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Abstract

Background: Gene regulatory network (GRN) is a fundamental topic in systems biology. The dynamics of GRN can
shed light on the cellular processes, which facilitates the understanding of the mechanisms of diseases when the
processes are dysregulated. Accurate reconstruction of GRN could also provide guidelines for experimental
biologists. Therefore, inferring gene regulatory networks from high-throughput gene expression data is a central
problem in systems biology. However, due to the inherent complexity of gene regulation, noise in measuring the
data and the short length of time-series data, it is very challenging to reconstruct accurate GRNs. On the other
hand, a better understanding into gene regulation could help to improve the performance of GRN inference. Time
delay is one of the most important characteristics of gene regulation. By incorporating the information of time
delays, we can achieve more accurate inference of GRN.

Results: In this paper, we propose a method to infer time-delayed gene regulation based on cross-correlation and
network deconvolution (ND). First, we employ cross-correlation to obtain the probable time delays for the
interactions between each target gene and its potential regulators. Then based on the inferred delays, the
technique of ND is applied to identify direct interactions between the target gene and its regulators. Experiments
on real-life gene expression datasets show that our method achieves overall better performance than existing
methods for inferring time-delayed GRNs.

Conclusion: By taking into account the time delays among gene interactions, our method is able to infer GRN
more accurately. The effectiveness of our method has been shown by the experiments on three real-life gene
expression datasets of yeast. Compared with other existing methods which were designed for learning time-
delayed GRN, our method has significantly higher sensitivity without much reduction of specificity.

Background
The inference of a gene regulatory network (GRN) is a
vital step in understanding many biological systems in
detail. However, the inference of GRN is known to be
challenging due to several facts: (1) gene regulation is
inherently complicated, (2) the measurements of gene
expression levels are usually noisy, (3) the datasets for
GRN inference are often incomplete, (4) time-series gene
expression datasets have short time series compared to

the number of genes measured. Generally, a GRN is
inferred using machine learning algorithms on a time-
series gene-expression dataset. Given the time-series
data, the gene regulation could be inferred in two ways:
one is assuming instantaneous or first order regulation,
and the other is considering higher order regulation. In
many cases, a gene regulates the expression of another
gene by its products (RNAs or proteins). Since it takes
time to generate those products and different processes
(e.g. transcription, translation) need different amounts of
time, time-delayed regulation is ubiquitous in cellular
processes. Thus, inferring time-delayed gene interactions
is essential to accurately reconstructing GRN.
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The problem of inferring higher-order time delays is
challenging, due to the tremendous search space when
the numbers of time lags are unknown. For the r-th
order system with totally T time points in the dataset,
the available numbers of time points for inference
reduce to T-r. This poses a serious computational chal-
lenge resulting in more false predictions.
While many methods have been introduced to recon-

struct first-order gene regulation (e.g. DBN-MCMC
[1-3], dynamic RandomForest [4]), there are only a few
methods for inferring time-delayed GRN. In 2010, a
dynamic version of ARACNE (Algorithm for the Recon-
struction of Accurate Cellular Networks) was introduced
to infer time-delayed dependencies among genes [5].
Their method, called TimeDelay ARACNE (or TD-
ARACNE), is able to reconstruct time-delayed depen-
dencies effectively. In 2012, Morshed et al. proposed a
framework to infer instantaneous and time-delayed
genetic interactions at the same time [6]. Their
approach was shown to outperform some existing meth-
ods such as TD-ARACNE and BANJO. In 2013, Li et al.
presented a method to infer high-order gene regulation,
named MMHODBN (max-min high-order dynamic
Bayesian network) [7]. MMHODBN is a hybrid Bayesian
network method, which incudes two steps: first it learns
the skeleton (i.e. an undirected network) of GRN using
constraint-based Bayesian learning (Spirtes et al., 2001);
then it performs a search-and-score technique to orient
the edges in the skeleton of GRN. It was shown that
MMHODBN was able to learn high-order gene interac-
tions effectively. Mundra et al. proposed a method for
inferring time-delayed GRN based on cross-correlation
and LASSO [8]. This method has been tested on real-
life yeast pathways in G1 phase to show its effectiveness
in identifying time-delayed regulation among genes.
Despite all those efforts, the performance of inferring
time-delayed genetic regulation is yet to be further
improved.
In this paper, we propose a simple yet effective and

efficient method to tackle the challenges of inferring
high-order time-delayed gene regulation. Using cross-
correlation [9,10] and data manipulations, we first deter-
mine the probable time lags and then use the algorithm
of network deconvolution (ND) [11] to infer the time-
delayed GRN. ND is a technique to identify direct
dependencies in an observed network (e.g. correlation-
based network) which contains both direct and indirect
interactions. By assuming that the indirect edges could
be estimated from the products of direct edges and the
observed network is the sum of the direct and indirect
edges, ND can recover the direct network from the
observed network through the process of deconvolution.
However, the authors of ND methods have not consid-
ered time delays, i.e. they assume all direct interactions

take equal time, which is unlikely in the real biological
systems. Our method integrates time delay inference
and adjustment into the ND approach, to further
increase its power. Running on three real-life datasets of
yeast, the proposed method achieves better performance
than existing methods.

Results and discussion
We proposed a method to infer time-delayed gene regu-
lation based on cross-correlation and network deconvo-
lution. We first identified the probable time delays for
the interactions between each target gene and its poten-
tial regulators, using cross-correlation[9,10]. Then, we
adapted the algorithm of network deconvolution [11] to
infer time-delayed genetic interactions. Network decon-
volution has been shown to be very promising in learning
gene regulation [11]. However, ND does not consider
time delays, which are essential in gene interactions.
Besides, the network inferred by ND is indirected (i.e.
without directions in edges). Here we introduced time
delays into ND to enhance its strength in GRN inference.
Based on the time delays identified with cross-correla-
tion, we aligned the samples and calculated correlations
of genes using the aligned samples. Then we applied ND
to the correlation matrix and identified the direct interac-
tions between the target gene and its regulators. The net-
work inferred by our method is directed and includes
time delays. We have evaluated the performance of our
method on three gene expression datasets, described as
follows.

Benchmark networks
We evaluated the performance of our method on two
real-life benchmark networks and compared with other
related methods. One benchmark network (see Figure 1)
is experimentally identified in Saccharomyces cerevisiae
(yeast) cell cycle [12]. This network consists of nine
genes (ACE2, CLN3, FKH2, MBP1, MCM1, NDD1,
SWI4, SWI5 and SWI6). The real expression data
(denoted as yeast9 ) of genes in this network were taken
from Spellman [13], which consists of the transcription
expression data of yeast cell cycle. We extracted the
time-series data from cdc-15 cell cycle arrest which con-
tains 24 equally distributed time points. The other
benchmark network (see Figure 2) is a five-gene net-
work in yeast, from the experiment of in vivo reverse-
engineering and modeling assessment (IRMA) [14]. This
network was carefully constructed to include the inter-
actions among five genes (CBF1, GAL4, SWI5, GAL80
and ASH1) in Saccharomyces cerevisiae and made sure
that the influence from endogenous genes is negligible.
Two datasets of gene expression were measured for this
network. One dataset was obtained when the cell culture
was shifted from glucose to galactose. This dataset was
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named “switch-on” because the network would be trig-
gered by galactose. The other dataset was named
“switchoff” since it is obtained by shifting the cell cul-
ture from galactose to glucose. The “switch-on” dataset
(denoted as yeast5on) consists of 16 equally distributed
time points, and the “switch-off” dataset (denoted as
yeast5off ) contains 21 equally distributed time points.

Experimental results
There are two parameters in time-delayed ND (i.e. the
proposed method). One is the threshold θ (0 ≤ θ ≤ 1)
for the matrix output by ND. Since this matrix of ND is
a weighted matrix where each entry represents the
strength of interaction between the corresponding gene
pair, we need to set up a threshold to obtain a connec-
tivity matrix from this weighted matrix. Then we can
compare the connectivity matrix with the benchmark
network and calculate performance metrics such as sen-
sitivity and F-measure. In all the following experiments
(except the ROC cureves), we set the threshold θ to a
moderate value (i.e. 0.5). The other parameter is the
maximum time lag r. Since a large r would lead to a
small number of samples available to infergene interac-
tions, we usually set r ≤ 5. We have done experiments
with r taking values from 2 to 5. The results of compar-
ing to other methods are similar (data not shown). Here
we only show the results with r = 5. In addition, we
show the results with r = 3 for the yeast5off dataset to
compare.
First we compared time-delayed ND (i.e. the proposed

method) with the original ND (no delay). By evenly chan-
ging the values of the threshold θ (0 ≤ θ ≤ 1), we can
generate a set of performance metrics. Then a receiver
operating characteristic (ROC) curve could be plotted to
show the overall performance of a method with the
results obtained from the whole set of different thresh-
olds. The comparison between time-delayed ND with the
original ND (no-delay ND) is shown in Figure 3, where
“False positive rate (FPR)” is defined as “1−specificity ”,
and “True positive rate (TPR)” is equal to “sensitivity “.
Overall, time-delayed ND outperforms the original ND
in that the AUC of the former is larger than the latter for
all three datasets. Moreover, when TPR (i.e. sensitivity )
is high (e.g. ≥ 0.5), the FPR of time-delayed ND is lower
than the original ND most of the time, which means
time-delayed ND has a higher specificity. These results
show that the accuracy of GRN inference is improved by
taking into account the time delays among gene
interactions.
To compare time-delayed ND with other existing

methods which are designed for inferring time-delayed
gene regulation, we apply these methods on the same
dataset and compare their performance using sensitivity,
precision, and F-measure. There are three existing

Figure 1 Benchmark network of yeast9. This benchmark network
is from [12]. All edges were detected by biological experiments.

Figure 2 Benchmark network of yeast5. This benchmark network
is from [14]. All edges are with experimental supports.
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methods available for our comparisons, namely time-
delayed ARACNE (TD-ARACNE) [5], Xcorr+LASSO
[8,15], and MMHODBN [7].
We first carried out experiments on the yeast9 dataset.

The inferred networks by the four methods are presented
in Figure 4, where solid lines, dashed lines and dot lines
denote true positives, false positives and false negatives
respectively (likewise for Figure 5 and Figure 6). The per-
formance comparison between our method with the
other three methods in Table 1 shows that time-delayed
ND has significantly higher F-measure than all other
methods, which means our method can infer time-
delayed GRN more accurately. Although the precision of
MMHODBN is higher than time-delayed ND, its sensitiv-
ity is lower. We also performed experiments on another
benchmark network (shown in Figure 2), which contains
two datasets: yeast5on and yeast5off. The inferred net-
works by the four methods on the yeast5on and yeast5off
are presented in Figure 5 and Figure 6 respectively. Table
2 and Table 3 show the performance comparison of the
four methods on yeast5on and yeast5off respectively. In
Table 2 the F-measure of time-delayed ND ranks the sec-
ond place among the four methods. Although the F-mea-
sure of time-delayed ND is slightly lower than
MMHODBN, it still has higher sensitivity than the latter.
For yeast5off dataset, as shown in Table 3 the F-measure
of time-delayed ND is again the highest among the four
methods.
As the results of the three experiments suggested,

time-delayed ND has a high sensitivity in detecting
time-delayed gene interactions, which yields a better
performance (in terms of F-measure) than other
methods.

Discussion
The network deconvolution algorithm is a nonlinear
filter which could be applied to any symmetric (and
some asymmetric) network matrix to filter out the
indirect edges. Using correlation in the original
method, only an undirected network could be inferred.
In the proposed method, the correlation is calculated
between each target gene and the rest of genes. The
correlation matrix also includes correlations between
all the other genes using the time samples aligned
based on the inferred time delays between these genes
and the target genes (see Algorithms 1 and 2). ND is
then applied to such a correlation matrix, i.e., the filter
for indirect edges is determined using correlation not
only between a target gene and the rest of genes
but also between the rest of genes correlations. This
step helps in the determination of regulatory direction
while considering redundancy in the possible
regulators.

Figure 3 Comparison between time-delayed ND and the
original ND. The ROC curves are drawn by changing the
parameter θ from 0 to 1. The maximum time lag r in time-delayed
ND is set as 5 for yeast9 and yeast5on, and 3 for yeast5off. The
overall performance of time-delayed ND and the original ND is
compared based on the AUC values calculated from the ROC
curves.
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In the proposed method, the networks are inferred with
a priori determined maximum time lag r and a threshold
θ. Given the short time series, increasing maximum pos-
sible time lag will reduce the available number of time
points to compute the correlations. This may ultimately
result in an increase in the numbers of false predictions.
Hence, we have restricted the maximum possible time
lag to 5 in our experiments. An increase in the value of θ

Figure 4 Inferred networks on yeast9. In all inferred networks,
solid lines, dashed lines and dot lines denote true positives, false
positives and false negatives respectively (likewise for Figure 5 and
Figure 6).

Figure 5 Inferred networks on yeast5on.
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means increasing the cut-off to infer a regulatory edge.
Generally, this increase will result in only partial recovery
of true positive edges. Hence in our experiments, we
have kept the value of θ to a moderate level so that most
of the true positives edges could be recovered while keep-
ing the false positives in check.

Conclusions
In this paper, we proposed a method named time-delayed
ND to infer time-delayed gene interactions based on
cross-correlation and network deconvolution. We first
infer the probable time delays for the interactions between
each target gene and its potential regulators, using cross-
correlation. Then based on the inferred time delays, we
align the time samples for each target gene. After that, we
employ the algorithm of network deconvolution to identify
direct interactions between the target gene and its regula-
tors. The performance of time-delayed ND has been evalu-
ated on three real-life gene expression datasets. Compared
with three other methods for inferring time-delayed
GRNs, our method achieved overall better performance in
the inference of time-delayed GRN.

Methods
The time-delayed gene regulatory network is inferred
using a time-series gene expression data. Let XT ×N =
(x1, x2, ..., xN ) be a time-series gene expression dataset
where N is the number of genes and T is the number of
time samples. Let xt,i denote the expression level of the
i-th gene at time t. Then xi = (x1,i, x2,i, ..., xT ,i)

T, where
1 ≤ i ≤ N denotes the expression profile of the i-th gene
across T time points.
To infer regulatory interactions among genes, the most

straightforward way is by using correlations. However,
there are two major issues about correlations: (1) time-
delayed regulation is not likely to be inferred by simple cor-
relations; (2) the relationships based on correlations are not
direct and would suffer from a large number of false posi-
tive predictions. The two issues can be coped with by
cross-correlation and network deconvolution respectively,
which are described in the following two sections.

Cross-correlation
To infer a time-delayed regulation between the i-th gene
and j-th gene, we need to determine the number of time

Figure 6 Inferred networks on yeast5off.

Table 1 Comparison based on yeast9 dataset

Precision Sensitivity F-measure

time-delayed ND 0.2917 0.8235 0.4308

TD-ARACNE 0.2307 0.1764 0.2000

Xcorr+LASSO 0.2500 0.2353 0.2424

MMHODBN 0.5000 0.1765 0.2609

Table 2 Comparison based on yeast5on dataset

Precision Sensitivity F-measure

time-delayed ND 0.5000 0.8750 0.6364

TD-ARACNE 0.6667 0.2500 0.3636

Xcorr+LASSO 0.4000 0.2500 0.3077

MMHODBN 1.000 0.5000 0.6667

Table 3 Comparison based on yeast5off dataset

Precision Sensitivity F-measure

time-delayed ND 0.5000 1.000 0.6667

TD-ARACNE 0.5 0.125 0.2000

Xcorr+LASSO 0.2500 0.1250 0.1667

MMHODBN 0.6667 0.2500 0.3636
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lags first. This could be achieved by applying cross-
correlation [9,10] on the expression profiles of these
two genes. The lag that gives the maximum absolute
cross-correlation is the most likely time lag.
For two real continuous functions x and y, the cross-

correlation jxy is defined as [9]:

φxy(τ ) =
∫ ∞

−∞
x(t − τ )y(t)dt. (1)

The cross-correlation jxy(τ) can be obtained by inverse
Fourier transform (iFT) as follows:

φxy = iFT[�xy(τ )] = iFT[X∗(f )Y(f )]. (2)

where Fxy , X and Y are jxy, x and y in frequency
domain respectively, X* is the conjugate of X. The deri-
vation of Eq. 2 is shown in the endnote of this paper. 1

The cross-correlation could also be obtained in another
way as follows. Let r be the maximum length of time
delays, and τ be one possible lag in a time dalay, i.e. τ =
0, 1, 2, ..., r. For the i-th gene and the j-th gene (with
expression profiles denoted as xi and xj respectively), the
unbiased cross-correlation is defined as in [9,8]:

C(xi, xj, τ ) =
1

T − |τ |
T−τ−1∑
t=1

xt+τ ,ixt,j, where τ = 0, 1, 2, . . . , r. (3)

Here, xi and xj are the expression profiles. Note that
we normalized the gene expression data for each gene
to have “zero” mean and “one” standard deviation before
calculating the cross-correlation.
In this paper, we utilize the Matlab function xcorr

which adopts the previous way (i.e. Eq. 2) to calculate
cross-correlations. For each target gene, cross-correla-
tion is calculated between this gene and all the other
genes. From the maximum possible r time lags, we iden-
tify the time-delayed τ which corresponds to the maxi-
mum absolute values of C(xi, xj , τ ). This time delay is
denoted by lij and it represents the probable time lag of
regulation between the i-th gene and the j-th gene.

Network deconvolution
After determining the probable time lag for each gene
pair, we can proceed to determine the possible regula-
tors for each target gene from the rest genes in the
dataset. As mentioned above, using correlations is a nat-
ural way to identify interactions among genes; but such
approach may suffer from a large number of false posi-
tive predictions. The main reason is that most correla-
tions represent indirect dependencies instead of direct
dependencies. A direct dependency between two vari-
ables mean that the interaction between the two vari-
ables does not depend on any intermedium. On the
other hand, the indirect dependency is caused by direct
dependencies through some intermediate nodes. For

example, if A regulates B and B regulates C, even
though there is no direct relationship between A and C,
the correlation between A and C could be high because
there is an intermediate node B between them. Network
deconvolution (ND) [11] is a technique to infer direct
dependencies among variables. Let us use a matrix to
represent a network. Starting from the matrix of correla-
tions (or other similarity metrics) which could include
both direct and indirect dependencies, ND is able to fil-
ter out the indirect dependencies through a process
called network deconvolution.
Let So be the observed network (i.e. the correlation

matrix), and Sd be true network with only direct edges.
ND assumes that the indirect edges could be derived
from the product of direct edges, and the observed net-
work So is the sum of the direct and indirect edges, as
follows.

So = Sd + S2d + S3d + S4d + · · · . (4)

The task of obtaining Sd from So seems intractable
because of the infinite sum. However, by using the
closed form solution of infinite Taylor series, we can
have

So = Sd(I + S2d + S3d + S4d + · · · ) = Sd(I − Sd)−1, (5)

where I is the identity matrix. Through simple trans-
formation, we have

Sd = So(I + So)−1. (6)

It has been shown in [11] that all symmetric matrices
and some asymmetry matrices (So) can be decomposed
into their eigenvectors and eigenvalues. Let U be the
matrix of eigenvectors, and Σo be the diagonal matrix of
eigenvalues of So. Then So = UΣoU

−1. Similarly, we have
Sd = UΣdU

−1. Let λo
i be the i th eigenvalue of So, and λd

i
be the i th eigenvalue of Sd. Through Eq. (6), we have

λd
i =

λo
i

1 + λo
i
. (7)

To guarantee the convergence of Eq. 4, which requires
that the largest absolute eigenvalue of Sd is less than
one, the authors of ND introduced a scaling factor a.
Then Eq. 7 is changed to

λd
i =

λo
i

1
α
+ λo

i

. (8)

In our code, the scaled version (i.e. Eq. 8) of ND was
implemented. We used the default value for the para-
meter of a.
Experimental results in [11] show that when their

assumptions hold that the indirect edges can be derived
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from the product of direct edges and the observed net-
work is the sum of direct and indirect edges, the
method can remove all indirect edges and recover all
direct edges; even when the assumptions do not hold, it
still can infer most of direct interactions, as shown by
simulation experiments on various network structures.
For more details about ND, please refer to [11].

Time-delayed ND
We incorporate time delays into network deconvolution to
enhance its strength in GRN inference. The flow chart of
time-delayed ND is shown in Figure 7. Starting with the
time-series gene expression data, for each target gene we
perform the following steps. We first identify the time lags
of regulation based on cross-correlation. Then we align

the time samples based on the inferred time lags. After
that, we calculate the correlations for each gene pairs
based on the aligned samples, and apply ND on the corre-
lation matrix. Finally, we obtain a GRN with time-delayed
regulation.
Algorithm 1 shows more technical details about the pro-

cedure of time-delayed ND. For each gene in the set of N
genes, the same process is carried out, which consists of
three steps. First, with a fixed maximum time delay r, we
identify the most likely time delays with the maximum
absolute cross-correlation for the interaction between the
target gene and each of the other genes. Second, we align
the time samples for the target gene based on the time
delays (see Algorithm 2), and compute correlations
between this gene and the other genes based on the
aligned samples. Third, we apply ND on the matrix of cor-
relations and obtain a new matrix with direct dependen-
cies among genes. Then the direct dependencies between
the target gene and the other genes are extracted and
stored. In this way, we infer time-delayed regulation
among genes from time-series gene expression data.
In aligning time samples based on the inferred time

lags, we assume that the time-series data are not peri-
odic. Recall that r is the maximum order of regulation
between the target gene and its regulators. Then effec-
tively we have T − r samples based on which we calcu-
late the correlations between the target gene and its
possible regulators. The procedure of aligning time sam-
ples is presented in Algorithm 2. Figure 8 is an example
showing how to do the alignment of time samples based
on the lags between the target gene g and its possible
regulators (gene a, b, c or d). The symbol √ inside a slot
indicates that the corresponding time sample will be
used to calculate the correlation, while the empty slots
mean that those samples will not be used to calculate
the correlations between this target gene and its poten-
tial regulators. When the time-series data are periodic, a
similar method of alignment can be used, except that in
this case we can use all the T time samples, in which
the time points are shifted circularly [6].

Evaluation
The performance of methods is evaluated using Sensitiv-
ity, Precision and F-measure. We define “positive” as the
presence of a connection, and “negative” as the absence
of an edge. The numbers of true positives, true nega-
tives, false positives, and false negatives are denoted as
TP, TN, FP, and FN, respectively. Then Sensitivity
(denoted as Se; also known as recall ), Precision (P r), F-
measure (Fm), and Specificity (Sp) are defined as
Pr = TP

TP+FP, Pr =
TP

TP+FP, Fm = 2 ∗ Pr∗Se
Pr+Se, Sp =

TN
TN+FP. F-mea-

sure provides a balanced criterion to evaluate the perfor-
mance of methods in GRN inference. A method with
high F-measure implies that it can recover most true

Figure 7 The flow chart of time-delayed ND.
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edges while most edges inferred by this method are cor-
rect. Here we use F-measure as the major criterion for
comparing different methods.

Algorithm 1. Inferring time-delayed regulation
based on Network Deconvolution
INPUT: Time-series gene expression data X(T ×N )

with N genes and T time samples; the maximum
possible time lag r
OUTPUT: An N × N matrix S with weights to show
the strength of interactions among genes; An N × N
matrix D with time-delayed information for each
interaction
Normalize X so that the expression data for each
gene have “zero” mean and “one” standard deviation
for each gene i do

Initialize a temporary vector L∗
i = [ ]

for each gene j in the rest genes do
Calculate the cross-correlation C(xi, xj) for
gene i and gene j based on Eq. 3
Identify the time lag lij with the maximum
absolute cross-correlation C(xi, xj) among r
choices of time lags
Store lij into L∗

i
end for
Obtain the matrix X′

i with aligned time samples
for target gene i according to Algorithm 2
Initialize a temporary N × N matrix C* = [ ]
for each gene i′ do

for each gene j′ do
Compute the correlation corrij between

gene i′ and gene j′ based on the correspond-
ing time samples in X′

i.

Store corrij into C*

end for
end for
Apply ND on C* to obtain S* which denotes the
direct interactions among genes based on the
extracted time samples.
Extract the vector S∗

i which contains the direct
dependencies between gene i and its potential
regulators and store it into S, S = [S S∗

i ]
Append the values of time lags to D, D = [D L∗

i ]
end for
Return S and D
Algorithm 2. Aligning time samples based on the
delays inferred by cross-correlation
INPUT: Time-series gene expression data X(T ×N ) ;
the matrix of time delays Li

* for target gene
(denoted as the i-th gene); the maximum possible
time lag r
OUTPUT: An (T − r) × N matrix X′

i with aligned
time samples for the target gene
Initialize X′

i = [ ]
Extract the vector of time samples for the target
gene (the i-th gene) from X, y = X(r + 1 : T, i)
Append the expression of the target gene to X′

i, X
′
i =

[X′
i y]

for each gene j (j ≠ i) do
Find time delay lij of interaction between the tar-
get gene i and gene j from L∗

i
Extract and align time samples for gene j from X
based on lij , xj = X(r − lij + 1 : T − lij , j)
Append the expression of the j-th gene to X′

i, X
′
i

= [X′
i xj]

end for
Return X′

i
′

Additional information
1 The derivation of Eq. 2: Using the convolution expres-
sion, we have jxy (τ ) = x(−τ ) * y(τ ); Converting x(−τ )
to frequency domain using Fourier transform

FT[x(−τ )] =
∫ ∞

−∞
x(−τ ) exp(−i2π ft)dτ; Substituting τ′ =

−τ we have FT[x(−τ )] =
∫ −∞

∞
−x(τ ′) exp(i2π f τ ′)dτ ′ =

∫ ∞

−∞
x(τ ′) exp(i2π f τ ′)dτ ′ = X∗(f );

Combining the equations above we have Fxy = FT[jxy

(τ )] = X* (f)Y(f); Applying inverse Fourier transform we
can obtain jxy as in Eq. 2.
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