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Abstract

Background: Differential expression analysis of (individual) genes is often used to study their roles in diseases.
However, diseases such as cancer are a result of the combined effect of multiple genes. Gene products such as proteins
seldom act in isolation, but instead constitute stable multi-protein complexes performing dedicated functions.
Therefore, complexes aggregate the effect of individual genes (proteins) and can be used to gain a better
understanding of cancer mechanisms. Here, we observe that complexes show considerable changes in their expression,
in turn directed by the concerted action of transcription factors (TFs), across cancer conditions. We seek to gain novel
insights into cancer mechanisms through a systematic analysis of complexes and their transcriptional regulation.

Results: We integrated large-scale protein-interaction (PPI) and gene-expression datasets to identify complexes that
exhibit significant changes in their expression across different conditions in cancer. We devised a log-linear model
to relate these changes to the differential regulation of complexes by TFs. The application of our model on two
case studies involving pancreatic and familial breast tumour conditions revealed: (i) complexes in core cellular
processes, especially those responsible for maintaining genome stability and cell proliferation (e.g. DNA damage
repair and cell cycle) show considerable changes in expression; (ii) these changes include decrease and countering
increase for different sets of complexes indicative of compensatory mechanisms coming into play in tumours; and
(iii) TFs work in cooperative and counteractive ways to regulate these mechanisms. Such aberrant complexes and
their regulating TFs play vital roles in the initiation and progression of cancer.

Conclusions: Complexes in core cellular processes display considerable decreases and countering increases in
expression, strongly reflective of compensatory mechanisms in cancer. These changes are directed by the
concerted action of cooperative and counteractive TFs. Our study highlights the roles of these complexes and TFs
and presents several case studies of compensatory processes, thus providing novel insights into cancer
mechanisms.

Background
Transcriptional regulation is a fundamental mechanism
by which all cellular systems mediate the activation or
repression of genes, thereby setting up striking patterns
of gene expression across diverse cellular conditions - e.g.
across cell-cycle phases [1-3], normal vs cancer states [3]

or stress conditions [4]. Such regulation of gene expres-
sion is executed by the concerted action of transcription
factors (TFs) that bind to specific regulatory DNA
sequences associated with target genes [5,6]. Deciphering
the roles of TFs is a significant challenge and has been
the focus of numerous studies, with great interest being
recently shown in cancer [3,4,7-9]. For example,
Bar-Joseph et al. [3] identified periodically expressed cell-
cycle genes in human foreskin fibroblasts to understand
their differential regulation between normal and cancer
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conditions. Nebert [7] surveyed TF activities in cancer,
emphasizing the roles of TFs as proto-oncogenes (gain-
of-function) that serve as accelerators to activate the cell
cycle, and as tumour suppressors (loss-of-function) that
serve as brakes to slow the growth of cancer cells. Darnell
[8] classified TFs having cancerous or oncogenic poten-
tial into three main kinds - steroid receptors (e.g. oestro-
gen receptors in breast cancer and androgen receptors in
prostate cancer), resident nuclear proteins activated by
serine kinase cascades (e.g. JUN and FOS), and latent
cytoplasmic factors normally activated by receptor-ligand
interaction at the cell surface (e.g. STATs and NF�B).
Darnell [8] also discussed the signalling pathways of
these TFs (including Wnt-b-catenin, Notch and Hedge-
hog signalling) as potential drug targets in cancer. Kara-
mouzis and Papavassiliou [9] discussed rewiring of
transcriptional regulatory networks in breast tumours
focusing on subnetworks of estrogen receptor (ERs) and
epidermal growth factor receptor (EGFRs) family
members.
Most studies focus on transcriptional regulation of

individual target genes. However, diseases such as can-
cer are a result of the combined effect of multiple
genes. Gene products such as proteins seldom act in
isolation, but instead physically interact to constitute
complexes that perform specialized functions [10,11].
Studying protein complexes therefore provides an
aggregative or “systems level” view of gene function
and regulation than studying individual proteins
(genes). Here we integrate large-scale protein-interac-
tion (PPI) and gene-expression datasets to examine the
differential regulation of complexes across cancer
conditions.

An initial analysis
We compiled a list of protein complexes by clustering
a network of human PPIs. Co-functional (interacting)
proteins are encoded by genes showing high mRNA
co-expression [12,13]. Therefore, we quantified the
“functional activity” for each of these complexes by
aggregating pairwise co-expression values between their
constituent proteins. Analysis for two pancreatic-tissue
conditions viz normal and ductal adenocarcinoma
(PDAC) tumour revealed significant changes in
co-expression for these complexes between the two con-
ditions. For example (Figure 1), CHUK-ERC1-IKBKB-
IKBKG showed a change in co-expression, interestingly
coinciding with changes in its transcriptional regulation
by the NF�B-family of TFs. This complex constitutes
the serine/threonine kinase family, while the TFs play
essential roles in NF�B signalling pathway (www.gene-
cards.org) [14], which are implicated in PDAC [15,16].
Based on these observations, here we seek to under-

stand differential co-expression of complexes and its

relationship with differential regulation by TFs between
cancer conditions. Therefore we:

• devise a computational model to identify com-
plexes showing significant differential co-expression
and the TFs regulating these complexes; and
• apply the model on two case studies - normal vs
PDAC tumour and BRCA1 vs BRCA2 familial breast
tumour conditions - to decipher their roles in these
tumours.

In summary (see Methods for details) we compute co-
expression values for each of the complexes under dif-
ferent cancer conditions. We then introduce a log-linear
model to relate changes in co-expression of complexes
to changes in their regulation by TFs between these
conditions. We apply the model to identify influential
TFs and complexes and validate their roles in cancer.

Results
Experimental datasets
PPI data: We gathered Homo sapiens PPIs identified
from multiple low- and high-throughput experiments
deposited in Biogrid (v3.1.93) [17] and HPRD (2009
update) [18]. To minimize false positives in these PPI
datasets, we employed as scoring scheme Iterative-CD
[19] (with 40 iterations) to assign a reliability score
(between 0 and 1) to every interaction, and then dis-
carded all low-scoring interactions (< 0.20) to build a
dense high-quality PPI network of 29600 interactions
among 5824 proteins (average node degree 10.16).

Figure 1 Changes in complex co-expression and its
transcriptional regulation in pancreatic tumour. The complex
CHUK-ECR1-IKBKB-IKBKG showed considerable change in its co-
expression between normal and pancreatic tumour conditions. Its
regulation by the NFKB family of TFs also exhibited similar changes.
Both the complex and the TF family have been implicated in
pancreatic tumours [15,16].
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Gene expression data: We have performed one of the
largest gene expression profiling analyses of familial breast
tumours (n = 74) and stratified them based on BRCA
mutation status as BRCA1-, BRCA2- and non- BRCA1/2
tumours [20]. Among these, BRCA1 and BRCA2 tumours
are phenotypically most different [21] and we consider
these two for our analysis here; our dataset contains 19
BRCA1 and 30 BRCA2 expression samples (GEO acces-
sion GSE19177). In addition, we also gathered expression
samples from pancreatic tumours - normal and PDAC
matched (39 in each) - from the Badea et al. study [22]
(GSE15471).
Sporadic breast tumours constitute 93-95% of all breast

tumours and most studies classify these into the four
molecular subtypes, luminal-A, luminal-B, basal-like and
HER2-enriched [23-25]. Broadly, basal-like tumours do
not express the ER, PR and HER2 receptors, and exhibit
high aggressiveness and poor survival attributed to dis-
tant metastasis, compared to luminal tumours. However,
much less is known about familial tumours (the remain-
ing 5-7%), although studies [20,21,25] have noted that
BRCA1 tumours are predominantly basal-like while
BRCA2 tumours are more hetergeneous and may be
HER2-enriched or luminal-like.
Pancreatic tumours, on the other hand, are more uniform

with PDAC accounting for most (95%) pancreatic tumours
and is predominantly characterized by dysfunctioning (by
mutation) of the KRAS oncogene and of the CDKN2A,
SMAD4 and TP53 tumour-suppressor genes [16].
Transcription factors: We gathered 1391 TFs from

Vaquerizas et al. [26], manually curated from a combined
assessment of DNA-binding capabilities, evolutionary
conservation and integration of multiple sources. Bench-
mark complexes: For independent validation, we used
manually curated human complexes from CORUM [27],
a total of 1843 complexes of which we used 722 having
size at least 4.
Benchmark genes and TFs in cancer: For validation

we used known (mutation-driver) genes (total 118)
from COSMIC [28] and known TFs (total 82) in can-
cer from [29].

Analysis of PPI networks highlights considerable rewiring
between tumour conditions
By integrating PPI and gene expression datasets (see
Methods) we obtained two pairs of conditional PPI net-
works - normal-PDAC for pancreatic and BRCA1-BRCA2
for breast tumours. Figure 2 shows the co-expression-wise
distribution for protein pairs in these networks. Normal vs
PDAC displayed striking differences in these distributions
(KS test: DNP = 23.11 > Ka = 0.05 = 1.36), reflecting consid-
erable rewiring of PPIs. PDAC showed significant loss in
co-expression for both positively co-expressed as well as
negatively co-expressed interactions compared to normal,
indicative of both disruption as well as emergence of inter-
actions in the tumour. Such rewiring has also been noted
in earlier studies [30,31].
Strikingly enough BRCA1 vs BRCA2 tumours also

showed significant differences in PPI distributions
(Figure 2) (KS test: DB12 = 22.85 > Ka = 0.05 = 1.36),
reflecting considerable differences in PPI wiring between
the two breast tumours. BRCA1 tumours displayed
higher co-expression compared to BRCA2 tumours,
∼15700 PPIs with higher correlations.
DAVID-based [32] functional analysis of these rewired

interactions (Δ ≥ 0.50) showed significant (p ≤ 1.1)
enrichment for the Biological Process (BP) terms - Cell
cycle, Chromatin organisation, DNA repair and RNA
splicing, indicating considerable rewiring in core cellular
processes responsible for genome stability. Among these
were interactions involving the tumour suppressors
TP53 and SMAD4 in PDAC, which are known genes
mutated in the tumour, and the DNA double-strand
break (DSB) repair proteins BRE and BRCC3 along with
BRCA1, BRCA2 and TP53, in breast tumours.

Analysis of complexes highlights disruption to core
cellular mechanisms in tumours
Matching of complexes using tJ = 0.67 and δ = 0.10
(Methods) resulted in a total of 256 and 277 matched
complexes (M) for normal-PDAC and BRCA1-BRCA2
conditions, respectively (Table 1). The co-expressionwise
distributions (Figure 3) revealed significant differences

Figure 2 Co-expression-wise distribution of PPIs in normal-PDAC and BRCA1-BRCA2 tumours. PPIs from both normal vs PDAC and BRCA1
vs BRCA2 conditions showed significant differences in their distributions of co-expression values.
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for both normal vs PDAC as well as BRCA1 vs BRCA2
conditions (KS test: DNP = 1.69 > Ka=0.05 = 1.36 in pan-
creatic and DB12 = 5.48 > Ka=0.05 = 1.36 in breast), indi-
cating that rewiring in PPI networks had considerable
impact on these complexes. Overall, we noticed consid-
erable drop in co-expression for PDAC vis-a-vis normal,
whereas BRCA1 tumours showed higher co-expression
vis-a-vis BRCA2 tumours (Figures 3 and Figure 4).
These differences were larger towards the higher co-
expression ranges which correspond better to active
complexes (Figure 3), indicating that cellular functions
were considerably impacted in these tumours. These
observations were reproducible using an independent

set of complexes from CORUM (Figures 3 and Figure 4)
and were significantly (p < 0.001) greater than expected
by random (using 500 random complexes generated
1000 times).
DAVID-based analysis for complexes displaying

changes ≥ 0.4 indicated significant (p < 0.001) enrich-
ment for core cellular pathways involved in genome sta-
bility including Cell cycle and DNA repair (Table 2).
The complexes in PDAC were enriched for TGF-b, Wnt
and NF�B signalling, all of which are implicated in pan-
creatic cancer [16,33-35]. The complexes in breast
tumours reflected aberration in Homologous recombina-
tion (HR), a key DSB-repair pathway which includes the
breast cancer susceptibility genes BRCA1 and BRCA2.

Analysis of complexes reveal compensatory mechanisms
activated in tumours
We next divided the set of matched complexes M into
two subsets:

• M′ - those with higher co-expression in normal
vis-a-vis PDAC, or higher co-expression in BRCA1
tumours vis-a-vis BRCA2 tumours; and

Table 1 Complexes generated under pancreatic (normal-
PDAC) and breast (BRCA1-BRCA2) conditions

Pancreatic Breast

Condition Complexes Condition Complexes

# |M| Avg size # |M| Avg size

Normal 582 256 8.20 BRCA1 547 277 7.87

PDAC 581 BRCA2 557

The matched complexes M are generated by matching complexes
between conditions using tJ = 0.67(= 2/3) and δ = 0.10 (see Methods).

Figure 3 Co-expression-wise distribution of complexes in normal-PDAC and BRCA1-BRCA2 tumours. Complexes from both normal vs
PDAC and BRCA1 vs BRCA2 conditions showed significant differences in their co-expression distributions. Note: a complex with negative co-
expression for a condition possibly means that the complex does not exist under that condition.
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• M′′ - those with lower co-expression in normal
vis-a-vis PDAC, or lower co-expression in BRCA1
tumours vis-a-vis BRCA2 tumours.

Table 3 shows changes in co-expression (ΔC)
observed for M′ and M′′. While most complexes
showed a decrease in co-expression from normal to

Figure 4 Comparison of co-expression of complexes in normal-PDAC and BRCA1-BRCA2 tumours. Complexes from the two conditions
were matched using tJ = 0.67 and δ = 0.10 (see Methods) and differences between the maximum, average and minimum co-expression values
were computed. The co-expression values are Fisher-transformed. A complex with negative co-expression for a condition possibly means non-
existance of the complex under that condition.

Table 2 Top enriched terms in KEGG pathways and Biological Process in disrupted complexes in pancreatic (normal vs
PDAC) and breast (BRCA1 vs BRCA2) tumours (using DAVID [32])

Category Pancreatic Breast

Annotation Enrichment Annotation Enrichment

Genes(%) p-value Genes(%) p-value

KEGG pathways Cell cycle 4.6 3.5 × 10−13 Cell cycle 3.2 2.7 × 10−7

Pathways in cancer 6.2 5.8 × 10−7 Pathways in cancer 5.8 2.9 × 10−7

RIG-I-like receptor signalling 2.2 1.1 × 10−5 Nucleotide excision repair 1.6 1.5 × 10−5

Neurotrophin signalling 3.0 1.7 × 10−5 DNA replication 1.4 6.4 × 10−5

Nucleotide excision repair 1.7 1.9 × 10−5 Adipocytokine signalling 1.8 7.5 × 10−7

Pancreatic cancer 2.1 5.7 × 10−5 Apoptosis 2.1 1.2 × 10−4

Adipocytokine signalling 2.0 9.7 × 10−5 Neurotrophin signaling 2.3 9.5 × 10−4

Regulation of autophagy 1.3 3.4 × 10−4 Homologous recombination 1.0 1.6 × 10−3

Mismatch repair 1.0 5.2 × 10−4 Insulin signaling 2.2 6.0 × 10−3

Wnt signalling 2.8 2.2 × 10−3 Mismatch repair 0.9 2.8 × 10−3

Biological Process Cell cycle 17.3 1.6 × 10−35 Chromosome organization 14.3 1.5 × 10−43

Chromosome organization 13.0 6.2 × 10−33 Chromatin organization 12.2 1.3 × 10−40

RNA splicing 9.2 2.5 × 10−28 Cell cycle 14.5 7.0 × 10−25

Chromatin modication 8.9 1.0 × 10−27 Regulation of transcription 31.6 1.1 × 10−24

∼ 700 genes tested in pancreatic and ∼ 550 genes tested in breast
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PDAC (159 out of 256) and from BRCA1 to BRCA2
tumours (225 out of 277), interestingly a considerable
number of complexes showed an increase (96 and 52).
But, the decrease was steeper compared to the increase
(max: 0.969 vs 0.421 and 0.761 vs 0.543; avg: 0.336 vs
0.192 and 0.281 vs 0.197). Similar trends were observed
using CORUM complexes and were significantly (p <
0.001) greater than expected by random. We suspect
these observations are indicative of compensatory
mechanisms coming into play in these tumours, as
explained below.
In the classical work on “hallmarks of cancer”, Hana-

han and Weinberg [36] describe seven to ten key distin-
guishing hallmarks of tumour cells, among which are
limitless replicative potential and self-sufficiency in
growth signals. Cellular mechanisms including cell cycle
and DDR are considerably weakened in tumour cells,
but these cells survive on last-standing mechanisms
(weak links) to continue proliferation. This is due to the
activation of compensatory or back-up mechanisms.

Although these compensatory mechanisms cannot com-
pletely substitute for the weakened or disrupted ones,
these are sufficient to enhance the survival of tumour
cells [36,37]. Our analysis reflect such compensatory
trends - a fraction of complexes showed increase in co-
expression, but the increase was not as steep as the
decrease for the remaining faction. However, a straight-
forward Gene Ontology analysis is too general to deline-
ate the roles of the two factions because both originate
from the same or similar processes. We therefore inves-
tigated a few specific cases (below).
Examples of compensatory mechanisms and validation for
roles in cancer
Normal vs PDAC tumour (Figure 5a): DSB-repair func-
tionality is severely impacted in PDAC [38,39], with inac-
tivating mutations in RAD50 and NBS1 attributed to loss
of DSB-repair functionality increasing the risk of pan-
creatic cancer [38]. DSBs are detected by the MRE11-
RAD50-NBS1 (MRN) and Ku70/Ku80 (XRCC6/XRCC5)
complexes in the HR and non-homologous end-joining

Table 3 Changes in co-expression of complexes in pancreatic (normal-PDAC) and breast (BRCA1-BRCA2) conditions

Complex type Subset Pancreatic Breast

Size of subset ΔC Size of subset ΔC

Max Avg Max Avg

Our M′ 159 0.969 0.336 225 0.761 0.281

M′′ 96 0.421 0.192 52 0.543 0.197

CORUM M′ 138 0.602 0.219 386 0.642 0.178

M′′ 51 0.512 0.209 55 0.347 0.212

(The co-expression values are Fisher-transformed).

• ΔC represents the (absolute) change in co-expression of complexes between conditions, that is, increase or decrease in co-expression of complexes from normal
to PDAC or BRCA1 to BRCA2 tumours.

• M′ - complexes with co-expression for normal > PDAC tumour or BRCA1 > BRCA2 tumour. M′′- complexes with co-expression for PDAC tumour > normal
or BRCA2 > BRCA1 tumour.

Figure 5 Examples of dysfunctional complexes in pancreatic and breast tumours. Complexes showing changes in co-expression for (a)
normal vs PDAC, and (b) BRCA1 vs BRCA2 tumours.
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(NHEJ) pathways, respectively. In HR, the repair process
involves recruitment of the BRCA1-A complex (BRCA1-
BARD1-FAM175A-UIMC1-BRE-BRCC3-MERIT40) to
sites of DSBs. We observed a decrease in co-expression
for all the three complexes, indicating considerable weak-
ening of the DSB machinery. On the other hand, we
noticed an increase in co-expression for the single-strand
break (SSB) and mismatch (MMR) repair complexes
XRCC1-POLB-PNKP-LIG3 and MSH6-MLH1-MLH2-
PSM2-PCNA, respectively. The XRCC1 complex is
responsible for SSB repair through sister chromatid
exchange following DNA damage by ionizing radiation,
while the MSH6 complex is involved in the recognition
and repair of mispairs. Together these observations sug-
gest the activation of SSB and MMR machinery compen-
sating for the loss in DSB-repair machinery; such a
functional relationship has been observed previously
between DSB and SSB repair pathways [40].
The NF�B signalling pathway has been strongly impli-

cated in KRAS signalling and pancreatic tumorigenesis
[41,42]. Consistent with this, we noticed considerable
changes in co-expression for several NF�B complexes
including the NF�B1/REL family, which plays important
roles in programmed cell death and proliferation control
and is critical in tumour initiation and progression [42].
The calcium-binding proteins S100A2, S100A8 and
S100A9 are known to modulate P53 activity [43] and
their over-expression has been associated with metastatic
phenotype of pancreatic cancer [33]. The inactivation of
the RAS-associated RASSF1A and RASSF5 complexes,
which act as tumour suppressors [44,45], is frequent in
pancreatic cancer [44]. The complex DDX20-GEMIN4-
PPP4C-PPP4R2 associated with the SMN (survival of
motor neuron), and SNAP23-STX4-VAMP3-VAMP8
associated with vesicular transport, docking and/or fusion
of synaptic vesicles with the presynaptic membrane
(www.genecards.org) [14], support tumorigenic invasion
of neural cells in pancreatic cancer [35].
BRCA1 vs BRCA2 tumours (Figure 5b): We observed

a lower co-expression for the MMR complex MLH1-
MSH6-MSH2-PMS2-PCNA in BRCA1 tumours com-
pared to BRCA2 tumours; we think this is due to the
parallel roles of BRCA1. BRCA1 has a key role in DSB
repair, and BRCA1-deficient cells have defects in the
two DSB repair pathways HR and NHEJ [46]. BRCA1
associates with PCNA and the mismatch repair proteins
MSH2, MSH6 and MLH1 to form the BASC complex, a
genome-surveillance complex required to sense and
repair DNA damages [47], thereby also playing a role in
the MMR pathway. On the other hand, BRCA2 has
been associated with functions only in HR [48-51].
Therefore, we suspect that although MMR pathway is
compensatorily activated in response to DSB-repair defi-
ciency, BRCA1 tumours exhibit a weaker MMR pathway

compared to BRCA2 tumours because of the direct
involvement of BRCA1 in the MMR pathway.
The DSS1 complex consisting of BRCA2, DSS1 and

the integrator subunits mediates the 3’-end processing
of small nuclear RNAs [52], and BRCA2 deficiency
could result in a reduced stability of this complex. The
expression of replication factor C complex (RFC2, RFC3
and RFC4) is indicative of proliferative potential (high
cell division rates) of BRCA1 tumours. We noticed
over-expression of this complex in BRCA1 compared to
BRCA2 tumours.
Finally, a considerable number of cancer genes from

COSMIC Classic were represented in complexes show-
ing changes ΔC ≥ 0.10 (Figure 6), suggesting that differ-
ential co-expression of complexes is a strong indicator
of tumorigenic processes.

Relating changes in co-expression complexes to their
transcriptional regulation
We computed Pearson and Spearman rank coefficients
between changes in co-expression of complexes and
their transcriptional regulation as follows. For each com-
plex-pair {Ss, Tt} ∈ M(S, T ), we measured its change in
correlation ΔC(Ss, Tt), and the total change in its regula-

tion by TFs Ff,
∑

�R =
∑k

f=1
�R((Ss,Tt), Ff ) (see

Methods). This resulted in 226 complex-TF pairs in
pancreatic and 241 in breast with non-zero ΔC and ΔR.
Note that we lose at most 13% of complexes (pancreatic:
256 down to 226, breast: 277 down to 241) as a result of
our requirement that TFs interact with at least one
complexed protein (Methods). We observed positive
Pearson and Spearman coefficients which were sup-
ported by CORUM complexes (Table 4). The Spearman
coefficients were higher than Pearson in both cases,
indicating a non-linear relationship; this supports our
use of a log-linear model (Methods).

Analysing influential TFs in pancreatic and breast
tumours
Table 5 lists the TFs with non-zero overall influence
identified using our model (see Methods). Extrapolating
from the simplified example (see Methods), the + and −
signs can be interpreted as cooperative and counterac-
tive action of TFs in regulating complexes. As these are
overall influence values (that is, across all complexes
and TFs), it is difficult to interpret this straightaway.
Therefore, we restrict our focus to only STAT1 and
STAT3. These two TFs are directly involved in pancrea-
tic tumorigenesis and proliferation, and are thought to
play opposite roles - while STAT1 promotes apoptosis,
STAT3 is essential for the proliferation and survival of
tumour cells [53]. Solving Equation 5 for STAT1 and
STAT3 using only the subset of complexes they share
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(#90), we obtained g(STAT1) = 1.714 and g(STAT3) =
−1.582, i.e. these are counteractive TFs (Methods). Their
shared complexes were enriched for Cell cycle, Apopto-
sis and RAS signalling, consistent with the counteractive
roles for STAT1 and STAT3 [53].
Differential expression analysis using limma [54] for

normal vs PDAC indicated that most of the influential
TFs were significantly up- or down-regulated (Table 5).

But, a few influential TFs did not show such differential
expression, for example heat shock factor-1 (HSF1).
Investigation into the complexes regulated by HSF1
revealed considerable changes in co-expression for the
cysteine-aspartic acid protease (caspase) family including
CASP10-CASP8-FADD-FAS (from 1.28 to −0.019), docu-
mented in CORUM [27] under the functional category
‘40.10.02: Apoptosis’. Caspases are involved in signal

Figure 6 Fraction of known cancer genes constituting complexes.• Total COSMIC genes: 118 (present in the PPI network). • 66.1% of known
cancer genes in PDAC were covered in complexes (#256) showing ΔC ≥ 0.10 between normal to PDAC tumour. • 53.4% of cancer genes in
breast cancer were covered in complexes (#277) showing Δ ≥ 0.10 between BRCA1 tumours and BRCA2 tumours.

Table 4 Relationship between changes in co-expression of complexes (ΔC) and changes in transcriptional regulation
by TFs (ΣΔR)

Complex type Pancreatic Breast

#Complex-TF pairs Pearson Spearman #Complex-TF pairs Pearson Spearman

Our 226 0.273 0.436 241 0.206 0.413

CORUM 71 0.298 0.434 32 0.212 0.393

All coefficient values are positive, and Spearman coefficients were higher than Pearson, indicating a non-linear relationship between ΔC and ΣΔR.
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transduction pathways of apoptosis, necrosis and inflam-
mation (www.genecards.org) [14], and the role of HSF1
in regulating caspases thereby contributing to the patho-
genesis of pancreatic cancer has been investigated [55].

In the case of BRCA1 vs BRCA2 tumours, only four of
the influential TFs (GATA3, ESR1, FOXA1 and XBP1)
were identified as differentially expressed. These four TFs
are ER targets. BRCA1 tumours, being predominantly

Table 5 Influential TFs identified in pancreatic (normal vs PDAC) and breast (BRCA1 vs BRCA2) tumours

Pancreatic Breast

TF g Norm-g #Complexes regulated p-val DE (p-val) TF g Norm-g #Complexes regulated p-val DE (p-val)

STAT5B 2.911 1.000 188 0.001 0.021↓ TBP −5.153 −1.000 199 0.001 NS

RREB1 −2.606 −0.895 190 0.004 NS BACH1 4.221 0.819 199 0.003 NS

BACH1 −1.592 −0.547 188 0.001 5.48E-05↑ POU3F2 −3.902 −0.757 199 0.007 NS

SRF 1.522 0.523 40 0.004 3.06E-05↓ RREB1 2.654 0.515 200 0.002 NS

IRF2 −1.462 −0.502 37 0.014 1.24E-06↓ ATF6 −1.185 −0.230 201 0.002 NS

AHR 1.359 0.467 190 0.003 1.93E-11↑ SRF 1.079 0.209 40 0.007 NS

TBP −0.944 −0.324 188 0.002 0.001↑ STAT5B 1.022 0.198 199 0.007 NS

POU3F2 −0.731 −0.251 188 0.002 6.64E-07↓ SIN3A 0.980 0.190 205 0.007 NS

IRF7 −0.654 −0.225 188 0.002 2.50E-06↑ TCF4 0.601 0.117 40 0.007 NS

HSF1 −0.621 −0.213 190 0.001 NS TAL1 0.599 0.116 14 0.007 NS

YY1 0.619 0.213 195 0.001 3.80E-05↑ CEBPb −0.537 −0.104 201 0.002 NS

STAT1 0.568 0.195 190 0.005 4.79E-06↑ SOX9 0.447 0.087 204 0.008 NS

TP53 0.543 0.187 190 0.004 6.34E-06↑ GATA3 0.422 0.082 90 0.001 0.012↑

XBP1 −0.549 −0.189 190 0.004 0.002↓ STAT1 0.411 0.080 202 0.001 NS

SOX9 0.504 0.173 193 0.004 2.43E-05↑ STAT5A 0.407 0.079 200 0.004 NS

CEBPb 0.427 0.147 191 0.005 1.71E-08↑ NF�B1 0.390 0.076 202 0.001 NS

ATF6 −0.419 −0.144 191 0.008 NS IRF2 −0.389 −0.075 42 0.006 NS

STAT5A 0.385 0.132 188 0.001 0.004↑ GATA2 −0.323 −0.063 40 0.001 NS

MSX1 0.366 0.126 188 0.002 0.008↑ FOXO1 0.305 0.059 30 0.001 NS

GATA2 0.328 0.113 40 0.001 9.96E-03↓ ESR1 0.282 0.055 24 0.001 0.008↑

TAL1 0.319 0.110 12 0.003 1.09E-07↓ PPARg 0.279 0.054 60 0.001 NS

FOXO1 −0.306 −0.105 30 0.003 0.001↑ TP53 0.273 0.053 206 NS NS

ESR1 0.254 0.087 27 0.004 3.43E-04↑ YY1 0.274 0.053 206 0.009 NS

JUNB 0.219 0.075 198 0.004 2.44E-07↑ STAT3 −0.222 −0.043 200 0.004 NS

CEBPa 0.187 0.064 194 0.001 NS MYB −0.213 −0.041 60 0.003 NS

STAT3 0.169 0.058 190 0.004 2.34E-06↑ GATA1 0.204 0.040 40 0.001 NS

SP1 0.159 0.055 10 0.001 0.003↑ FOXA1 0.173 0.034 207 0.001 0.006↑

TCF3 0.155 0.053 40 0.001 NS MSX1 0.170 0.033 199 NS NS

BRCA1 0.146 0.050 200 0.003 0.003↑ HSF2 −0.165 −0.032 201 NS NS

SIN3A 0.138 0.047 193 0.001 2.05E-4↑ FOXO3 0.147 0.029 50 0.009 NS

PPARg 0.124 0.043 13 0.001 NS PPARa 0.133 0.026 40 NS NS

HSF2 0.120 0.041 191 0.001 0.004↑ FOS 0.121 0.023 44 0.005 NS

MAX 0.113 0.039 80 NS N S SP1 0.098 0.019 18 0.003 NS

NF�B1 0.106 0.036 192 0.002 NS TCF3 −0.096 −0.019 90 0.009 NS

FOS 0.044 0.015 42 0.001 NS CEBPa 0.094 0.018 202 0.009 NS

MYB −0.023 −0.008 40 0.002 NS NF�B2 −0.091 −0.018 202 0.003 NS

NF�B2 0.018 0.006 193 0.002 NS JUN 0.080 0.016 205 0.003 NS

FOXO3 −0.001 0.000 90 0.004 NS AHR 0.076 0.015 200 NS NS

- - - XBP1 0.059 0.011 201 0.002 0.017↑

- - - HSF1 −0.056 −0.011 200 0.001 NS

- - - IRF7 −0.033 −0.006 199 0.009 NS

TFs are ranked based on their overall influence (|g&pipe;) for normal vs PDAC and BRCA1 vs BRCA2 tumours. The normalized-g values are obtained by dividing the
g values by the maximum |g&pipe;. The significance (p value) was computed against 10000 background influence values, each generated from 10000 random
shuffles of gene symbols in the expression dataset. The adjusted p-values for differential expression (DE) analysis - whether up- (↑) or down- (↓) regulated from
normal to PDAC and from BRCA1 to BRCA2 tumours - were computed using limma [54].

NS: Not significant at p < 0.05. #Genes tested in each case: ∼ 20700.
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basal-like, do not express ER and therefore show lower
expression of ER targets compared to BRCA2 tumours,
which are predominantly luminal-like and express ER
[21]. Additionally, Joshi et al. [56], using a pathway-based
analysis, have noted over-representation of ESR1,
GATA3, MYC, XBP1, FOXA1 and MSX2 in luminal
tumours, and NF�B1, C/EBPb, FOXO3, JUN, POU2F3
and FOXO1 in basal-like tumours. We also found higher
expression of the NF�B-signalling TFs in BRCA1
tumours - the complex NF�B1-NF�B2-REL-RELA-RELB
composed entirely of NF�B TFs, showed a higher corre-
lation in BRCA1 tumours than BRCA2 tumours. This is
consistent with earlier findings [56,57] that ER-negative
tumours (BRCA1 tumours) display aberrant expression
of NF�B which makes these tumours highly aggressive.
These observations also suggest that differential

expression is not sensitive enough to identify all the
genes (here, TFs) involved in tumours. Many of the TFs
may not be differentially expressed themselves, but are
differentially co-expressed with their target genes. One
such possible situation occurs when the TFs themselves
are not mutated or (epigenetically) silenced, but their
target genes are.
Finally, 12 of 37 TFs in pancreatic, and 14 of 40 TFs

in breast tumours were among the 82 cancer TFs listed
in [29]. DAVID-based functional analysis of TFs showed
significant enrichment for several pathways in cancer

(p <1.1E-05, 23.1% genes), in particular the JAK-STAT
pathway (p <1.9E-02, 10.3% genes), a known driver
pathway in cancer [53].

Discussion
We had observed considerable PPI rewiring via differen-
tial co-expression analysis (Figure 2). In Figure 7, we now
show the PPI network for normal vs PDAC with interac-
tions weighted by the differential co-expression values.
Figure 7a highlights the largest component (558 proteins
and 519 interactions), which shows an overall decrease in
co-expression. A considerable number of genes in this
component are targets of ubiquitination (UBC) and
sumoylation (SUMO1 and SUMO2) (Figure 7b) possibly
causing their inactivation. However, there are several
pockets showing increase in co-expression. Interestingly
some of the genes topologically central to these pockets
are known drug targets in PDAC (Figure 7c), e.g. PLK1
[58] and ANAX2 [59]. Similarly PELP1 which interacts
directly with STAT3 and is responsible for cell prolifera-
tion and survival in several tumours [53], is likewise an
identified drug target in PDAC [60]. A similar analysis in
BRCA1 vs BRCA2 tumours highlighted increase in PPI
co-expression around the mitotic regulators CDK1,
CDC20 and CKS1B and the histone deacetylases HDAC1
and HDAC6; these are known drug targets for which
inhibitors have been developed [61,62].

Figure 7 Differential PPI network constructed for normal vs PDAC. (a) Largest component of the network composed of 519 interactions
among 558 proteins, out of which 439 (or 84.5%) interactions showed a decrease in co-expression from normal to PDAC (red interactions
indicate increase from normal to PDAC while green indicate decrease); (b) several genes are silenced by ubiquitination and sumoylation in
PDAC; (c) several known drug targets are centered around interactions showing increase in co-expression.
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We clustered this normal vs PDAC network using
MCL (inflation 2.3) both with and without the weights
as input, and we observed that most clusters predomi-
nantly constitute only one kind of interactions, either
those showing increase or decrease in co-expression - of
the 30 clusters of sizes ≥ 4, in 17 at least two-thirds of
the interactions show a decrease, and in 9 at least two-
thirds of the interactions show an increase. Among
these, PLK1 belonged to a cluster in which all interac-
tions showed an increase (Figure 7d). Similarly, in the
BRCA1 vs BRCA2 network, CDK1 and CKS1B belonged
to a cluster that showed an increase for all its interac-
tions. These observations suggest that identifying clus-
ters (complexes) that show increase in co-expression
could identify new therapeutic targets in cancer.

Conclusion
Proteins seldom act in isolation, but instead interact to
constitute specialized complexes driving key processes.
We integrated PPI and gene-expression datasets to per-
form a large-scale unbaised evaluation of complexes in
PDAC and familial breast tumours. These complexes
showed considerable changes in expression, in particular

decreases and countering increases, reflecting compensa-
tory processes coming into play in the tumours. These
complexes enable us to explain the possible underlying
mechanisms, which is otherwise difficult only by analys-
ing individual genes. These complexes are driven by the
concerted action of influential TFs, which themselves
work in cooperative and counteractive ways. Network-
based analysis shows that complexes could have thera-
peutic potential in cancer.

Methods
The workflow for our computational approach is
depicted in Figure 8, building on our earlier work [63].
From earlier work [63] (upper portion of Figure 8): We

first assemble a high-confidence network of human PPIs
to identify human protein complexes. These PPIs are
largely devoid of contextual (conditional) information,
and therefore we overlay mRNA expression data of the
coding genes, assigning a confidence score to each pro-
tein pair under normal and tumour conditions. These
scores reflect the presence or absence of interactions
under these conditions. Complexes are extracted from
these conditional PPI networks by network clustering;

Figure 8 Workflow of our approach. A log-linear model (lower portion of the workflow) is devised to relate changes in the co-expression of
complexes with changes in their transcriptional regulation by TFs.
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for a detailed background on PPI networks and the
complex-extraction procedure, see [19,64-67].
In this work (lower portion of Figure 8): The contribu-

tion of this work is to relate changes in co-expression of
complexes to changes in their transcriptional regulation
by TFs between cancer conditions by introducing a log-
linear model. This enables us to identify influential TFs
and to validate their roles in cancer. This procedure is
described in the following subsections.

Measuring changes in co-expression of complexes
between conditions
Let H = (V, E) be the human PPI network, where V is
the set of proteins and E is the set of interactions
among these proteins, and S = {S1, S2, . . . , Sn} and
T = {T1,T2, . . . ,Tm} be the sets of protein complexes
extracted from H under any two conditions, say normal
and tumour. For each complex Ss ∈ S , we calculate its
co-expression as

C(Ss) =

∑
p,q∈Ss ρ(p, q)( |Ss|

2

) ,
(1)

where r(p, q) is the Pearson correlation for the protein
pair (p, q). The r-values are Fisher-transformed, given

by z = 1
2 ln(

1+ρ

1−ρ
) , which emphasizes the extreme r-

values; for example, if r = +/-0.10 then z = +/-0.043,
but if r = +/-0.99 then z = +/-1.149. The co-expression
values for T are calculated similarly.
To identify complexes that have changed co-expres-

sion between the conditions, we construct the set
M(S,T ) of matching complex pairs such that every
pair (Ss,Tt) ∈ M(S,T ) satisfies (a) a differential co-
expression ΔC(Ss, Tt) > 0, and (b) a minimum Jaccard

similarity in protein composition J(Ss,Tt) =
∣∣∣ Ss∩TtSs∪Tt

∣∣∣ ≥ tJ ,

where

�C(Ss,Tt) = |C(Ss) − C(Tt)| ≥ δ > 0. (2)

We expect complexes disrupted between the two con-
ditions to have changed their co-expression (including
complete dissolution or new formation) or have gained
or lost a few proteins (rewiring within complexes) and
therefore we use a δ > 0 and a high tJ.

Relating changes in co-expression to changes in
transcriptional regulation
Let F = {F1, F2, . . . , Fk} be the set of TFs. The regula-

tion by a TF Ff ∈ F of a complex Ss is measured as

R(Ss, Ff ) =

∑
{p:p∈Ss,(p,Ff )∈E} ρ(p, Ff )∣∣{p : p ∈ Ss, (p, Ff ) ∈ E}∣∣ ,

∣∣{p : p ∈ Ss, (p, Ff ) ∈ E}∣∣ > 0, (3)

where {p : p ∈ Ss, (p, Ff) ∈ E} is the set of proteins of
Ss with which Ff physically interacts in the network H.
The regulation by Ff of the complexes T is measured
similarly.
Here we consider a TF to regulate a complex only if

the TF physically interacts (in the PPI network) with at
least one protein in the complex. From the classical
view of transcriptional regulation, this assumption
means that we consider a TF to regulate a set of genes
encoding a complex only if the TF physically interacts
with at least one protein from that complex. Although
this assumption may be valid for only a subset of TFs or
complexes, we employ it here to simplify our model.
Indeed (see Results) we only lose at most 13% TF-com-
plex pairs due to this assumption.
We then relate changes in regulation by TFs to changes

in co-expression of complexes for (Ss,Tt) ∈ M(S,T )
between the two conditions using a log-linear model

�C(Ss,Tt) =
k∏

f=1

(
�R(Ss,Tt , Ff )

)γ f
, (4)

where ΔR(Ss, Tt, Ff) = |R(Ss, Ff) − R(Tt, Ff)| is the dif-
ferential regulation of the complex-pair (Ss, Tt) by Ff,
and gf is the influence coefficient of Ff in regulating the
change ΔC(Ss, Tt). Log-linear models are widely used to
approximate non-linear systems because they inherit the
benefits of linear models yet allow a restricted non-lin-
ear relationship between inputs and outputs [68].
Equation 4 can be written in matrix form after taking

the logarithm as

log[�C(S,T )] = [�] · log[�R(S,T ,F)], (5)

where log[�C(S,T )] is a |M(S,T )| × 1 matrix of
(log) differential co-expression of complexes,
log[�R(S,T ,F)] is a |M(S,T )| × k matrix of (log) dif-
ferential regulation by the TFs (here, |M(S,T )| > k ),
and [Γ] is a k × 1 matrix of influence coefficients for the
TFs. Given this combinatorial regulation model, our pur-
pose is to compute the influence coefficients gf(1 ≤ f ≤ k)
by solving Equation 5, and for this we employ singular-
value decomposition (SVD) arriving at a least-squares
solution [69]. The TF displaying the highest (absolute)
coefficient |g| has the highest overall influence in regulat-
ing changes in co-expression of complexes.
A simplified example to demonstrate our model
Solving the equation can give positive as well as negative g
values. The absolute value |g| indicates the magnitude of
the influence, while the sign indicates the direction: TFs of
the same sign regulating a set of complexes work coopera-
tively, while those of opposite signs work counteractively
with each other. To understand this consider the following
simplified example in which two TFs with influences g1
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and g2 regulate two complexes A and B as per the follow-
ing set of equations:

0.50 = (5)γ1 · (10)γ2 − − − −A

0.60 = (6)γ1 · (20)γ2 − − − −B,
(6)

which after taking log10 becomes,

−0.301 = γ1 · (0.699) + γ2 · (1) − − − −A

−0.221 = γ1 · (0.778) + γ2 · (1.301) − − − −B.
(7)

Here we see that the second TF performs at least
twice the regulation than the first TF on the two com-
plexes (5 and 6 vs 10 and 20), the regulation by the sec-
ond TF is doubled (from 10 to 20) as against a smaller
increase for the first TF (from 5 to 6) between A and B,
and yet A and B show roughly the same change in co-
expression (0.50 vs 0.60). This intuitively means that the
first TF has a greater influence than the second TF, and
that counteracts the second TF to maintain the co-
expression of complexes similar. Indeed upon solving
the equations we get g1 = −1.293 and g2 = 0.603, which
is interpreted as the first TF being about twice as influ-
ential as the second, with the two TFs working counter-
actively in regulating A and B. It is easy to realize a
similar example for the cooperative action of TFs.
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