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Abstract

available known complexes.

used in other methods.

experimental results.

Background: Protein complexes are important for understanding principles of cellular organization and function.
High-throughput experimental techniques have produced a large amount of protein interactions, making it
possible to predict protein complexes from protein -protein interaction networks. However, most of current
methods are unsupervised learning based methods which can't utilize the information of the large amount of

Methods: We present a supervised learning-based method for predicting protein complexes in protein - protein
interaction networks. The method extracts rich features from both the unweighted and weighted networks to train
a Regression model, which is then used for the cliques filtering, growth, and candidate complex filtering. The
model utilizes additional “uncertainty” samples and, therefore, is more discriminative when used in the complex
detection algorithm. In addition, our method uses the maximal cliques found by the Cliques algorithm as the initial
cliques, which has been proven to be more effective than the method of expanding from the seeding proteins

Results: The experimental results on several PIN datasets show that in most cases the performance of our method
are superior to comparable state-of-the-art protein complex detection techniques.

Conclusions: The results demonstrate the several advantages of our method over other state-of-the-art techniques.
Firstly, our method is a supervised learning-based method that can make full use of the information of the
available known complexes instead of being only based on the topological structure of the PIN. That also means,
if more training samples are provided, our method can achieve better performance than those unsupervised
methods. Secondly, we design the rich feature set to describe the properties of the known complexes, which
includes not only the features from the unweighted network, but also those from the weighted network built
based on the Gene Ontology information. Thirdly, our Regression model utilizes additiona
and, therefore, becomes more discriminative, whose effectiveness for the complex detection is indicated by our

|u

uncertainty” samples

Background

Most proteins form complexes to accomplish their biol-
ogical functions [1,2]. Protein complexes are important for
understanding principles of cellular organization and
function. While there are a number of ways to detect
protein complexes experimentally, Tandem Affinity
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Purification (TAP) with mass spectrometry [3] is the
preferred experimental detection method used by many
research groups. However, there are several limitations to
this method [4]. For example, its multiple washing and
purification steps tend to eliminate transient low affinity
protein complexes. Also, the tag proteins used in the
experiments may interfere with the protein complex
formation. Gavin et al. [1] have shown that TAP-MS only
captures limited known yeast protein complex subunits.
Furthermore, in TAP-MS the subcellular location of
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complexes is lost due to the in vitro purification of whole-
cell lysates [5]. This means that time-consuming prepara-
tion of subcellular fractionated lysates may be needed for a
less-studied cellular process in order to employ subcellular
localization information to validate the experimental
results and detect false negatives or false positives. Due to
these experimental limitations, alternative computational
approaches for detecting the complexes are thus useful
complements to the experimental methods for detecting
protein complexes [6].

In the post-genome era, high-throughput experimental
techniques have produced a large amount of protein
interactions, making it possible to predict protein com-
plexes from the protein interaction networks (PIN).
Automatic complex identification approaches are
increasingly proposed to extract the set of proteins from
the PIN as complexes.

The PIN can be described as a graph, the nodes of which
correspond to the proteins and the edges correspond to
the interactions; thus, the complex detection is realized by
finding the subgraphs from PIN. Since the proteins in the
same complex are highly interactive with each other, the
protein complexes generally correspond to the dense sub-
graphs in the PIN [7]. Therefore, the proposed complex
detection methods can be roughly divided into four
categories. (1) Agglomerative model, in which every single
node or some subgraph forms a cluster at the beginning
stage and clusters are allowed to merge and grow under
certain constraints. For example, the MCODE method is
based on growing seeds selected by weight [8]. Similarly,
the DPClus method expands clusters starting from seeded
vertices [9]. (2) Clique finding methods. The CFinder
system finds functional modules in PIN by detecting the
k-clique percolation clusters using a Clique Percolation
Method [10]. CMC is also a clique based method that uses
a protein-protein interaction iteration method to update
the network [11]. The ClusterONE method initiates from
a single seed vertex before a greedy growth procedure
begins to add or remove vertices in order to find groups
with high cohesiveness [12]. (3) Traditional graph cluster-
ing methods based on a premise that PIN can be described
as a graph, thus the algorithm can also be applied to detect
dense clusters as protein complexes. The Markov cluster-
ing method (MCL) simulates random walks within graphs
and thus partitions the PPI network into many non-
overlapping dense clusters [13].(4) Complex detection
methods based on the core-attachment architecture devel-
oped by Gavin et al., who demonstrated that protein
complex had the architecture of core-attachment [2]. An
example of such methods is COACH that selects some
subgraph as the core structure first, and then adds the
attachment to the core to construct a complex [14].

However, most of above methods are unsupervised
learning methods, which predict the protein complexes

Page 2 of 16

based on the pre-defined rules. Although these unsuper-
vised learning methods have the superiority of solving
the problem without annotation and training process,
they can not make full use of the information of avail-
able known complexes. In the research field of protein
complexes, numerous true complexes have been
provided, which can be used as the prior knowledge of
the supervised learning method. Qi et al. first imported
the supervised learning method into the complex
detection. By using graph topological patterns and biolo-
gical properties as features, they trained a probabilistic
Bayesian network (BN) model score subgraphs in the
protein interaction graph and identify new complexes
[15]. Shi et al. proposed a semi-supervised prediction
model with neural network and their results shows that
integrating biological features and topological features to
represent protein complexes is more meaningful than
using dense subgraphs [16]. Chen et al. analyzed the
graph properties and biological properties of protein
complexes and constructed a prediction model using the
filtered features [17]. However, their method only deter-
mines whether a candidate protein complex is a true
complex and doesn’t deal with the construction of the
candidate protein complexes from the PIN. Qiu et al.
developed multiple kernels from heterogeneous data
sources and combined them in an SVM classifier to pre-
dict co-complexed protein pairs [18]. Like Chen et al,,
their method also doesn’t deal with the construction of
the candidate protein complexes from the PIN although
the co-complexed protein pairs it predicts can extend
known MIPS complexes and identify maximal cliques as
candidate protein complexes.

In this paper, we present a supervised learning based
method to discover the complexes in the PIN by learning
from true complexes. Compared with other supervised
learning based methods (e.g. Qi et al.[15] and Shi et al.
[16]), our method introduces some new features from the
weighted network: the density, the mean and maximum
degrees of the weighted network, which prove to be quite
effective for the performance improvement. In addition,
our method uses the three categories training set for the
first time. Since the more samples and additional
categories provide more information for the regression
model training, the learned model becomes more discrimi-
native. Finally, our method uses the maximal cliques found
by the Cliques algorithm [19] as the initial cliques, which
has been proven to be more effective than the method of
expanding from the seeding proteins used in other
methods.

Methods

Complex detection algorithm

The aim of complex detection is to discover subgraphs
representing the predicted protein complexes from the
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PIN. We propose a supervised learning-based method
including four steps as shown in Table 1. The inputs are
an unweighted network, a weighted network and a
training set. The unweighted and weighted networks are
originally constructed from the DIP database (the Data-
base of Interacting Proteins [20]), which contains 4928
proteins and 17201 interactions and then the interac-
tions with GO similarities less than 0.9 are regarded as
false positive interactions and deleted from the PIN as
will be discussed in the following section. The size of
the training set is of great importance for the supervised
learning-based method. However, currently it is difficult
to obtain sufficient number of positive training samples
in complex detection field. Thus, in order to achieve
more training samples, we used 422 complexes which
are predicted by the COACH method but do not match
the true complexes in the benchmark. Since the
COACH method is a state-of-the-art complex detection
method, its predicted result that doesn’t match a true
complex could still be a true complex. We assigned
them “uncertainty” status denoting that their potential
of being true complexes is superior to the negative sam-
ples and inferior to the positive ones. Consequently, we
constructed three different training sample categories:
668 true complexes from some available PPI databases
are used as the positive samples, 422 complexes pre-
dicted by the COACH method as the intermediate
samples, and 2004 subgraphs obtained by randomly
selecting nodes as the negative samples. The more sam-
ples and additional categories provide more information
for the learning model to be more discriminative.

In the first step, the feature vectors are generated for
the complexes in the training set from the unweighted
and weighted PIN networks based on the features which

Table 1 Protein complex detection algorithm
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will be discussed in the later section of Complex feature
selection. It should be noted that all the features are
extracted from the true protein complexes when they
are in the PIN (i.e. the true protein complexes are the
(unweighted or weighted) subgraphs in the whole
(unweighted or weighted) protein interaction network.
The Regression model is subsequently trained by solving
the optimization problem by gradient descent.

In the second step, the Cliques algorithm is used to
find maximal cliques in the PIN [19]. Although enumer-
ating all maximal cliques is NP-hard, this does not pose
a problem in PPI networks because PPI networks are
usually sparse [11]. The Cliques algorithm uses a depth-
first search strategy to enumerate all maximal cliques,
and it can effectively prune non-maximal cliques during
the enumeration process. In our experiments, we
explored two different minimal sizes of the cliques on
the performance: the sizes greater than or equal to 3
and 4 (denoted as clique_size > 3 and clique_size > 4
respectively). Furthermore, because of the high density
of the PIN, the cliques may have high node overlapping
rate. For example, two cliques with four nodes may have
three nodes in common. Therefore, the cliques are
filtered as follows: the set of cliques is ranked in
descending order of their scores given by the Regression
model, denoted as {C;, C,, ..., Ci}; for each clique C;
(i=1,2, .. k), whether the number of common nodes
of C; and the clique C; (j =i + 1, ..., k and Cj has
a lower score than C;) is larger than or equal to
the threshold (set to 2 and 3 for clique_size > 3 and
clique_size > 4 respectively) is checked. If so, the clique
with the lower score is removed.

In the third step, the growing operation is performed
on each clique obtained in the previous step. For a

Input : an unweighted network, a weighted network built via GO annotation and a training set

Complex detection process:

Step 1: construct the feature vector space for the complexes in the training set from the unweighted and weighted PIN networks and

train the Regression model
Step 2: find maximal cliques in the PIN by the Cliques algorithm
-rank the clique set C={C;, C,, ...

, Cn} in descending order of the scores given by the Regression model

-for each clique C; check all the cliques (denoted as C;) with lower scores, if GNC; > threshold, then remove C;.

-output: the updated clique set
Step 3: grow the cliques

-for each clique C;, the set of its neighbors is denoted as N(C;), do update operation as follows:

-check all the nodes in N(C;)

-select v;eN(C;), which makes v;uC; achieve higher score given by the Regression model

-update Ci= v;UG;, N(G) = N(G) - v;

-repeat the update operation until there is no node v; in N(C) that leads to score(v;uC;) > score(C;)

-output: the candidate complex set C = {C;, C;,
Step 4: filter the candidate complexes

o Co}

-rank the candidate complexes in descending order of the score given by the Regression model
-for each candidate complex C;, check all the candidates C; with lower scores

-if overlap (C;, ;) > merg_thred

if score(GUG;) > score(C;) do merge operation: update C; = GUC;

else do remove operation: remove C; from the candidate set

output: the predicted complex set
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clique C;, the set of its neighbors is denoted as N(C;)
and, for each node v; in N(C;), it is checked if its
addition to C; makes the new subgraph { C;Uv;} obtain
higher score given by the Regression model. The
operation is repeated until no node introduction leads
to higher score of the new subgraph. Thus, after the
growing operation, the cliques constitute a set of
candidate complexes.

The candidate complexes may still have a high overlap-
ping rate since they also may have some neighbor nodes
in common. Therefore, in the fourth step, similar filtering
operation as in the second step is performed. For two
candidate complexes, C; = {p1, p2, - Pm} and Cy = {q1, qo,
.. qn}, their overlapping rate is calculated as follows:

IC1 NGyl
overlap(Cy, C3) CL UG (1)

The merging threshold (denoted as merg_thred) is set to
a value between 0 and 1. The merging operation is per-
formed as follows: first, the candidate complexes are
ranked in descending order of their scores given by the
Regression model; then, for each candidate complex C;, its
overlapping rate with all the candidates C; with lower
scores are calculated. If the overlapping rate is higher than
the merg_thred, the merging operation is performed if the
score of their union is higher than that of C; itself. Other-
wise, the complex C; is removed.

Weighted network construction

The PIN can be modeled as a simple graph G = (V, E), in
which a node element in node set V represents a protein
and an edge element in edge set E represents an interac-
tion between two distinct proteins. In our method, a
weighted graph is introduced to represent PIN as G = (V,
w(E)), where w(E) represents the weighted interaction. In
this way, we extract the complex features based on two
different networks—an unweighted and a weighted
network.

Protein interaction data produced by high-throughput
experiments are often associated with high false positive
and false negative rates due to the limitations of the asso-
ciated experimental techniques and the dynamic nature of
protein interaction maps. Therefore, the complex features
extracted from the unweighted network are insufficient for
describing a complex. Gene Ontology (GO) provides a col-
lection of well-defined biological terms—known as GO
terms—spanning biological processes, molecular functions
and cellular components. Here, based on the method pre-
sented in [21], we use GO annotation from SGD [22] to
estimate the similarity between proteins, and then use it as
the weight of network.

In our method, the semantic similarity between two
proteins is calculated based on the annotation size of
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the GO term (which is defined as the number of anno-
tated proteins on the GO term) on which both proteins
are annotated. According to the transitivity property of
GO annotation, if a protein p is annotated on a GO
term gi, it is also annotated on the GO terms on the
path from gi to the root GO term in the GO structure.
Thus, the proportion of the annotation size of a GO
term to the total number of annotated proteins can
quantify the specificity of the GO term. If two proteins
are annotated on a more specific GO term and have
more common GO terms, then they are functionally
more similar. We define the semantic similarity sim
(p, q) between two proteins p and g as follows:

min [Si(p, q)|
Smax

sim(p,q) = =I1C(p, )| x log( ) 2)

C(p,q) denotes the set of the GO terms whose annotation
includes p and g. If both p and g are annotated on # differ-
ent GO terms, Si(p, q) (1<i<n) denotes a set of annotated
proteins on the GO term gi whose annotation includes p
and q. Smax is the maximum size of annotation among all
GO terms in a directed acyclic graph (DAG) structure. The
proportion of the annotation size of a GO term (Si(p,g)) to
the total number of annotated proteins (Smax) can quan-
tify the specificity of the GO term. If p and g are annotated
on a more specific GO term and more common GO terms
than p and / (another protein), then p is semantically more
similar to ¢ than /. In addition, the graph topology is also
introduced into the weight calculation. For an input graph
G = (V, E), we assign the topological weight of an edge
[4, v] to be the number of neighbors shared by the vertices
u and v (which represent proteins p and g respectively).
Then the sum of sim (p, q) and topological weight is
assigned to the edge between u and v.

In our experiments, if proteins are not annotated by the
GO terms, 0 is used as their interaction weight and the
interactions with GO similarities less than 0.9 are regarded
as false positive interactions and deleted from the PIN.

Complex feature selection

Extracting appropriate features for the subgraphs repre-
senting complexes is related to the problem of measur-
ing the similarity between complex subgraphs. We
designed the following features to describe a complex
subgraph in the PPI network. Some features are
extracted from the unweighted network and other fea-
tures from the weighted network.

1. Graph density: The graph density has been used in
many complex detection methods, and it has been proven
to be an important feature for complex detection [8]. Let
G = (V, E) be an unweighted graph, with |V| vertices and |
E| edges. Suppose |E|,, =|V|(|V]-1)/2 is the theoretical
maximum number of possible edges in G, and the
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unweighted graph density is defined as the ratio of |E| and
|E|m. For the weighted graph, the weight of the edge <u,
v> is given by G = (V, w(E)), w(u, v). Thus, the density of
the weighted graph is defined as follows:

ZueV,veV w(u, V)

V- (IVI—1) ©

density,,(G) =

2. Degree statistics: Degree is defined as the number of
neighbors of a node in unweighted graph that describes
the connection between the nodes. For the unweighted
graph, the mean and medium degrees are chosen as the
node degree feature. In the weighted graph, a degree is
defined as the sum of the weights between the node and
its neighbors and the mean and maximum degrees are
chosen as the node degree features.

3. Edge weight statistics: Similar to the node degree,
the edge weight is another important measure of the
weighted network as it describes the feature of the edge.
The mean of all weights is chosen as the edge weight
statistics feature.

4. Clustering coefficient: Clustering coefficient reflects
the neighbors of the nodes that can be used to describe
the modularity of the graph. Let G = (V, E) be a com-
plex graph with V = {vy, vy,..., v,}(n is the number of
nodes). For each node v;, the set of its neighbors is
denoted as Vi = {vj1, Vi, ..., Vi and let N; = (Vy, E;) be
an induced graph of G. Define C; = 2|E;|/k(k-1) (if
k < 1, C ;= 0), where k denotes the number of nodes in
V/. The mean of {Cy, .., C,} is chosen as the clustering
coefficient feature [23].

5. Topological change: For a weighted graph, topological
change features are gained by measuring the topological
changes when different weight cutoffs are applied to the
graph (ranging from 1 to 8). Let G; = (V, E) (i = 1, .., 8)
be the graphs in which only the edges with the weights
higher than i remained, that is, E; = {e|w(e) > i}.
Topological changes are measured as T; = (|E;|-|E;,1])/|Ei
(i=1,.. 7. If |Ej| =0, let T; = 0). In our feature set, T;
(i = 2, ..., 7) are chosen as the topological change features
[17] which measure the distribution of the edge degrees in
the weighted network.

The five groups of features discussed above are used in
our experiments for describing the complexes from differ-
ent perspectives (as shown in Table 2). Four features are

Table 2 Feature distribution
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based on the unweighted network and six features are
based on the weighted network.

Regression model

In our method, the Regression model is introduced to
evaluate the possibility a subgraph is a true complex.
Regression analysis is a statistical method used to model
and analyze several features [24]. The goal of regression
is to summarize observed data as simply, usefully and
elegantly as possible [25]. In the context of the complex
detection problem, a model that can evaluate the possi-
bility a subgraph is a true complex is required. In our
method, the regression analysis is used to model the
complex detection problem, as it can train a model of
the multiple features by analyzing the training set.

We model the problem evaluating the possibility a sub-
graph is a true complex as a linear regression function,
f(x) = o' - x, where f{x) is the linear function of features
and " is the weight vector of the dimension correspond-
ing to the number of the features. The linear least square
approach is used to obtain the regression model, and the
least square function is defined as follows:

N 2
L= ;(Yi —f(xi)) (4)

where i is the training sample, N the number of the
samples, y; the annotation of sample i (in our model
yi € {0,1,2}. For the negative samples, intermediate
samples and positive samples, y; is set to 0, 1 and 2
respectively), x; the feature vector, and f(x;) the score
of the sample i . This approach leads to an optimization
problem, whereby, when the least square function
obtains the least value, the model is optimal.

We solve the optimization problem by the gradient
descent algorithm, which is an iterative algorithm where,
within each step, the gradient of the objective function is
calculated, and then the negative direction of gradient is
used to search the next step by multiplying the step-size.
The gradient of the object with respect to parameter can
be calculated as follows:

N
Awj =2 (ri—f(x)) - x; 5)

i=1

Features of the unweighted network

Features of the weighted network

Group Feature Number of features Group Feature Number of features
ID ID
1 Graph density 1 1 Graph density 1
2 Degree statistics 2 2 Degree statistics 2
4 Clustering coefficient 1 3 Edge weight statistics 1
- - - 5 Topological change 2
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where w; is the weight of jth dimension, and @ is
updated by w < w — 1 - Aw, and the learning rate n
can be set to a small positive value.

Datasets

Our method was tested on the DIP database, which has
been widely used in complex detection field, so that our
result is comparative with others. DIP contains 4928
proteins and 17201 interactions. We built the weighted
network by calculating the GO similarity of the proteins as
discussed in the previous section. 6120 interactions with
GO similarities less than 0.9 were deleted since the lower
GO similarity indicates that two proteins have less com-
mon functional annotations and their interaction is more
likely to be a false one.

Our training set includes 668 positive samples, 422 inter-
mediate samples and 2004 negative samples. The positive
samples are obtained from four sources: (I) MIPS [26], (II)
Aloy et al,, [27], (IIT) SGD database [22] and (IV) TAP06
[2]. Moreover, as the extant research shows that most of the
complexes include more than one protein [28], we choose
the complexes which at least have two different proteins as
the true complexes. The intermediate samples are 422
complexes predicted by the COACH method, and 2004
subgraphs obtained by randomly selecting nodes are used
as the negative samples. The size distribution of the positive
sample set follows a power law, so do the intermediate and
negative sample sets as shown in Figure 1. After a Regres-
sion model is trained with the training set, our complex
detection algorithm is performed on the DIP PIN. Then the
detected complexes are evaluated using the metrics to be
introduced in the following section.
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Evaluation metrics

The neighborhood affinity score (NA (A, B)) [29] is used
as a measure to evaluate the similarity of two given clus-
ters A and B, and is defined as follows:

IVA N VB|2

NA(A, B) =
(4.B) IVA| x |VB|

(6)
The neighborhood affinity score between a predicted
complex p and a true complex b, NA (p, b), is used to
determine whether they match. If NA (p, b) > w , they are
considered to be matching (w is usually set as 0.25). Let P
and B be the sets of the predicted and true complexes in
the benchmark respectively, Ncp be the number of the
correct predictions that match at least a true complex and
Ncb be the number of the true complexes that match at
least one predicted complex, the precision and recall are
defined as follows:
Nep

N,
P ,recall =

Pl B 7

precision =
The F-measure (the harmonic mean of precision and
recall and defined as (2PR) / (P + R) where P denotes
precision and R recall) can be used to evaluate the overall
performance, which is a popular metric in the perfor-
mance evaluation of complex detection methods.
Recently, the sensitivity (Sn), positive predictive value
(PPV), accuracy (Acc) and P-value have also been
proposed to evaluate the performance of complex
detection methods [29]. Given n benchmark complexes
and m predicted complexes, let T;; be the number of
proteins in common between ith benchmark complex
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Figure 1 Size distribution of the positive, intermediate and negative samples. Horizontal axis denotes the complex size and vertical axis
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and jth predicted complex, Sn and PPV are then defined as
follows:

P m].ax{Tﬁ} ©
Sn = Z?:l Ni

Z;zl max{Tj}
PPV = ' ©)
i T
where N; is the number of proteins in the ith benchmark
complex, and T); is defined as:

n
Ti=) Tj (10)
i=1
Generally, a high Su value indicates that the prediction
has a good coverage of the proteins in the true complexes,
whereas a high PPV value indicates that the predicted
complexes are likely to be true complexes. As a summary
metric, the accuracy of a prediction, Acc, can then be

defined as the geometric average of Su and PPV:

Acc = /Sn x PPV (11)

These metrics are by no means absolute measures—they
all have their own limitations, Sn, PPV and Acc in particu-
lar. For example, if a method predicts a giant complex that
covers many proteins in the known true complex set, this
method will yield a very high Su score. Similarly, PPV
value cannot evaluate overlapping clusters reliably. Here is
a case in point: if the known gold standard MIPS complex
set is taken to match with itself, then the resulting PPV
value is 0.772 instead of 1, although the precision and
recall are both correctly calculated as 1. In such cases, the
Acc score, as the geometric average of Sn and PPV, will
not make sense either. Therefore, in the performance
comparison, the F-measure is used as the main metric,
and the Acc is only used as an auxiliary one.

P-value refers to the statistical significance of the
occurrence of a predicted protein complex with respect
to a given functional annotation, which is computed by
the following hypergeometric distribution:

- (IFI) (IVI - IFI)
- i IC| —i
P —value=1—
()
ICI

where a predicted complex C contains k proteins in the
functional group F and the entire PPI network contains | V]
proteins. The functional homogeneity of a predicted com-
plex is the smallest p-value over all the possible functional
groups. A predicted complex with a low p-value indicates

that it is enriched by proteins from the same function
group and it is thus likely to be a true protein complex.

(12)
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Results and discussions

The effect of different parameters (e.g. Regression model
iteration time, two or three category training set,
clique_size and merg_thred) and feature sets on perfor-
mance, the performance comparison with other meth-
ods and the statistical evaluation of the predicted
protein complexes is discussed in this section.

It should be noted that in the experiments which will
be discussed in the following two sections (the effect of
different parameters on performance and the effect of
features set on performance), we used the 668 positive
samples as benchmark to evaluate our identified com-
plexes which means the training and the testing data
have overlap. In classical classification task, the problem
will would affect the validity of the results. However, in
our complex detection method, the problem is not so
serious since the Regression model trained by the train-
ing data is not used directly to classify the candidate
complexes to be true ones or not but to assign them
scores used for the cliques filtering, growth, and candi-
date complex filtering as described in previous section.
Nevertheless, to avoid the problem as possible as we can,
when comparing our results with those of other methods
we used a method (which will be introduced in the section
Performance comparison with other methods) similar to
the five-fold-cross-validation or different training and test-
ing data. However, this five-fold-cross-validation method
will lead to the significant increase of experiment time.
For example, the number of experiments needed for Table
3 will increase from 144 (16*9) to 720 (16*9*5). Therefore,
in the experiments introduced in, the following two sec-
tions we still used the 668 positive samples as benchmark
to approximately evaluate the impacts of the parameters
such as Regression model iteration time, two or three cate-
gory training set, clique_size, merg_thred, and different
feature sets on the performance while in the section
Performance comparison with other methods (which com-
pares our results with those of other methods) we used
the five-fold-cross-validation method or different training
and testing data.

The Effect of different parameters on performance

In our method, we imported the Regression model to
evaluate the possibility a subgraph is a true complex. In
Regression model, the regression square error is reduced
as the time of iteration grows, and it will return differ-
ent models with different iteration times. The perfor-
mance comparison measured by F-measure between
these different Regression models is made in Table 3. In
the table, Model100 denotes the model with 100 itera-
tions; Model200 denotes the model with 200 iterations,
and so on. Among others, the Model500 achieves the
highest F-measure of 0.5910 when merg_thred is 0.8
and clique_size > 3. With the further increase of the
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Table 3 Performance comparison between different Regression models (clique_size = 3)

merg_thred
Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Model100 0.5244 0.5429 0.5467 05518 0.5628 0.5656 05791 0.5806 05719
Model200 0.5060 0.5380 0.5542 0.5525 0.5577 0.5586 0.5798 0.5819 0.5748
Model300 0.5070 0.5353 0.5451 0.5543 0.5637 0.5696 0.5887 0.5866 0.5783
Model400 0.5058 05414 0.5427 05578 0.5660 05730 0.5880 0.5904 0.5808
Model500 05115 0.5462 0.5465 0.5596 05710 05747 0.5896 0.5910 05783
Model600 04942 0.5368 0.5380 0.5460 0.5544 0.5667 05819 0.5831 05741
Model700 04995 05378 05417 0.5408 0.5498 05617 05713 05737 0.5692
Model800 0.5042 0.5331 0.5428 0.5402 0.5470 0.5544 0.5632 0.5676 0.5660
Model900 0.4962 0.5251 05338 05320 0.5355 05513 0.5592 0.5638 05627
Model1000 04966 05282 05339 05323 05322 0.5491 0.5540 0.5604 0.5598
Model1500 04936 0.5243 05273 0.5240 05278 0.5435 0.5563 0.5605 05597
Model2000 04944 05126 05185 05221 05262 0.5344 0.5487 05516 05513
Model2500 04813 05129 05183 0.5215 0.5239 0.5292 0.5418 0.5431 0.5426
Model3000 04849 05142 0.5210 05192 05233 0.5297 0.5406 0.5409 0.5401
Model3500 04749 05161 0.5247 05215 0.5231 0.5299 0.5391 0.5390 0.5379
Model4000 04789 05143 05238 05157 0.5200 05257 0.5368 0.5368 05357

iteration time, the F-measure begins to decrease. Through
analyzing the result, we found that Model500 can achieve
the higher precision than the models with more iteration
time (e.g. Model4000) while they have almost the same
recall. Figure 2 depicts the F-measure curves of different
models, which shows that in most cases, with the
increase of the merg_thred, the F-measure of each model
keeps increasing and when the merg_thred is 0.7 or 0.8,
it reach its peak value. Therefore, in the following experi-
ments, the Regression model with 500 iterations and the
merg_thred 0.8 are used.

As mentioned in previous section, our Regression model
is built with the three-category training set, which could
improve the discrimination of the model. In order to

prove its effectiveness, we made the performance compari-
son between the two-category and three-category training
set with the clique_size = 3. As can be seen from Figure 3,
the F-measure and accuracy of using the three-category
training set are much better than those of using the two-
category training set when merg_thred is 0.8. Therefore,
the three-category training set is used in our experiments.
In addition, we conducted the comparison experiments
with different clique_sizes and merg_threds. Table 4
shows the performances when the clique _size > 3,
clique_size > 4 and the merg_thred ranges from 0.1 to 0.9.
The experimental results show that our method returns
more complexes and achieves higher F-measure when the
clique_size > 3, as the lower clique_size will allow the

0.1 0.2 0.3 0.4

merg_thred

0.5 0.8 0.7 0.8 0.3

Figure 2 F-measure curve of different models. Horizontal axis denotes the merg_thred and vertical axis denotes the F-measure.
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Figure 3 F-measure and accuracy curves of two-category and three-category training sets. Horizontal axis denotes the merg_thred and

Table 4 Performance comparison of different clique_sizes and merg_threds

Clique_size = 4

Clique_size = 3

merg_ Num P R Num P R F

thred
0.1 96 0.7813 0.2635 0.3941 212 06792 04102 0.5115
0.2 113 0.7876 0.2934 04275 286 0.6434 04746 0.5462
03 125 0.76 0.3009 04311 333 0.6186 04895 0.5465
04 142 0.7465 0.3084 04365 388 0.6237 0.5075 0.5596
0.5 171 0.7427 03129 04403 491 0.6273 0.5240 0.5710
06 203 0.7340 03159 04417 624 0.6298 0.5284 0.5747
0.7 248 0.7540 0.3189 04482 755 0.6530 0.5374 0.5896
08 303 0.7294 0.3234 04481 880 0.6477 0.5434 0.5910
09 368 0.6440 0.3249 04319 945 0.6180 0.5434 0.5783

Num denotes the number of the predicted complex, P the precision, R the recall and F the F-measure.

Clique algorithm to find more cliques (more predicted
complexes). On the contrary, when the clique_size > 4,
few predicted complexes are returned to match the true
complexes. Therefore, we set clique_size > 3 in our experi-
ments. The advantage of clique_size > 4 is that it returns

fewer complexes with higher precision. For example, when
merg_thred is 0.2, it returns 113 complexes and achieves
the highest precision (0.7876). In addition, as the
merg_thred grows from 0.1 to 0.9, the recall increases
while the precision decreases. The reason is that, when the
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merg_thred increases, fewer merging operations are per-
formed and our method can predict more complexes to
achieve a high recall. However, the precision will deterio-
rate since more predicted complexes remain unmatched
to any true complex. The F-measure achieves its highest
value 0.5910 when the merg_thred is 0.8 (clique_size > 3).

The effect of different features set on performance

To evaluate the contribution of different feature sets to
the performance, we conducted the experiments with dif-
ferent feature sets. The experimental results with three
different feature sets—four unweighted features, seven
weighted features, and all features - are showed in
Table 5. The F-measures achieved with seven features
from the weighted network are much better than those
achieved with four features from the unweighted net-
work, and almost as good as those using all features,
which shows that the feature set from the weighted net-
work is effective in improving the performance. The rea-
son is that the weighted network feature set combines
the GO information with the topological properties. In
addition, the combination of the unweighted network
feature set and weighted network feature set achieves an
F-measure of 0.5910 (the merg_thred is 0.8), which indi-
cates that the construction of our feature set is effective.

Table 5 Experimental results of three different feature sets
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We also analyzed the contribution of individual features
to the performance. Table 6 shows the rank lists of the
features achieved with two different standards. The
Regression model assigns the features with different
weights that reflect the importance of each feature, and
the features are ranked by the weights in the descending
order in Table 6 (the column 2 and 3 show the feature
names and their weights).

Moreover, the experiments were also conducted to ver-
ify the performance our complex detection method could
achieve when each feature was removed. If the perfor-
mance declines more sharply when a feature is removed,
the feature is deemed more important. In this way, the fea-
tures are ranked by the F-measure of each one-feature-
removed experiment in the ascending order in Table 6
(the column 4 and 5 show the ranked feature names and
their F-measures). It should be noted that topological
change features help to enhance the performance only
when i = 5 and 7, and, therefore, other topological change
features are removed in our feature set.

In accordance with the results in Table 5 the features
from the weighted network play a more important role
in the feature set than those from the unweighted net-
work. Among others, the mean edge weight and density
features of the weighted network rank among top 3 in

Unweighted feature set

Weighted feature set

All feature set

merg_ Num P R F Num P R F Num P R F
thred
0.1 169 0.5621 03009 03920 205 0.6537 04042 04995 212 0.6792 04102 05115
02 242 04876 0.3443 04036 266 06353 04536 05293 286 0.6434 04746 0.5462
03 309 04434 03757 0.4068 301 0.6146 04790 0.5384 333 06186 04895 0.5465
04 389 04216 04042 04127 350 0.62 04910 0.5480 388 0.6237 0.5075 0.5596
0.5 476 04202 04132 04166 443 06163 0.5090 0.5575 491 06273 0.5240 0.5710
06 576 04184 04266 04225 572 06189 05165 0.5631 624 0.6298 05284 05747
0.7 703 04296 04371 04333 717 0.6374 0.5329 0.5805 755 0.6530 0.5374 0.5896
0.8 815 04331 04431 0.4381 834 0.6319 0.5389 0.5817 880 0.6477 0.5434 0.5910
09 910 04286 0.4446 04364 930 0.6108 0.5404 05734 945 06180 0.5434 05783
Table 6 Two feature rank lists
Rank Feature Weight Feature F
1 Mean edge weight of the weighted network 0.1529 Density of the weighted network 0.5697
2 Density of unweighted network 0.0964 Mean edge weight of the weighted network 0.5709
3 Density of the weighted network 0.0243 Mean degree of the weighted network 0.5768
4 Mean of the unweighted clustering coefficient 0.0198 Maximum degree of the weighted network 0.5773
5 Topological change 7 0.0051 Density of the unweighted network 0.5884
6 Mean degree of the unweighted network 0.0047 Mean degree of the unweighted network 0.5884
7 Topological change 5 0.0044 Medium degree of the unweighted network 0.5884
8 Maximum degree of the weighted network 0.0040 Topological change 7 0.5889
9 Medium degree of the unweighted network 0.0027 Mean of the unweighted clustering coefficient 0.5896
10 Mean degree of the weighted network 0.0008 Topological change 5 0.5905
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both lists. This is also consistent with the idea of the
previous complex detection algorithms based on detect-
ing density subgraph.

Compared with the other supervised learning-based
methods of Qi et al. and Shi et al., our method introduces
some new features from the weighted network (in bold and
itlic in Table 6): the density, the mean and maximum
degrees of the weighted network. Our experiment shows
that these features are quite effective in complex detection:
They totally contribute to a performance improvement of
2.6 percentage points in F-measure (from 0.5650 to 0.5910).

In order to prove the effectiveness of our Regression
model, the comparative experiments between the
Regression and the equal weight model that assigns all
the features with the same weight were conducted. The
results are shown in Table 7 from which it can be seen
that the F-measures of the Regression model are super-
ior to those of the equal weight model at different
merg_threds. When the merg_thred is 0.8, the Regres-
sion model achieves an F-measure of 0.5910 which is
significantly better than that of the equal weight model
(0.4366). This indicates that the Regression model is
effective in assigning appropriate weights to different
features and, therefore, improving the performance.

Performance comparison with other methods

The performance comparison with the-state-of-art unsu-
pervised methods including MCODE, COACH, CMC
and ClusterONE is shown in table 8. In order to com-
pare with these methods as fair as possible, we designed
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an experiment method similar to the five-fold-cross-vali-
dation to obtain the complexes with our method: the
668 positive examples are divided into five folds {S;, S,,
S3, S4, Ss}. For each cross validation experiment, four
folds (plus 422 intermediate samples and 2004 negative
samples) are used as the training set and then the
trained Regression model is used to detect the com-
plexes in the DIP PIN. Since the detected complexes
may include the ones in the training set, the predicted
complexes matched with the training set are removed
(the match threshold is set to 0.9 calculated by Equation
(6)). For example, if the training set is {S; U S, U S; U
S4}, then the set of remained complexes is supposed to
include the complexes in Ss.

After five round such experiments are performed, the
five result sets of the remained complexes are combined
which is supposed to include the complexes in {S; U S,
U S3 U S, U S5}, and then the similar complexes with
the match score higher than 0.6 (which is determined
through our experiments and can achieve the best per-
formance) are removed. Finally, the remained detected
complexes (which are achieved avoiding the problem
that the training and testing set overlap) are used as our
final result, which is then evaluated with {S; U S, U S4
U S4 U S5} (the 668 positive examples). In this way we
avoid the problem that the training and testing set may
overlap. Since MCODE, COACH, CMC and Cluster-
ONE are unsupervised methods, their results are directly
obtained on the PIN, and their optimal parameters are
used.

Table 7 Performance comparison between the Equal Weight (EW) and Regression models (RM)

merg_ model Num Ncp P Ncb R F Sn PPV Acc
thred
0.1 EW 167 94 0.5629 182 02725 03672 0.6075 0.6550 06308
RM 212 144 06792 274 04102 05115 0.3473 0.7849 0.5221
0.2 EW 227 109 04802 217 0.3249 0.3875 0.6092 0.6635 0.6358
RM 286 184 0.6434 317 04746 0.5462 04054 0.7749 0.5605
03 EW 289 127 04394 234 0.3503 0.3898 0.6190 0.6329 0.6259
RM 333 206 06186 327 04895 0.5465 04242 0.7713 0.5720
04 EW 336 151 0.4494 254 03802 04119 0.6256 0.6393 06324
RM 388 242 06237 339 0.5075 0.5596 0.4466 0.7557 0.5809
0.5 EW 405 188 04642 269 04027 04313 0.6229 0.6387 0.6307
RM 491 308 06273 350 0.5240 05710 04649 0.7317 0.5832
06 EW 475 221 04653 279 04177 04402 0.6197 0.6328 0.6262
RM 624 393 06298 353 0.5284 05747 04779 0.7335 05920
0.7 EW 568 261 04595 285 04266 04425 0.6201 0.6353 06277
RM 755 493 0.6530 359 0.5374 0.5896 04908 0.7370 06014
0.8 EW 674 298 04421 288 04311 0.4366 0.6203 0.6362 0.6282
RM 880 570 0.6477 363 0.5434 0.5910 04938 0.7363 0.6030
09 EW 819 348 04249 288 04311 04280 06195 0.6395 06294
RM 945 584 06180 363 0.5434 05783 04942 0.7350 06027

Ncp denotes the number of the correct predictions that match at least a true complex and Ncb denotes the number of the true complexes that match at least
one predicted complex.



Yu et al. BMC Systems Biology 2014, 8(Suppl 3):54
http://www.biomedcentral.com/1752-0509/8/53/54

Page 12 of 16

Table 8 Performance comparison with MCODE, COACH, CMC and ClusterONE on four PIN datasets

Dataset Method Num P R F Sn PPV Acc
DIP MCODE 79 0.5570 0.1332 0.2150 0.2758 0.6880 04356
COACH 747 04351 0.5195 04735 04779 0.6921 0.5751
CMC 262 0.5687 04102 04766 04791 0.7241 0.5890
ClusterONE 354 05113 04072 04533 0.3903 0.7124 05273
Ours 613 0.6232 0.5269 05710 04764 0.7375 05927
Gavin MCODE 78 0.8718 0.2809 04249 04174 0.7017 0.5412
COACH 326 0.7393 0.6086 0.6676 0.6277 0.7162 0.6705
cMC 202 0.7228 04176 0.5294 0.3817 0.7067 0.5194
ClusterONE 200 0.8050 0.5693 0.6669 0.6211 0.7048 0.6617
Ours 275 0.8145 05730 0.6728 0.5083 0.7526 0.6185
Krogan MCODE 63 0.6349 0.1544 0.2484 04439 04865 04642
COACH 570 04439 04865 04642 0.502 0.6575 0.5745
CMC 242 0.5909 03555 04439 03263 0.7215 04852
ClusterONE 258 0.5349 04381 04817 0.4865 0.7567 0.6067
Ours 465 0.5591 04955 05254 04944 0.7189 0.5962
Collins MCODE m 0.8468 0431 05713 0.5438 0.7600 0.6429
COACH 251 0.6972 0.5651 0.6243 0.6275 0.7931 0.7054
CcMC 172 06919 04234 05253 0.4882 0.7336 0.5985
ClusterONE 180 0.8222 0.5958 0.6909 0.6526 0.7275 0.6891
Ours 150 0.8133 0.5096 0.6266 0.6338 0.7431 0.6863

The experiments were performed on four PIN data-
sets: DIP, Gavin [30], Krogan [31] and Collins [32]
(their details are shown in Table 9). In these networks,
interactions with GO similarities less than 0.9 are
regarded as false positive interactions and deleted as
described in previous section.

As shown in Table 8 on the DIP dataset, the widely
used dataset in complex detection field, our method
obtains the best result on almost every evaluation metric
on the DIP dataset. In term of the F-measure, the most
frequently used evaluation metric, our method achieves
the highest performance (0.5710), which is much superior
to those of MCODE (0.2150), COACH (0.4735), CMC
(0.4766) and ClusterONE (0.4533). The performances
(measured with F-measure) of our method are also best
on other PIN datasets except Collins (on Collins dataset
our method’s performance (0.6266) is inferior to that of
ClusterONE (0.6909), but still better than others).

The main advantage of our method over other meth-
ods is that it uses the supervised learning method in the
complex detection process, which makes full use of the

Table 9 Details of four PIN datasets

information of available known complexes to achieve
better performance.

Qi et al. are the first to import the supervised learn-
ing-based method into the complex detection. Table 10
gives the performance comparison between their
method and ours. Since the program used by Qi et al. is
not available, we use their published results [15]. Qi et
al. used MIPS and TAPO6 as the positive sets. Thus, in
order to make the results as comparable as possible, our
datasets were processed in the same way as Qi et al. did,
i.e. the complexes composed of a single protein or a pair
of proteins were filtered out. After the filter processing,
200 complexes in MIPS remained and 150 complexes in
TAPO06 remained. It should be pointed out that the
number of remaining complexes in TAPO6 in Qi et al.’s
and our method are almost the same (152 to 150),
whereas those remaining in MIPS were markedly differ-
ent (101 to 200). Moreover, in line with Qi et al.’
method, we only kept the proteins from the two true
complex sets in the PIN, yielding 1353 proteins and
5072 interactions. We conducted experiments using

Dataset #original #original interactions #remained #remained
proteins proteins interactions
DIP 4928 17201 3449 11081
Gavin 1430 6531 1304 5941
Krogan 3581 14076 2270 9218
Collins 1622 9074 1513 8949
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Table 10 Performance comparison with Qi et al.’s method
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MIPS(training set)

TAPO6(training set)

TAPO6(testing set)

MIPS(testing set)

Method Num Ncp P Ncb R
Ours 271 115 0424 65 0433
SCI-BN 0312 0489
SCI-SVM 0247 0377
MCODE 45 19 0422 19 0127
ClusterOne 173 83 0480 69 046
COACH 294 114 0387 80 0533
CMC 161 72 0447 53 0353
MIPS, Aloy and SGD(training set)

TAPO6(testing set)

Ours1 274 119 0434 69 046

F Num Ncp P Ncb R F
0.429 262 128 0489 105 0.525 0.506
0.381 0219 0.537 0312
0.298 0.176 0.379 024
0.195 45 18 04 20 01 0.160
0.470 173 74 0428 87 0435 0431
0449 294 107 0.364 99 0495 0419
0.395 161 74 0460 76 0.380 0416

TAPO06, Aloy and SGD(training set)
MIPS(testing set)
0.447 270 142 0526 102 0.51 0.518

MIPS as the positive training set and TAPO6 as the test-
ing set and vice versa.

In our experiments, we set the clique_size > 3 and
merg_thred 0.8, with all the evaluation metrics in Table
10 computed the same way as in Qi et al.” method.
Here, it should be pointed out that in the Qi et al’
method, the measure that defines the predicted complex
matching the true complex is different from the NA (A,
B) value computed in Equation (6). Qi et al. assumed
that, if the common proteins both in the predicted com-
plex and the true complex constitute more than 50% of
each one, the predicted complex is taken as a match to
the true complex. The precision, recall and F-measure
are all calculated based on this definition and are shown
in Table 10.

As can be seen from Table 10 on both training-testing
sets, the F-measures of our method are better than
those of Qi et al.’s method. Especially when TAPO6 is
used as the training set and MIPS as the testing set, our
F-measure is 19.4 percentage points higher than that of
Qi et al’s method (0.312 to 0.506). Although the results
are not fully comparable for different numbers of
remaining complexes in MIPS, they still show the effec-
tiveness of our method.

We also compared our method with that of the Shi et al.
(a semi-supervised prediction model with neural network.
They used MIPS as both the training and testing set and
achieved a performance of 0.397 in F-measure (0.333 in
precision and 0.491 in recall) on DIP database. With the
same experimental setting and evaluation metrics,
our method obtains a better performance of 0.5144 in
F-measure (0.4194 in Precision and 0.665 in Recall).

Better performance of our method over other two
supervised learning based methods, Qi et al. and Shi et
al. may be due to the following three key reasons: (1)
Firstly, as discussed in previous section, our method
introduces some new features from the weighted net-
work: the density, mean and maximum degrees of the

weighted network, which prove to be quite effective
for the performance improvement. Secondly, in our
method, the initial cliques used are the maximal cli-
ques found by the Cliques algorithm and has been pro-
ven to be more effective than expanding from the
seeding proteins. In contrast, in the other two meth-
ods, each seeding protein is connected to its highest
weight neighbor and the pair is subsequently used as
the starting cliques. We conducted an experiment in
which the starting cliques were selected with such
method and other experimental setting unchanged and
an F-measure of 0.5418 was achieved, which is inferior
to the result of our method (0.5910). Finally, our
method introduces the three categories training set for
the first time. Since the more samples and additional
categories provide more information for the regression
model training, the learned model becomes more
discriminative.

For comparison purpose, the performances of
MCODE, COACH, CMC and ClusterOne on the same
PIN are also presented in Table 10. On the testing set
of MIPS, our method also outperforms others. However,
on the testing set of TAP06, the performances of
COACH and ClusterOne are better than that of our
method. The reason is the limited size of positive sam-
ples (200 complexes from MIPS). When we introduced
more positive samples from Aloy and SGD (total 263
complexes from MIPS, Aloy and SGD), a much better
performance is achieved (0.447 in F-measure, the last
row in Table 10 denoted as “Oursl”) which is very close
to those of COACH and ClusterOne (0.449 and 0.470 in
F-measure, respectively). Similarly, on the testing set of
MIPS, when more positive samples are introduced, a
better performance is achieved (improved from 0.506 to
0.518 in F-measure). This shows that, if more training
samples are provided, as a supervised learning method
our method can achieve better performance than the
unsupervised methods.
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Statistical evaluation of the predicted protein complexes
To substantiate the biological significance of our pre-
dicted complexes, we calculated their function p-values,
which represent the probability of co-occurrence of pro-
teins with common functions. As such, low p-value of a
predicted complex generally indicates that the collective
occurrence of these proteins in the complex does not
occur merely by chance and thus the complex has high
statistical significance.

Table 11 gives ten examples of the low p-value predicted
complexes that are matched with the true complexes from
the benchmark (In our experiments, the p-values of com-
plexes are calculated with the SGD’s GO::TermFinder
[33]. However, although some of our predicted complexes
with low p-values were not matched with the true com-
plexes, they still have high biological significance, as some
of them may be true complexes that are still undiscovered.
Examples of such complexes are given in Table 12 and
Figure 4 and might be of use for biologists looking for new
protein complexes.

Conclusions

Protein complexes are important for understanding
principles of cellular organization and function. Since
high-throughput experimental techniques produce a
large amount of protein interactions, many complex
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detection algorithms have been proposed. However,
most of the current methods are only based on the
topological structure of the PIN and do not make use of
the information of the available known complexes.

In this paper, we present a supervised learning-based
method to detect complexes from PIN. In this method,
through constructing a training set, a Regression model
is obtained that is subsequently used to assess the
detected complexes for the cliques filtering, growth, and
candidate complex filtering. The evaluation and analysis
of our predictions demonstrate the several advantages of
our method over other state-of-the-art techniques.
Firstly, our method is a supervised learning-based
method that can make full use of the information of the
available known complexes instead of being only based
on the topological structure of the PIN. That also
means, if more training samples are provided, our
method can achieve better performance than those
unsupervised methods. Secondly, we design the rich fea-
ture set to describe the properties of the known com-
plexes, which includes not only the features from the
unweighted network, but also those from the weighted
network built based on the Gene Ontology information.
The weighted network features achieve a much better
performance than the unweighted network features,
which proves the effectiveness of the usage of Gene

Table 11 Ten predicted complexes with low p-values that match the true complexes

ID Complex Match_score p-value
GO_Process GO_Function GO_Component
1 YLR148W YMR231W YLR396C 0.83 6.72e-14 2.90e-10 1.10e-15
YPLO45W YDRO8OW
2 YMR224C YNL250W YDR369C 1.0 2.90e-07 3.58e-10 2.93e-10
3 YLR438C-A YNL147W YBLO26W YMR268C YER112W YDR378C 1.0 1.57e-13 1.10e-07 151e-24
YJRO22W YER146W
4 YPR162C YJL194W YLLOO4W YNL261W YBRO60C YHR118C YMLO65W 0.86 3.38e-17 243e-16 1.15e-18
5 YDL225W YLR314C YHR033W YCR002C YJR0O76C YHR107C 0.83 4.76e-07 1.73e-10 2.3%-13
6 YMR047C YLR335W YLR347C YAROO2W YNL189W 0.8 2.51e-09 4.23e-06 1.92e-03
7 YBLOT6W YDR103W YLR362W YDL159W YGR0O40W 1.0 1.21e-10 6.83e-06 4.60e-04
8 YMLO56C YILO79C YJLO50W YOL115W YDL175C 0.8 5.18e-11 1.62e-08 3.50e-11
9 YPLO83C YMRO59W YAR008W YLR105C 1.0 227e-13 9.0%-14 2.54e-13
10 YKL166C YJL164C YPL203W YILO33C 1.0 3.70e-08 521e-10 847e-10
Table 12 Four predicted complexes with low p-values that don’t match the true complexes
ID Complex Match_score p-value

GO_Process GO_Function GO_Component

YPL149W YBR217W YMR159C 0.0 241e-08 1.95e-10 2.28e-10

B YNL214W YDR244W YLR191W YDR142C YGL153W 0.0 292e-16 9.30e-03 1.49e-09

C  YMRO047C YJR042W YKLO68W YDR192C YDL116W YGR119C YKLO57C YKRO82W 0.21 1.57e-23 8.46e-26 2.92e-06
YLR335W YGLO92W YER165W YGL172W YAROO2W

D YMRO047C YJRO42W YKLO68W YGR218W YDR192C YDL116W YGR119C YLR335W 0.22 33%-18 1.78e-23 1.65e-09

YKRO82W YKLO57C YGLO92W YGL172W
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Figure 4 Four complexes which don’t match the true complexes.
.

Ontology. Thirdly, our Regression model utilizes addi-
tional “uncertainty” samples and, therefore, becomes
more discriminative, whose effectiveness for the com-
plex detection is clearly indicated by our experimental
results.

Our future work will focus on exploring more effec-
tive features for the complex detection in PIN. Espe-
cially, extracting the features from the biomedical
resources such as Gene Ontology may be a promising
approach. In addition, cooperation with biomedical
expert on protein complex detection in some certain

disease PIN will also be one of our next step works
through which the effectiveness of our method can be
further verified.
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