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Abstract

Background: An important step toward understanding the biological mechanisms underlying a complex disease is
a refined understanding of its clinical heterogeneity. Relating clinical and molecular differences may allow us to
define more specific subtypes of patients that respond differently to therapeutic interventions.

Results: We developed a novel unbiased method called diVIsive Shuffling Approach (VIStA) that identifies
subgroups of patients by maximizing the difference in their gene expression patterns. We tested our algorithm on
140 subjects with Chronic Obstructive Pulmonary Disease (COPD) and found four distinct, biologically and clinically
meaningful combinations of clinical characteristics that are associated with large gene expression differences. The
dominant characteristic in these combinations was the severity of airflow limitation. Other frequently identified
measures included emphysema, fibrinogen levels, phlegm, BMI and age. A pathway analysis of the differentially
expressed genes in the identified subtypes suggests that VIStA is capable of capturing specific molecular signatures
within in each group.

Conclusions: The introduced methodology allowed us to identify combinations of clinical characteristics that
correspond to clear gene expression differences. The resulting subtypes for COPD contribute to a better
understanding of its heterogeneity.

Background
Chronic obstructive pulmonary disease (COPD) is one of
the most prevalent chronic diseases (4th cause of death
globally), with increasing incidence worldwide. Under-
standing of the disease pathobiology is far from complete
and only few novel therapeutic mechanisms of action have
been identified. Tobacco smoking is the main risk factor
for COPD, but only a fraction of all smokers develops the
disease [1]. This variable response to smoking, plus the
observation that COPD aggregates in families, strongly

suggest a genetic component to the disease [2-6]. Yet,
COPD is a very heterogeneous and complex disease, with
varied pulmonary and extra-pulmonary clinical manifesta-
tions [7]. Understanding and characterizing this biological
and clinical heterogeneity could help identify subgroups
of patients (subtypes) that may benefit from different
therapeutic strategies [8]. To investigate the genomic and
pathobiological basis of COPD subtypes with distinct
clinical manifestations, we applied several novel and
complementary computational strategies to differential
gene expression analysis. We used expression data from
induced sputum samples of former smokers with COPD
and varying degree of airflow limitation. The patients are
a subset of the large ECLIPSE cohort, which is a multi-
center, 3 year observational international study that
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collected clinical, genetic, proteomic and biomarker mea-
sures in a population of COPD patients [9]. Specifically, in
the current study we sought to: (i ) compare the gene
expression pattern between patient groups with different
clinical characteristics; (ii) conversely, assess the clinical
characteristics of groups of patients with distinct gene
expression patterns identified by a novel diVIsive Shuffling
Approach (VIStA) developed specifically for this purpose
(see below). Unexpectedly, we found that the reverse
approach (ii) showed greater potential to identify specific
pathways that may offer novel therapeutic targets [10]
than the traditional approach (i).

Methods
Study design, participants and ethics
The ECLIPSE cohort is a large, prospective, observa-
tional and controlled study (Clinicaltrials.gov identifier
NCT00292552; GSK study code SCO104960), whose
design has been published previously [9]. Here, we inves-
tigated differential gene expression in induced sputum
samples of a subset of the participants that included 140
former smokers with COPD (70 with moderate or GOLD
stage 2 and 70 with severe or GOLD stage 3-4 airflow
limitation, matched for age and gender) with character-
ized clinical and laboratory measures (Table 1). Sputum
induction and processing with dithiothreitol (DTT) was
performed using standard methods as described pre-
viously [5], details on the generation and processing of
the expression data can be found in [3]. The ECLIPSE
study complies with the Declaration of Helsinki and
Good Clinical Practice Guidelines and was approved by
the Ethics Committees and Institutional Review Boards
of all participating centers. All participants provided writ-
ten informed consent.

Selection of clinical measures
Table 2 shows the clinical measures selected by COPD
experts (SR, BC, AA, EKS) based on their association to
important clinical outcomes (e.g. exacerbations, hospitali-
zations and death). The degree of airflow limitation
(GOLDCD) was determined using spirometry, distances
walked over 6 minutes (DWALK) were measured using
standard methodology. Standardized questionnaires were
used to obtain smoking status, cough and sputum
(PHLEGM) production. COPD exacerbations in the year
prior to the study were recorded, as well as body mass
index (BMI). All subjects underwent a low-dose computed
tomography (CT) scan of the chest to determine both air-
way disease and emphysema (FV950 as a quantitative
assessment, and EMPHETCD as a radiologists score) [11].
Several inflammatory biomarkers were measured in per-
ipheral blood [12]. For details on the definitions and
acquisition procedures of the above measures see [9].

Note that there were no controls with normal lung
function among the subjects. Hence, we cannot compare
COPD to normal but only the differences between
COPD patients [1].

Relationship between clinical characteristics and gene
expression
To investigate the relationships between differences in
gene expression and clinical trait occurrence, we used
two complementary analyses:
(i) For each of the clinical characteristics introduced

above, we divided the patients into two groups based on
clinically relevant cut-points (Table 2, column 5) and com-
puted gene expression differences between the two groups.
Gene expression analysis was performed using Significance
Analysis of Microarrays (SAM) [13] with a false discovery
rate (FDR) of 5% as cutoff.
(ii) We used VIStA (see below) to identify groups of

patients with maximized differential gene expression
and then compared their clinical characteristics.

Table 1 Summary of the characteristics of 140 subjects
with sputum gene expression data from the ECLIPSE
Cohort.

Demographics and clinical data

Age, yrs. 65 ± 5.5

Males, % 66

Body mass index, Kg/m2 26.8 ± 5.2

Smoking exposure, pack-yrs. 48.3 ± 29.1

Annual Exacerbation rate, year-1 0.98 ± 1.6

Lung function

FEV1, L 1.26 ± 0.45

FEV1, % revers. 9.5 ± 10.4

FEV1/FVC, % 43.2 ± 11.5

Imaging

Emphysema, -950HU % 19.2 ± 12.2

Emphysema, extent code 2.8 ± 1.8

Systemic inflammation

hsCRP (mg/L) 8.24 ± 15.0

IL6 (pg/mL) 7.8 ± 36

IL8 (pg/mL) 9.3 ± 5.2

CCL18 (ng/mL) 121.7 ± 46

Fibronogen (mg/dL) - 481.9 ± 107.6

TNFA (ng/mL) 103.2 ± 624

SPD (ng/mL) 120.6 ± 78

Induced sputum

Total cell count, × 106 7.5 ± 1.78

Neutrophils, % 64.8 ± 8.5

Eosinophils, % 3.1 ± 2.04

Lymphocytes, % 25.4 ± 7.9

Note that all subjects are COPD patients and former smokers. The values
represent mean ± standard deviation, frequency or proportion, as appropriate.
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Table 2 Summary of the clinical characteristics of COPD patients identified as most relevant by clinical experts.

Category Continuous Variable for Quantitative
Analysis

Discrete Variable Bins Characteristics Differentially expressed genes
at FDR < 0.05

Chronic Bronchitis Not applicable Cough with Phlegm for at least 3 mos/yr
for at least 2 years

low extreme (Q1
= 64)

neither chronic cough nor
chronic phlegm

0

high extreme
(Q4 = 46)

both chronic cough and
chronic phlegm

History of
Exacerbations

Number of exacerbations per year 2 or more per year and less than 2 per
year

low extreme (Q1
= 26)

0 - Never 0

high extreme
(Q4 = 17)

3 - Always

Body Mass Index
(Kg/m2)

BMI BMI < 21, 21-30, > 30 low extreme (Q1
= 18)

BMI < 21 0

high extreme
(Q4 = 35)

BMI > 30

Airflow Limitation
severity

FEV1 (% predicted) GOLD Stage low extreme (Q1
= 69)

< 2-GOLD stage 6,049

high extreme
(Q4 = 13)

>4 GOLD stage

6 Minute Walk
Distance

Quantitative 6MWD < 350 meters and > 350 meters low extreme (Q1
= 38)

>350 meters 0

high extreme
(Q4 = 101)

>350 meters

Radiologist
Emphysema

Emphysema severity category: low extreme (Q1
= 40)

0-1.5 -No emphysema 0

assessment Not affected (N): 0 Yes/No/Uncertain high extreme
(Q4 = 45)

4-5 - severe

Trivial (T): 1

Mild (M) 5-25%: 2

Moderate (O) 25-50%: 3

Severe (S) 50-75%: 4

Very Severe (V) > 75%: 5

Densitometric
Emphysema

Emphysema at -950 HU Emphysema >10% (Yes/No) low extreme (Q1
= 37)

Emphysema >10% = No 0

high extreme
(Q4 = 95)

Emphysema >10% = yes

CT Airway Disease Pi10 (Square root of wall area of 10 mm
internal perimeter airways)

GOLD Stages 2-4 with Emphysema < 5%
(Yes) or > 5% (No)

low extreme (Q1
= 63)

Trivial (< %5) 0

high extreme
(Q4 = 33)

Severe (50-75%, very severe
(>75%))

Columns 4-6 show the results of the differential gene expression analysis comparing the subjects of the defined bins or extremes for each characteristic. Q1/Q4 refer to the number of patients in the respective
group (1st and 4th “quartile”). The only single characteristic yielding significantly differentially expressed genes is the degree of airflow limitation as given by GOLD stage (GOLDCD).
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diVIsive Shuffling Approach (VIStA)
We developed a novel unbiased method called diVIsive
Shuffling Approach (VIStA) to identify groups of
patients with maximal difference in gene expression.
The algorithm consists of the following steps:

(iii) n subjects are randomly partitioned into three groups
of comparable size (Figure 1A). A SAM analysis is per-
formed and the number of genes differentially expressed
between groups 1 and 2 is counted. Group 3 serves as a
“reservoir” of individuals for the subsequent steps.

Figure 1 Schematic representation of the diVIsive Shuffling Approach (VIStA). A Initially the subjects are divided randomly into three
groups; gene expression differences are calculated between group 1 & 2, the third group serves as a reservoir for the subsequent shuffling
steps. At each shuffling step, a subject from group 1 or 2 is randomly exchanged with a subject from the reservoir. If the number of differentially
expressed genes increases thereby, the swap is accepted, otherwise rejected. B 20 exemplary time series of the number of differentially
expressed genes between group 1 & 2 as a function of the number of attempted shuffles. The different curves correspond to different random
initial divisions. After approximately 1000 shuffles the groups converge and present a large, stationary number of differentially expressed genes.
C For each of the obtained divisions (500 in total), clinical characteristics in group 1 & 2 are compared.
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(iv) An individual from group 1 or 2 is randomly
swapped with an individual from the reservoir group 3.
We repeat the SAM analysis, counting again the new
number of differentially expressed genes (Figure 1A). If
this count increases, the swap is accepted, otherwise
rejected.
(v) Step (ii) is iterated until the number of differentially

expressed genes reaches a plateau (Figure 1B), typically
after approximately 1000 attempted swaps. The corre-
sponding groups 1 & 2 represent a combination of
patients with high differential gene expression.
Starting with different random initial configurations, we

repeat the whole procedure (i) through (iii) 500 times,
resulting in 500 end configurations, each characterized by
a large number of differentially expressed genes. In order
to explore the extent to which these 500 subdivisions are
clinically relevant and distinct, we analyze them individu-
ally for statistically significant differences in clinical char-
acteristics between the members of group 1 and 2. For
each subdivision, we identify the set of clinical characteris-
tics (Table 2) that differ significantly between patients in
group 1 and group 2 using a Mann-Whitney-U-test (sig-
nificance threshold of p-value ≤ 0.05) for all continuous
characteristics (e.g. BMI) and Fisher’s exact test for binary
characteristics (e.g. gender) (Figure 1C). We find that with
the exception of two subdivisions, all the remaining 498
subdivisions show a statistically significantly difference in
at least one clinical characteristic. This suggests that the
shuffling algorithm indeed does identify biologically or
clinically distinct divisions of patients in most cases. The
frequency with which individual clinical characteristics
appear as significantly different between the two groups
can therefore be used to identify the combinations of clini-
cal characteristics that co-determine gene expression
differences.
Note that the VIStA approach is fundamentally differ-

ent from clustering techniques like hierarchical or
k-means clustering. The latter attempt to identify cohe-
sive groups based on similarity, while VIStA, on the
contrary, is a divisive algorithm based on maximizing
the differences between groups. Another important dif-
ference to standard clustering approaches is that by
design VIStA is able to identify a large number of locally
optimal divisions.
Technical considerations
We use a relatively low confidence cut-off of FDR≤ 0.1
for the SAM analysis in steps (i ) and (ii ) in order to
facilitate the emergence of an initial “seed"-grouping.
Sensitivity of parameter estimates were robust to varia-
tion in the exact choice. Within the SAM framework,
the FDR is based on a comparison with random permu-
tations, see [13] for details.
Note that instead of SAM one could also use other

approaches to determine the number of differentially

expressed genes at each iteration step, for example
using the p-values of simple t-tests or a minimal fold-
change. As VIStA consists of repeated differential
expression analyses, the same limitations as for conven-
tional approaches apply for the minimal number of sub-
jects and general data quality.
We implemented a reservoir of 40 subjects (group 3) in

order to resemble a gene expression analysis based on
extremes, e.g. the 25% of subjects with the lowest BMI vs
the 25% of subjects with the highest BMI. In principle, the
third group is not strictly necessary, as shuffling can be
performed between two groups. Increasing the size of the
reservoir group could affect power through selection of
more extreme subjects or by reducing the sample size for
the differential expression analysis, so it will depend on
the concrete application, whether or not a reservoir is
useful.
As detailed below, we find that 500 independent runs

of VIStA provided sufficient statistical power for a robust
distinction between four different subgroups in this
study. Generally, a higher number of independent runs
could lead to the discovery of more subtle subgroups. It
is important to note, however, that the predictive power
of the approach is ultimately limited by the quality and
size of the expression data, as well as the clinical
characteristics.
The algorithm was implemented in the programming

language C. A single run with 2,000 iterations takes
around three hours on a standard PC. However, the vast
majority of the computing time is used to perform the
SAM analysis, so using a simpler technique for the differ-
ential gene expression analysis would drastically speed up
the execution time if necessary.

Results & discussion
Differential gene expression of single clinical
characteristics
We first attempted to identify statistically significant gene
expression differences between patient groups that differ
in a single clinical characteristic. To be specific, we
aimed to identify genes that were differentially expressed
at FDR <0.05 using bins of clinical characteristics as pre-
sented in Table 2, such as COPD severity, the history of
exacerbation or BMI. As shown in Table 2, apart from
the severity of airflow limitation as assessed by the
GOLD stage, none of the other clinical measures identi-
fied significant gene expression changes. This failure sug-
gests that these clinical characteristics are not sufficiently
discriminative to capture gene expression variation in
COPD. We hypothesized that there are indeed potential
molecular drivers to disease heterogeneity, but a single
clinical characteristic is unable to capture them. There-
fore, we developed an inverse (divisive) clustering metho-
dology to group the 140 COPD patients included in the
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study based on their gene expression patterns, and then
explored the clinical characteristics of the obtained
groups (Figure 1).
Figure 2 presents the results of the VIStA analysis,

offering a comparison of the clinical characteristics
(GOLDCD, FV950, EMPHETCD, BMI, PHLEGM, AGE,
DWALK, COUGH and Sex) and inflammatory biomar-
ker levels (interleukin (IL)-6, IL-8, high-sensitivity
C-reactive protein (HSCRP), chemokine motif (C-C)

ligand 18 (CCL18), surfactant protein D (SPD), fibrino-
gen (FIBRINOG), and tumor necrosis factor alpha
(TNFA) associated with patient subtypes that display the
most extreme sputum gene expression pattern differ-
ences. We found that the severity of airflow limitation
(GOLDCD) was the single most important determinant
of differential gene expression, being statistically signifi-
cant in 95% of all VIStA outputs (n = 477, Figure 2A).
This is consistent with our finding discussed above that

Figure 2 Combination of clinical characteristics associated with groups from VIStA. A Number of times the characteristics were found
significantly different between group 1 & 2 in a total of 500 divisions. Severity of airflow limitation (GOLDCD) is the single most important
determinant of differential gene expression, being statistically significant in 95% of all VIStA outputs. B Summary of the individual and pairwise
number of significant occurrences of the clinical characteristics. Node size is proportional to the number of times a measure was found
significant, the width of a link indicates how often two measures appeared significant in the same VIStA division. The core group contains
severity of airflow limitation (GOLDCD) and the two emphysema measures EMPHETCD and FV950. C, Number of times that pairwise
combinations of clinical characteristics co-occurred in the 500 VIStA outcomes. The most significant pair (as compared to a Null model of
independent occurrence) is EMPHETCD and FV950, which are both measures of emphysema. D The most frequent and significant triplet is a
combination of GOLDCD and EMPHETCD and FV950, measuring disease severity. E We find significant combinations of the disease severity
triplet in B with four clinical characteristics: BMI, PHLEGM, DWALK and AGE.
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GOLDCD was the only single clinical variable associated
with differential gene expression. The second most com-
mon clinical determinant of differential sputum gene
expression was emphysema, quantified by either density
mask analysis (FV950) or assessed qualitatively by the
radiologist (EMPHETCD) (81% and 63% of all VIStA
outcomes, respectively, Figure 2A) whereas BMI, Phlegm,
age and DWALK were observed in 53%, 36%, 27% and
25% of the VIStA outcomes, respectively (Figure 2A).
Plasma fibrinogen was the most frequently identified sys-
temic biomarker (64% of all VIStA outcomes),

Combination of clinical traits from VIStA
Figure 2B illustrates how often combinations (pairs) of sig-
nificant single clinical characteristics (or inflammatory bio-
markers) co-occur in the different VIStA subtypes by the
width of the links between them. The statistical signifi-
cance of each co-occurrence (Figure 2C-E) was calculated
using a binomial model that assumes independence of the
individual characteristics or biomarker levels as the Null
hypothesis. In order to quantify the extent to which the
VIStA outcomes could reflect spurious associations, we
also generated 10,000 random divisions of the patients and
analyzed how often the individual characteristics and their
combinations appear as significant (Figure 2C-E). We find
that the divisions obtained by VIStA show a much higher
number of significant clinical characteristics than expected
by chance, with the exceptions of the biomarkers CCL18,
TNFA and SPD and the variables COUGH and SEX. Simi-
larly, also combinations of significant characteristics
appear more frequent than for randomly assigned division.
We observed (Figure 2C) that the pairwise co-occurrences
of clinical characteristics and inflammatory biomarkers
were dominated by airflow limitation severity (GOLDCD).
Other characteristics frequently observed in combinations
include emphysema (EMPHETCD or FV950), fibrinogen
levels, phlegm, BMI and age. Most pairs appear with the
frequency expected for the Null hypothesis of independent
individual clinical characteristics (see the many non-signif-
icant p-values in Figure 2C-E), implying that their associa-
tion is not significant (e.g. EMPHETCD and GOLDCD). A
notable exception is EMPHETCD and FV950, whose sta-
tistical association is expected, given that the two variables
are not independent but are different measures of the
same clinical characteristic (emphysema). Figure 2D, E
shows the observed and expected co-occurrence of triplets
and quartets of clinical characteristics and inflammatory
biomarkers. The most frequent and significant triplet con-
sists of severity of airflow limitation (GOLDCD) and the
two emphysema measures EMPHETCD and FV950.
GOLDCD and either one of the severity of emphysema
measures FV950 or EMPHETCD co-occurred in almost
all triplets, which is again expected given their pathobiolo-
gical relationship in patients with COPD. Figure 2E lists

the most frequent combinations of four variables. We find
that the most significant combinations are those which
include the triple GOLDCD, FV950 and EMPHETCD,
together with one additional variable, the most significant
being FIBRINOGEN, BMI, PHLEGM, DWALK and age.
In the following, however, we have not considered fibrino-
gen as the basis for a subtype since it is a biomarker rather
than a clinical characteristic.
In summary, Figure 2C-E suggests four distinct clinical

parameters that define groups of patients with considerable
gene expression differences. In all groups the patients are
characterized by different disease severity (GOLDCD) and
emphysema (i.e. EMPHETCD and FV950) but in addition,
each group also has one clear distinctive parameter: high/
low BMI (Group I), exercise capacity (DWALK) (Group
II), Age (Group III) or presence/absence of phlegm pro-
duction (Group IV) (Table 3). For example, group IA has
high GOLDCD, emphysema, FV950 and low BMI, while
group IB has low GOLDCD, emphysema, FV950 and high
BMI.
To further characterize these subtypes suggested by

VIStA we subdivided the full set of all 140 ECLIPSE
patients according to the identified clinical characteristics,
resulting in 8 groups of 15 to 28 patients. First, we
explored a number of clinical, biomarker and cell count
measures of the subjects in each group. We find, for
example, that serum levels of the biomarkers IL6, IL8 and
SPD are significantly higher in group IIIB than in IIIA, a
difference that was not observed in other groups. Similarly,
the proportion of neutrophils and lymphocytes in sputum
were significantly higher in group IIIB in comparison to
IIIA (Table 3).
We then performed a separate differential gene expres-

sion analysis (now with a more stringent FDR <0.05) on
the subgroups, finding 821 unique genes for Group I, 528
for Group II, 1,394 genes for Group III and 637 for
Group IV (Figure 3B). The four groups share 7,592 genes
that are differentially expressed in all of them. As
expected, 80% of these genes were previously identified
as differentially expressed comparing patients with mod-
erate (GOLD 2) with those with more severe disease
(GOLD 3&4) (Figure 3C). We conclude that the common
core is dominated by severity of COPD, while the
uniquely differentially expressed genes between the
groups represent additional variation.

Specific genes & pathways in the groups from VIStA
For a further evaluation of the molecular level differences
among the four groups, we performed a pathway enrich-
ment analysis for the core set of genes common to all
groups, as well as for the unique gene set of each group.
Pathway annotations were obtained from the Molecular
Signatures Database (MSigDB) published by the Broad
Institute, Version 3.1 [14]. MSigDB integrates several
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Table 3 Summary of the clinical measures, biomarkers, and cell counts among the four groups of COPD patients identified from the results of Figure 2: each
group combines GOLDCD, EMPHETCD and FV950, with either BMI (Group I), DWALK (Group II), AGE (Group III) or Phlegm (Group IV).

Group-IA
(n = 25)

Group-IB, (n = 23) p-values Group-IIA
(n = 21)

Group-IIB ,
(n = 32)

p-values Group -IIIA (n = 15) Group-IIIB
(n = 28)

p-values Group-IVA
(n = 20)

Group-IVB
(n = 26)

p-values

Age 65.4 65.4 - 63.9 65.4 - 58.73 68.7 *** 63 65.96 -

Lung Function - - - -

FEV1 1.72 0.89 *** 1.7 0.9 *** 1.72 0.93 ** 1.79 0.9 ***

FEV1/FVC (%) 57.88 32.43 *** 55.0 32.5 *** 56.53 33.93 *** 57.1 33.04 ***

FEV1 reversibility (%) 7.64 4.73 *** 11.5 7.2 *** 11.62 5.93 *** 10.4 5.5 ***

Radiologist Emphysema - - - -

Emphysema severity 1.2 4.2 *** 1.3 4.2 *** 1.336 3.7 *** 1.275 4.2 ***

Densitometric Emphysema - - - -

Emphysema at -950 HU 6.98 33.42 *** 6.6 31.7 *** 7.71 28.09 *** 7.06 33.42 ***

Airflow Obstruction - - - -

GOLD Stage 2 3.3 *** 2.0 3.3 *** 2 3.2 *** 2 3.3 ***

Body Mass Index 30.76 21.21 *** 27.3 24.2 * 29.87 25.8 - 28.67 24.42 *

Chronic Bronchitis (ATS_CB)
1 = no-CB
Phelgm

1 = 24% 1 = 30.4% - 1 = 85.7% 1 = 62.5% - 1 = 6.7% 1 = 37% - 1-100% 1 = 46.2% ***

1 = no chronic phlegm 1 = 56% 1 = 35% - 1 = 62% 1 = 41% - 1 = 66.6% 1 = 33% - 1-100% 1 = 0% ***

6 Minute Walk Distance 428.32 330.02 ** 508.8 273.9 *** 438.97 321.83 ** 462.59 322.9 **

Exacerbations 0 = no-Exacerbations 0 = 68% 0 = 34.8% - 0 = 71.4% 0 = 28.1% ** 0 = 60% 0 = 37% - 0 = 70% 0 = 38.5% *

CCL6 7.3 6.33 - 7.0 6.8 - 6.19 6.73 - 8.64 6.9 -

IL6 5.65 20.2 - 4.3 18.6 - 2.79 6.89 ** 3.72 18.53 -

IL8 8.88 10.77 - 8.3 9.4 - 7.5 10.28 * 9.8 10.65 -

TNFa 26.99 160.32 - 31.7 162.9 - 2.35 60.44 - 24.14 142.3 -

CCL18 130.3 117.59 - 126.9 124.4 - 115.8 117.94 - 134 126.19 -

CRPHS 10.4 9.6 - 9.9 9.5 - 5.7 9.72 - 510 8.5 -

FIBRINOG 494.9 499.1 - 481.0 506.2 - 456.8 498.58 - 510.8 489.84 -

SPD 129.64 110.94 - 124.9 119.1 - 79.73 116.3 * 138.76 109.7 -

mMRC 3 2.09 ** 1.0 2.4 *** 1.21 2.04 * 1.1 2.04 *

SGRQ 43.29 55.55 ** 35.9 56.0 *** 41.8 52.87 * 36 57.73 ***

FFMI 19.53 16.13 *** 18.5 17.1 * 18.48 17.8 - 18.83 17.15 *

% Fat (Tissue) 34.92 29.08 ** 31.0 31.7 - 35.96 31.94 - 32.69 31.25 -

- - - -

Neutrophils, % Neut_Blq 61.38 64.87 - 60.7 67.0 ** 61.34 66.69 * 62.08 65.55 -

Eosinophils, % Eos blq 3 3.1 - 3.5 3.1 - 2.48 2.92 - 3.26 3.3 -

Lymphocytes, % lymhblq 28.63 24.84 - 28.6 23.2 * 29.19 23.55 * 27.77 23.688 -

* = p-value < 0.05; ** = p-value < 0.01; *** = p-value < 0.0001; - = not significant
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different pathway databases, we use KEGG, Biocarta and
Reactome. The enrichment analysis between a given gene
set and a pathway was done using Fisher’s exact test. As
shown in Table 4, the top pathways show little overlap
between the four groups, providing further evidence for
VIStA’s ability to capture molecular elements that are
specific to each subtype. Several identified pathways were
related to metabolism, diabetes and inflammation. Group
1 was most enriched with inflammatory pathways includ-
ing for example the FC-Gamma-R mediated phagocytosis
(p = 0.007) and CDC6-association with ORC:origin-com-
plex pathways (p = 0.15). Further pathways include small
lung cancer (p = 0.004) and maturity onset diabetes of
the young (p = 0.009) [15]. Group II was enriched with

lipid transport and beta-cell and insulin signaling path-
ways like beta cell (p = 0.005), HDL mediated lipid trans-
port (p = 0.006) and GTP hydrolysis pathways (p =
0.007). In group III, pathways related to cell cycle control
like mitotic prometaphase (p = 0.0048), and downstream
signaling pathways (p = 0.003) with innate-immunity and
GAB1 signaling were enriched. In group IV, distinct gap
channel and inflammation pathways were identified like
peptide ligand binding (p = 0.0006), gap-junction assem-
bly (p = 0.0008) and chemokine signaling pathways (p =
0.0013).
Finally, we identified genes with at least a 2-fold

change (FC) in expression [16,17] at an FDR of <0.05,
see Table 5 for the specific set of upregulated and

Figure 3 Four subtypes and differentially expressed genes. A The combinations of phenotypic measures that define the subtypes predicted
by the VIStA method: all four subtypes share a common core of high values of GOLDCD, FV950 and EMPHETCD, reflecting disease severity. Each
of the individual subtypes I-IV presents one additional clinical characteristic: BMI (subtype I), DWALK (II), AGE (III) or PHLEGM (IV). B Venn diagram
showing the number of differentially expressed genes unique to each subtype, as well as common to all four subtypes. The common genes
show a large overlap with the genes differentially expressed between subjects with GOLDCD 2 and subjects with GOLDCD 3&4, indicating that
these genes reflect mostly disease severity.
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Table 4 The 10 most strongly enriched pathways in the set of genes common among all four groups described in
table 3, as well as in the individual gene sets of each group.

Top ten pathways among Common Genes

pathway p-value overlap all pathway genes

REACTOME_GENE_EXPRESSION 1.22E-35 235 425

REACTO ME_DIABETES_PATHWAYS 1.91E-33 214 383

REACTOME_METABOLISM_OF_PROTEINS 9.48E-28 134 215

REACTOME_CELL_CYCLE_MITOTIC 7.34E-25 167 306

REACTOME_GLUCOSE_REGULATION_OF_
INSULIN_SECRETION

1.24E-23 104 161

KEGG_HUNTINGTONS_DISEASE 3.16E-23 114 185

REACTOME_INTEGRATION_OF_ENERGY_METABOLISM 1.09E-21 130 229

REACTOME_ELECTRON_TRANSPORT_CHAIN 1.11E-21 60 75

REACTOME_RNA_POLYMERASE_I_III_AND_MITOCHONDRIAL_TRANSCR.PT.ON 2.72E-21 82 120

REACTOME_INFLUENZA_LIFE_CYCLE 1.11E-20 89 137

Top ten pathways among Group 1 Genes

pathway p-value overlap all pathway genes

REACTOME_INORGANIC_CATION_ANION_SLC_TRANSPORTERS 0.00133586 7 94

KEGG_SMALL_CELL_LUNG_CANCER 0.00359651 6 84

KEGG_FC_GAMMA_R_MEDIATED_PHAGOCYTOSIS 0.00723812 6 97

KEGG_MATURITY_ONSET_DIABETES_OF_THE_YOUNG 0.00921957 3 25

REACTOME_AM.NO_ACID_AND_OLIGOPEPTIDE_SLC_TRANSPORTERS 0.00984371 4 48

REACTOME_SLC_MEDIATED_TRANSMEMBRANE_TRANSPORT 0.01009928 8 169

KEGG_B_CELL_RECEPTOR_SIGNALING_PATHWAY 0.01020969 5 75

KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS_LACTO_AND_NEOLACTO_SERIES 0.0102887 3 26

REACTOME_NUCLEAR_RECEPTOR_TRANSCRIPTION_PATHWAY 0.01133769 4 50

REACTOME_CDC6_ASSOCIATION_WITH_THE_ORC:ORIGIN_COMPLEX 0.01516009 2 11

Top ten pathways among Group II Genes

pathway p-value overlap all pathway genes

REACTOME_REG ULATION_OF_GENE_EXPRESSIO N_IN_B ETA_CELLS 0.00552 5 101

REACTOME_HDL_MEDIATED_LIPID_TRANSPORT 0.00637 2 11

REACTOME_GTP_HYDROLYSIS_AND_JOINING_OF_THE_60S_RIBOSOMAL_SUBUNIT 0.00675 5 106

REACTOME_FACILITATIVE_NA_INDEPENDENT_GLUCOSE_TRANSPORTERS 0.00759 2 12

REACTOME_REGULATION_OF_BETA_CELLDEVELOPMENT 0.00911 5 114

REACTOME_TRANSLATION 0.01121 5 120

REACTOME_TRANSMEMBRANE_TRANSPORT_OF_SMALL_MOLECULES 0.01148 7 218

REACTOME_IRS_RELATED_EVENTS 0.01182 4 79

REACTOME_INFLUENZA_LIFE_CYCLE 0.01889 5 137

REACTOME_DEADENYLATION_OF_MRNA 0.02469 2 22

Top ten pathways among Group III Genes

pathway p-value overlap all pathway genes

REACTOME_DOWN_STREAM_SIGNAL_TRANSDUCTION 0.00302075 5 35

REACTOME_GAB1_SIGNALOSOME 0.00324484 3 11

REACTOME_SIGNALING_IN_IMMUNE_SYSTEM 0.00470548 20 366

REACTOME_MITOTIC_PROMETAPHASE 0.00489389 8 92

REACTOME_INNATE_IMMUNITY_SIGNALING 0.00584887 10 136

REACTOME_SIGNALLING_TO_RAS 0.0060289 4 26

REACTOME_FORMATION_OF_PLATELET_
PLUG

0.00753191 12 186

REACTOME_GRB2_SOS_PROVIDES_LINKAGE_TO_MAPK_SIGNALING_FOR_INTERGRINS 0.00821656 3 15

REACTOME_MYOGENESSIS 0.00895252 4 29

REACTOME_HEMOSTASIS 0.01301061 15 274
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downregulated genes in each subgroup. For example,
MMP7 was found to be upregulated in group I (BMI),
consistant with findings in [18], where nutritionally
induced obese mice showed alterations in MMPs and
TIMPs expression, thus providing further evidence for
the role of these proteolytic system genes in COPD sub-
type with low BMI.

Conclusion
We have found that with the exception of severity of air-
flow limitation, categorizing COPD subtypes according
to a single clinical characteristic does not yield groups of

patients with significant gene expression differences. In
this study, we therefore introduced a novel methodology
that allowed us to identify combinations of clinical char-
acteristics that correspond to clear gene expression
differences.
Our results suggest that while gene expression differences

are mainly driven by the severity of airflow limitation and
the extent of emphysema, a smaller, yet discriminative con-
tribution is also observed for a set of additional clinical
characteristics: BMI, distance walked, age and chronic
phlegm production, each defining a subtype of patients.
Validation of these groups and the underlying pathways

Table 4 The 10 most strongly enriched pathways in the set of genes common among all four groups described in
table 3, as well as in the individual gene sets of each group. (Continued)

Top ten pathways among Group IV Genes

pathway p-value overlap all pathway genes

REACTOME_PEPTIDE_LIGAND_BINDING_RECEPTORS 0.00059 12 173

REACTOME_GAP_JUNCTION_ASSEMBLY 0.00076 4 19

KEGG_CHEMOKINE_SIGNALING_PATHWAY 0.00133 12 190

REACTOME_GAP_JUNCTION_TRAFICKING 0.00340 4 28

REACTOME_CHEMOKINE_RECEPTORS_BIND_CHEMOKINES 0.00787 5 55

REACTOME_ACTIVATION_OF_ATR_IN_RESPONSE_TO_REPLICATION_STRESS 0.00936 4 37

REACTOME_SIGNALING_IN_IMMUNE_SYSTEM 0.00943 16 366

KEGG_T_CELL_RECEPTOR_SIGNALING_PATHWAY 0.01126 7 108

REACTOME_CELL_CYCLE_CHECKPOINTS 0.01237 7 110

KEGG_NATURAL_KILLER_CELL_MEDIATED_CYTOTOXICITY 0.01263 8 137

Table 5 Top ten upregulated and downregulated unique genes and their fold-change (FC) in each group (In group II,
only five unique genes are downregulated).

Group 1 Group II Group III Group IV

Gene FC Gene FC Gene FC Gene FC

LOC100127940 2.8 RP-3377H14.5 2.4 DDX3Y 4.6 IL1F9 2.5

PDCD6 2.4 ZFYVE16 2.2 EIF1AY 3.2 IL23A 2.5

AHRR 2.4 TGFBR1 2.2 HELB 3 TUB 2.4

CD1B 2.4 MARCH6 2.2 LOC100130224 2.9 GJB2 2.3

KIT 2.4 CAPZA1 2.2 UTY 2.9 CD22 2.3

CADM1 2.3 KIAA0319 2.2 ADORA3 2.9 FAF1 2.3

MMP7 2.3 DHX36 2.2 ARNT2 2.9 MB0AT7 2.3

C20orf197 2.3 DLGAP4 2.1 CXCL14 2.6 SULT2A1 2.3

RNF144A 2.2 RIF1 2.1 TMEM61 2.6 TMEM88 2.3

MYO1B 2.2 NT5C2 2.1 PPARGC1B 2.6 CHST7 2.3

SGK493 -2.0 TIFAB -2.0 C1orf201 -2.5 VASH1 -2.3

ALS2CR4 -2.1 CCDC42 -2.2 ST3GAL3 -2.5 LINC00607 -2.3

ENPP5 -2.2 HBE1 -2.2 APOOL -2.6 KLHDC7B -2.3

FLJ14082 -2.2 NAPSB -2.2 IL28RA -2.6 DHODH -2.3

LOC1441204 -2.2 C4orf7 -3.8 ZNF624 -2.6 CDDC113 -2.3

L0C100134569 -2.2 SMAD5 -2.6 IGF2BP3 -2.3

FAM101A -2.7 NRP1 -2.6 C3orf27 -2.3

LOC92270 -2.8 LOC654342 -2.6 ZNF618 -2.3

HPR -2.9 TSIX -3.3 AKR1C4 -2.4

HP -2.9 XIST -4.1 LOC401321 -2.4
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will require replication in a second cohort of COPD sub-
jects. Note that additional differences may also exist for
clinical characteristics that have not been considered in the
present study.
The observed subgroups with combinations of different

clinical characteristics are consistent with the clinical het-
erogeneity of COPD, where a given patient may manifest
more than one measurable feature of COPD, suggesting
either that the underlying mechanisms contribute to more
than one feature or that multiple mechanisms are mala-
dapted in an individual.
While we focused on COPD in this study, the proposed

VIStA method can be more generally applied to any other
complex, heterogeneous disease and presents a promising
approach to the important problem of disease heterogene-
ity and subtyping/subgrouping. A better understanding of
this problem is invaluable, for example, for improving the
selection of patients for evaluating novel agents. To the
extent that gene expression reflects genetic and epigenetic
variation, the subtypes identified by our method may
further suggest different approaches to identifying genetic
susceptibility.
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