

∣∣HHT )
= DKL

(
W

∣∣HHT )
=

∑N

i,j=1
Wij log

(
Wij(

HHT
)
ij

)
− Wij +

(
HHT)

ij (3)

We chose KL-divergence as the cost function since it
was free of noise parameter and had been widely used
in NMF.
A sample may belong to more than one cluster, but it

seldom belonged to all clusters. Thus, the cluster indica-
tor matrix H should be sparse. To achieve sparsity of

Figure 3 The schema of Meta-EC algorithm.
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the solution of H, a L1-norm regularization for H was
integrated. Neglecting constants and adding the L1-
norm regularization for H, the modified formulation was
as follows:

min
H≥0

(
−

∑N

i=1

∑N

j=1

(
Wi,j log

(
HHT)

i,j −
(
HHT)

i,j

)
+

∑N

i=1

∑K

z=1
βhi,z

)
(4)

where the hyper-parameter b > 0 controlled the spar-
sity of H, and H ≥ 0 was the cluster indicator matrix.
Solution to NMF-based Ensemble Clustering: Mini-

mization of the cost function in equation (4) with con-
straints formed a constrained nonlinear optimization
problem. Similar to [29,30], we adopted the multiplicative
update rule [31] to estimate H, which was widely accepted
as a useful algorithm in solving nonnegative matrix factor-
ization problem. By the multiplicative update rule, we
obtained the following update rules for hi,z:

hi,z ← hi,z
2

+
1
2
hi,z

∑|V|
j=1

Wi,jhj,z∑K
l=1 hi,lhj,l∑|V|

j=1 hj,z + 0.5β

(5)

We iteratively updated H according to the updating
rule (5) until they satisfied a stopping criterion. Let Hl be
the cluster indicator matrix at iteration time l (l > 1). The
algorithm was stopped whenever ||Hl - Hl-1||1 < r, where
r was a predefined tolerance parameter. Here we set r =
10-6 as the default value of tolerance parameter. In addi-
tion, the maximum of iteration time was limited to 200
iterations if the stopping criteria r was unsatisfied. In
order to avoid local minimum, for random initialization,
we repeated the algorithm 10 times with random initial
conditions and chose the results with lowest value of the
cost function (4).
From cluster indicator matrix to microbial clusters:

Similar to [32], we obtained microbial clusters from cluster
indicator matrix H by taking the threshold τ to assign a
sample to a cluster when its weight for the cluster
exceeded τ. In this way, we obtained the resultant sample-
cluster membership matrix H∗ =

(
h∗
i,z

)
, where h∗

i,z = 1 if
hi,z ≥ τ and h∗

i,z = 0 if hi,z < τ. Here, h∗
i,z = 1mean sample i

was assigned to detected cluster z and h* mean the final
output of h. After completing these steps, we obtained the
refined clusters EK that satisfied the following conditions:

EK =
{{C1, ...,CK} : vi ∈ CZ, if .h∗

i,z = 1
}

(6)

where i = 1,...,N and z = 1,...,K.
We summarized the whole algorithm in Figure 4.

Results
In this section, we focused on evaluating the effective-
ness of Meta-EC algorithm. Before presenting the
experimental results, we first introduced our experiment
design: evaluation metrics and experimental settings in

our study. Then we conducted experimental comparison
between Meta-EC and base clustering approaches, and
comparison between constructed consensus network
and original metagenomic similarity network. Finally,
from clustering results, we investigated how human
microbial community was influenced by body habitat
and host gender.

Evaluation metrics
In this work, we evaluated the effectiveness of clustering
algorithms by observing how well detected clusters corre-
sponded to the sampling information of habitats and gen-
ders (six meta-classes, refer to subsection Terminology
for details). Since the true number of cluster patterns for
habitat and gender was unknown, and there were no lit-
erature references to clearly mention how to determine
the number of cluster patterns in either body habitat or
host gender, we empirically defined reference clusters
based on six meta-classes. Assuming that metagenomic
samples with identical meta-classes were likely to have
similar microbial structures [13], we bring the metage-
nomic samples with identical meta-classes into one
reference cluster. Typically, the quality of the predicted
clusters could be evaluated by following three quantity
measures, f-measure [33], PR metrics and F-score, which
could measure how well the detected clusters corre-
sponded to reference clusters.
Among these three measures, f-measure which was the

harmonic mean of Precision and Recall, aimed at asses-
sing how well the detected clusters matched reference

Figure 4 The algorithm of Meta-EC for microbial community
pattern detection.
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ones at cluster level (Precision measured what fraction of
the detected clusters were matched with reference ones
and Recall measured what fraction of reference clusters
were matched to detected clusters). PR-based metric
took into account the overlap between detected and
reference clusters. F-score focused on measuring whether
samples within identical habitats were grouped together
in the detected clusters. The value of each measure varied
from 0 to 1, and the higher value indicated better match.
For more details of f-measure, PR metrics and F-score,
please refer to Additional file 1: Section 2. And the para-
meter setting in the experiments is introduced in Addi-
tional file 1: Section 3.

Evaluation of clustering results generated by Meta-EC
algorithm
In this subsection, to evaluate the performance of Meta-
EC algorithm, we presented performance comparison of
proposed Meta-EC algorithm with base clustering
approaches and comparison of constructed consensus
matrix with original microbial similarity matrix.
Comparison against four base clustering

approaches: To evaluate the performance of ensemble
clustering approach, the accuracy of the clustering results
derived from our proposed approach was compared with
the ones derived from these base clustering algorithms.
Figure 5 illustrated the performance of different cluster-
ing algorithms in terms of three metrics (PR, f-measure
and F-score) with respect to the reference clusters. From
Figure 5, we could observe that our ensemble-based
approach had competitive performance compared with
the base clustering algorithms as regard to all three mea-
sures. Among the base clustering algorithms, K-means
with cluster number set to 6 had better performance in
terms of PR, while K-means and Density-based clustering
with cluster number set to 6 had better performance in
terms of f-measure, and Hierarchical clustering with clus-
ter number set to 9 and 10 had comparable performance
with K-means and Density-based clustering with cluster
number set to 6 in terms of F-score. But none of them
could have superior performance than others as regard to
all three measures. However, our ensemble-based
approach obtained the best performance in terms of all
the three measures. This may be owing to the fast that
ensemble-based approach could make use of clusters
derived from different base clustering algorithms and
extract more reliable results. In addition, we conducted
sensitivity study of phylogenetic structure similarity on
microbial network. We ran algorithm Meta-EC with
threshold value of metagenomic similarity in matrix tun-
ing from 0.7 to 0.9 with 0.1 as step size, the results in
Additional file 2: Figure S4 showed Meta-EC outper-
formed other state-of-art clustering techniques in the
wide range of edge threshold, indicating that our

algorithm is robust and insensitive to the similarity net-
work noisy and data coverage. In addition, we have com-
pared the computational time with base clustering
approaches in Table 3 and results show that Meta-EC

Figure 5 Performance comparison of ensemble clustering
framework to base clustering algorithms with respect to f-
measure, PR and F-score. Note that ensemble-based approach
with random initialization is denoted as “Ensemble_random”, while
ensemble-based approach with a base clustering result as initial
input is denoted as “Ensemble_initial”. The result of
“Ensemble_random” is obtained with β = 1.
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exactly spend more time than that by K-mean and Hier-
archical clustering but less than EM clustering, so the
total time cost of MetaEC is the sum of all base cluster-
ing algorithms plus 72.8 seconds. With rapid develop-
ment of computational capability, we could improve the
time efficiency on large amount of operations.
Comparison of constructed consensus network with

original similarity network: To demonstrate the bene-
fits of combining different base clustering results, we
applied symmetric NMF on original metagenomic simi-
larity network and evaluated its performance. To be fair,
the results of symmetric NMF on original metagenomic
similarity network were obtained over the best tuned
parameter. The comparison of the two tested similarity
network is present in Figure 6 as regard to F-measure,
PR and f-measure.
The results in Figure 6 showed that applying sym-

metric NMF on consensus matrix achieved better per-
formance than that on the original similarity network.
These results demonstrated the benefits of combining
different base clustering results. If the similarity matrix
was well constructed (each element reflected the co-
cluster similarity), the factorization of the similarity
matrix would generate a clustering assignment matrix

that could well capture the cluster structure inherent in
the network representation. However, the original net-
work weighted the interaction via measuring the phylo-
genetic structure of samples. In this way, metagenomic
samples with higher phylogenetic similarity were more
likely to be involved in one cluster. If the actual micro-
bial pattern was uncorrelated with phylogenetic similar-
ity, the community detected by symmetric NMF may be
unreliable. In ensemble clustering framework, we gener-
ated a consensus matrix that integrated the clustering
results derived from different clustering algorithms.
Each element in consensus matrix indicated the fre-
quency of the corresponding sample pair being clustered
together in these base clustering results. Thus, applying
symmetric NMF on consensus matrix could take into
consideration the co-cluster strength of multiple cluster-
ing patterns and output a more comprehensive and
robust result.

Interpretation of Microbial community patterns on
human body habitats based on clustering results
Recall that metagenomic samples were clustered in
terms of co-occurrence frequency in base clustering
results. Hence the final output clusters assembled sam-
ples to represent unique microbial patterns that are the
consensus from base clustering approaches. Next, from
the clustering results, we infer how microbial pattern
was influenced by body habitats and host genders.
Structural variation across body habitats: Through

analyzing the enrichment of body habitat and host gen-
der over six predicted clusters, the results in Figure 7
revealed a stronger coherence by body habitat than host
gender. These clusters dominated by particular body
habitats inferred that these body habitats harboured dis-
tinctive microbial patterns, which was also observed in
base clustering results in Additional file 2: Figure S3.
Although four base clustering algorithms generate clus-
tering patterns with different criterions, most clusters in
Additional file 2: Table S2 were enriched with particular
habitats.
Meanwhile, we observed that microbial communities

at different body habitat exhibited different degree of
compositional structure variation. Figure 7 showed that
microbial structure remained relatively stable in oral
cavity, compared with diverse microbial structures har-
boured in skin. It was biologically reasonable to detect
diverse patterns on skin, since there were quite different
places where skin microbial communities could be
sampled.
Different extend of habitat structural variation were

also observed in base clustering results. In Additional
file 2: Figure S2, gut and oral cavity microbial commu-
nity patterns were only fit with one clustering criterion,
gut consistent with K-means and oral cavity with

Table 3 Comparison with bases clustering approaches on
computational time

Method EM K-Means Hierarchical Density-based Meta-EC

Time(S) 221.17 11.57 55.04 12.24 72.8

Figure 6 Performance comparison of Bayesian NMF based
clustering algorithm applied on ensemble clustering similarity
network and original microbial similarity network. Additive
values of three measures are present for each data source. For
random initialization case, the value of β is set to 1 and the result
corresponds to “Original_random”. We also choose the base
clustering results which presents the best performance as the initial
input of symmetric NMF and the result corresponds to
“Original_initial”.
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hierarchical clustering. Contrary to gut and oral cavity,
skin-enriched cluster could be recognized by four clus-
tering criterions in all experimental settings, inferring
skin samples have many cluster patterns with diverse
microbial structures.
Note that the proposed Meta-EC generates a more

comprehensive community patterns with respect to
meta-data since our result is an agreement by consensus
of multiple base clustering approaches. For example,
compared to Hierarchical and EM clustering results in
Additional file 2: Figure S3 that only capture male-gut
cluster, ensemble clustering is able to uncover female-
gut specific clusters (shown in Figure 7), indicating that
Meta-EC could reveal degree of structural variation over
body habitat more comprehensively than base clustering
results.
Structural variation across host gender: We further

assessed microbial structure variation with respect to host
gender. Meta-Storm [27] was used to measure similarity
of two metagenomic samples. The results in Figure 8 indi-
cated that over all habitats, variation was significantly less
within same gender samples than between opposite gender
samples. However, these habitats perform different degree

of structural variation with respect to host gender. Oral
cavity microbiome exhibited a stable structure both
among same and opposite gender individuals (both above
92% phylogenetic structure similarity). And skin commu-
nities had no unique structural variation patterns regard-
ing to host gender. Gut community structure was highly
variable between samples from opposite gender hosts (less
than 90% similarity value for opposite gender samples of
gut cluster 3), but exhibited strong coherence to same
gender hosts. On the other hand, the enrichment study in
Figure 7 showed that two gut clusters were distinct with
host gender, indicating that opposite sexual individuals
may exhibit a distinct microbial composition in gut.
Microbial interconnection over habitats: Although

microbial communities reflected unique structures (dis-
tributions) over body habitats, the interconnected
microbial components among the body habitats were
still observed in the clustering results. For example,
cluster 1 in Figure 7 contained 10 skin samples that
shared similar microbial compositions with oral cavity
communities, while skin cluster 2, 4 and 6 harboured 6,
15 and 2 oral cavity samples respectively. Since skin
microbial pattern was closely associated with external

Figure 7 Sample distribution on predicted clusters with respect to body habitat and host gender.
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environment [34] and oral cavity was an open system
where microbiome from external environment was
imported by breathing, eating food and drinking water
[35], oral cavity and skin would respond to outside
environmental conditions, and gradually evolve similar
microbiomes.

Conclusions and discussions
The human microbiomes are microbiomes that are hosted
in gut, oral mucosa and multi-layer of skin etc. These
organisms perform ecosystem-level functions that are use-
ful for human host to maintain healthy, yet detailed factors
that attribute the microbial community structures in
human body habitats and host gender remain poorly con-
ceptualized. To fully understand the roles of human
microbiome in disease and health, prior studies focus on
particular body habitats of health individuals with specific
clustering approaches, based on the assumption that meta-
genomic samples of same body habitats would develop
similar microbial structure patterns. However, human
habitats are not isolated; they are interacted and correlated
to form an integrated and complex system. And identified
structures might be unsuccessful due to noisy sample
similarity and specific topological structure within metage-
nomic network. Hence, single clustering algorithm rarely
achieves optimal outcome. To uncover a global and com-
prehensive landscape of human microbiome, we perform
an ensemble clustering framework Meta-EC on large-

scale metagenomic samples. In this study, our proposed
Meta-EC algorithm has four main advantages on microbial
pattern detection: (1) Meta-EC could effectively identify
more reliable microbial communities via integrating many
base clustering results, (2) As regard to the modularity of
microbial communities, defined as the clustering of micro-
bial communities (modularity) according to the effects of
their related environments or treatments (meta-data), the
consensus clustering network is much clearer at showing
such modularity property (such as how environments (or
meta-data) shape microbial communities in body habitat,
which is critical to healthcare and diognosis) than the ori-
ginal metagenomic similarity network [25], (3) Ensemble
framework is robust for the coverage of metagenomic
similarity network (as shown in Additional file 2: Figure
S4), and (4) Compared to base clustering results in Addi-
tional file 2: Figure S3, Meta-EC algorithm could reveal
the spatial and gender patterns of microbiome (as shown
in Figure 7) more comprehensively, as the ensemble clus-
tering result is a general agreement by multiple base clus-
tering approaches.
Nevertheless, it should be acknowledged that the per-

formance of our algorithm depends on the base cluster-
ing results and quality of original metagenomic
similarity network. If all these base results were gener-
ated by poor clustering algorithms, the ensemble out-
puts would be far from real microbial community
similarity patterns. If the original similarity network is
unreliable to capture the modularity of metagenomic
samples, none of clustering approaches could work. To
address this problem, we have to integrate more base
clustering approaches with diverse optimization criter-
ions and pattern assumptions, to reduce the bias gener-
ated by base approaches. We assume these algorithms
can capture a wide variety of clustering patterns in simi-
larity network to alleviate the effect of unreliable cluster-
ing results. On the other hand, the proposed NMF
based mode, which could be used in association study
of bioinformatics domain [36-39], is a more complex
method to implement, and convergence could be slow,
as shown in Table 3. With rapid development of com-
putational capability, we could improve the time effi-
ciency on large amount of operations. And the
nonnegative constraints on cluster indicator matrix H
may be an insufficient condition for achieving sparse-
ness in some cases [20]. Then one may set appropriate
thresholds to enforce sparseness. In summary, Meta-EC
is an ensemble clustering framework for large-scale
metagenomic data analysis and microbial community
pattern detection. In the future, NMF based model
could be exploited to offer potential applications on
bipartite model of drug-target association [40] and dis-
ease gene prediction [41].

Figure 8 Structural variation over host gender in oral cavity,
gut and skin-dominated clusters.
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Availability
The data sets and supporting experimental results of
this article are available for download from http://
datam.i2r.a-star.edu.sg/MetaEC.

Additional material

Additional file 1: Experimental Design. The file show the experimental
design in this paper, including: (1) introductory of four base clustering
approaches; (2) evaluation of microbial clusters; (3) parameter setting.

Additional file 2: Supplementary Material. The file presents several
figures, tables and additional experimental results mentioned in this
paper, including: (1) the efficiency of GPU-meta-storm algorithm; (2)
evaluation of four base clustering results; (3) sensitivity study of
phylogenetic structure similarity on microbial network.
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