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Abstract

Background: Constraint-based models of Escherichia colimetabolic flux have played a key role in computational
studies of cellular metabolism at the genome scale. We sought to develop a next-generation constraint-based E. coli
model that achieved improved phenotypic prediction accuracy while being frequently updated and easy to use. We
also sought to compare model predictions with experimental data to highlight open questions in E. coli biology.

Results: We present EcoCyc–18.0–GEM, a genome-scale model of the E. coli K–12 MG1655 metabolic network. The
model is automatically generated from the current state of EcoCyc using theMetaFlux software, enabling the release of
multiple model updates per year. EcoCyc–18.0–GEM encompasses 1445 genes, 2286 unique metabolic reactions, and
1453 unique metabolites. We demonstrate a three-part validation of themodel that breaks new ground in breadth and
accuracy: (i) Comparison of simulated growth in aerobic and anaerobic glucose culture with experimental results from
chemostat culture and simulation results from the E. colimodeling literature. (ii) Essentiality prediction for the 1445
genes represented in the model, in which EcoCyc–18.0–GEM achieves an improved accuracy of 95.2% in predicting
the growth phenotype of experimental gene knockouts. (iii) Nutrient utilization predictions under 431 different media
conditions, for which the model achieves an overall accuracy of 80.7%. The model’s derivation from EcoCyc enables
query and visualization via the EcoCyc website, facilitating model reuse and validation by inspection. We present an
extensive investigation of disagreements between EcoCyc–18.0–GEM predictions and experimental data to highlight
areas of interest to E. colimodelers and experimentalists, including 70 incorrect predictions of gene essentiality on
glucose, 80 incorrect predictions of gene essentiality on glycerol, and 83 incorrect predictions of nutrient utilization.

Conclusion: Significant advantages can be derived from the combination of model organism databases and flux
balance modeling represented by MetaFlux. Interpretation of the EcoCyc database as a flux balance model results in a
highly accurate metabolic model and provides a rigorous consistency check for information stored in the database.

Keywords: Escherichia coli, Flux balance analysis, Constraint-based modeling, Metabolic network reconstruction,
Metabolic modeling, Genome-scale model, Gene essentiality, Systems biology, EcoCyc, Pathway Tools

Background
Constraint-based modeling techniques such as flux bal-
ance analysis (FBA) have become central to systems
biology [1,2], enabling a wealth of informative simula-
tions of cellular metabolism. Many constraint-based mod-
eling techniques have been first demonstrated for the
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Escherichia coli K–12 MG1655 metabolic network. A
series of E. coli constraint-based models have been pub-
lished by the group of B. Palsson [3-6], extending work on
stoichiometric constraint-based modeling of E. coli dating
back more than twenty years [7-10]. These models consti-
tute a gold standard for E. coli modeling, and have seen
a range of applications [11-13] including metabolic engi-
neering, model-driven discovery, cellular-phenotype pre-
diction, analysis of metabolic network properties, studies
of evolutionary processes, and modeling of interspecies
interactions.
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Motivated by the widespread use of E. coli metabolic
models, we aimed to illustrate the benefits of integrat-
ing metabolic modeling into model organism databases by
developing an E. colimodel derived directly from the Eco-
Cyc bioinformatics database [14]. First, we aimed to use
the extensive biochemical literature referenced in EcoCyc
to develop a model with improved accuracy for pheno-
typic prediction, specifically for predicting the phenotypes
of gene knock-outs, and for predicting growth or lack
thereof under different nutrient conditions.
Second, we sought to make the model easy to under-

stand and operate. Our goal was a high level of model
accessibility and readability through (a) tight web-based
integration of the model with extensive model query and
visualization tools, and (b) a model representation that
captures extensive information that enriches the model
and aids its understanding, such as metabolic pathways,
chemical structures, and genetic regulatory information.
Metabolic models are not just mathematical entities that
output predictions; they are also artifacts that scientists
interact with in multiple ways. If a model can be quickly
and easily understood, scientists are more likely to trust
its predictions, and the model is easier to reuse, to modify
and extend, to learn from, and to validate through inspec-
tion. These aspects of a metabolic model depend strongly
on how the model is represented, on the software tools
available to interactively inspect the model, and on how
tightly integrated the model is with those software tools.
Third, we sought to produce a model that is frequently

updated to integrate new knowledge of E. colimetabolism.
Fourth, we sought to use the EcoCyc-derived E. coli

metabolic model to identify errors in EcoCyc, and open
problems in E. coli biology, by performing in-depth inves-
tigations of the disagreements between the phenotypic
predictions of the model and experimental results.
We present EcoCyc–18.0–GEM, a constraint-based

genome-scale metabolic model for E. coli K–12 MG1655
that is directly derived from the EcoCyc model organism
database (http://EcoCyc.org) built on the genome
sequence of E. coli K–12 MG1655. The model is imple-
mented using the MetaFlux [15] component of the Path-
way Tools software [16].

Results and discussion
The EcoCyc–18.0–GEM generated from EcoCyc 18.0
encompasses 1445 genes, 2286 unique cytosolic and
periplasmic reactions, and 1453 unique metabolites.
Table 1 compares the statistics of EcoCyc–18.0–GEM
with previous E. coli metabolic models. EcoCyc–18.0–
GEM is an advance over previous stoichiometric models
of E. coli metabolism in four respects: in its size; in its
accuracy; in its form, readability and accessibility; and in
its update frequency. Here we summarize these results;
these points will be expanded in subsequent subsections.

Table 1 Survey of recent E. coli genome-scalemodel
statistics

Statistics Feist et al. Orth et al. EcoCyc–18.0–GEM
2007 [5] 2011 [6]

# Genes 1260 1366 1445

# Unique reactions 1721 1863 2286

# Unique metabolites 1039 1136 1453

Gene knockout accuracy 91.4% 91.3% 95.2%

# PM growth conditions 170 – 431

PM growth condition 75.9% – 80.7%
accuracy

# biomass metabolites 65 72 108

Gene knockout prediction accuracy represents simulated growth on glucose
minimal media under aerobic conditions. Reaction and metabolite counts
represent reactions found in the cytosol and periplasm, since EcoCyc–18.0–GEM
does not cover porin-mediated diffusion of metabolites into the periplasmic
space.

The MetaFlux component of Pathway Tools trans-
lates Pathway/Genome Database (PGDB) reactions and
compounds into constraint-based metabolic models. Our
methodology of fusing systems-biologymodels and bioin-
formatics databases has several advantages because of
strong synergies between these approaches. Databases
and models both require extensive literature-based cura-
tion and refinement. It is more efficient to perform that
curation once in a manner that benefits a database and
a model, than to duplicate curation efforts for a database
project and a modeling project. Furthermore, the model-
ing process identifies errors, omissions, and inconsisten-
cies in the description of a metabolic model, and therefore
drives correction and further curation of the database if
the two efforts are coupled. We made more than 80 Eco-
Cyc updates as a result of comparing model predictions
with experimental data and literature for this work. In
addition, bioinformatics database curation methods such
as the use of evidence codes and citations to provide
data provenance, and the incorporation of mini-review
summaries that describe enzymes and pathways, benefit
systems-biology models, which typically lack data prove-
nance and explanations.

Advances in model size. Compared with iJO1366,
EcoCyc–18.0–GEM represents a 6% increase in the num-
ber of genes, a 23% increase in the number of unique
cytosolic and periplasmic reactions, and a 28% increase in
the number of unique metabolites. The size of EcoCyc–
18.0–GEM is currently exceeded only by the more mathe-
matically complex ME-model of O’Brien et al. [17], which
includes simulation of gene expression, transcriptional
regulation, and protein synthesis.

Advances in model accuracy. We conducted a three-
phase validation of EcoCyc–18.0–GEM to assess its

http://EcoCyc.org
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accuracy (see Table 1). In phase I we compared simulated
EcoCyc–18.0–GEM rates of nutrient uptake and prod-
uct secretion in aerobic and anaerobic glucose culture
with experimental rates derived from chemostat culture;
the performance of EcoCyc–18.0–GEM was equivalent
to previous models. In phase II we compared essential-
ity prediction for all 1445 genes involved in the model
with experimental gene essentiality datasets; its error rate
in predicting gene-knockout phenotypes decreased by
46% over the best previous model. In phase III we com-
pared nutrient utilization predictions of EcoCyc–18.0–
GEM with 431 experimental nutrient utilization tests; its
accuracy in predicting growth and respiration under dif-
ferent nutrient conditions increased by 4.8% over previous
models as the number of nutrient conditions expanded
2.5-fold. We investigated conflicts between experimental
results and predictions of EcoCyc–18.0–GEM in detail,
and provide an extensive discussion of these conflicts
within the context of EcoCyc and the literature.
Subjects of particular interest include alternative cat-

alytic routes capable of replacing genes thought to be
essential; compounds with unclear routes of catabolism
which are capable of supporting growth and/or cellular
respiration; regulatory and environmental perturbations
of the stoichiometric networkmodel; and investigations of
what, exactly, constitutes gene essentiality.

Advances in model form, readability, and accessibility.
Another benefit of coupling systems-biology models with
databases, and a corresponding advance of our model, is
that generating a constraint-based model from a database
that has associated web-based visualization tools leads to
a literate model (by analogy to Knuth’s notion of literate
programming [18]). A literate model is easy to read, and is
highly accessible to and understandable by scientists.

Advances in model update frequency. Because the
MetaFlux component of Pathway Tools generates
constraint-based models directly from the EcoCyc
PGDBs, as the database is refined through new cura-
tion, those refinements are automatically incorporated
into newly generated versions of the model. We release
new versions of the EcoCyc-based model three times
per year; previous models were updated every four years
[4-6]. Although there are reasons to limit the frequency
of releases in order to tie them to a well-defined version
of the database and throughly test the accuracy of new
versions, we believe that more frequent model updates
are useful for an organism as important as E. coli.

Validation of biomass metabolites, nutrients, and
secretions
Refinement of EcoCyc–18.0–GEM began with the vali-
dation of the biomass, nutrient, and secretion metabolite

sets, which are detailed at length in Additional file 1
and Additional file 2: Table S1. The biomass metabolite
set establishes requirements for growth and determines
the growth rate of the simulation. The biomass metabo-
lite set for EcoCyc–18.0–GEM was based on the iJO1366
wild-type and core biomass reaction sets published by
Orth et al., with several revisions stemming from differ-
ences in content and functionality between EcoCyc and
the iJO1366 model. Gene essentiality in constraint-based
models is principally determined by the biomass demands
of the cell. Inclusion of a metabolite in the biomass
metabolite set forces the genes required for manufacture
of that metabolite to become essential in the simulation.
A wild-type biomass metabolite set, which is derived

from measurement of the biomolecular composition of
healthy, growing cells, is not representative of the min-
imal set of biomass metabolites required for cell sur-
vival. Because biomass metabolites not truly required for
cell survival will generate false simulation predictions of
essentiality in their biosynthetic pathways, the concept of
a core biomass metabolite set was developed by Feist et al.
The core biomass metabolite set is a biomass metabolite
set that is defined with the aim of maintaining quanti-
tative accuracy with regards to cell performance while
predicting the observed experimental essentiality data as
accurately as possible. Because much of this work focuses
on testing the minimum requirements for cell growth, we
frequently employed the core biomass metabolite set in
our simulations. We use the term “expanded biomass set”
to refer to our version of the wild-type biomass metabo-
lite set described in Orth et al., because we do not wish
to imply that the simulated cells always represented the
wild-type state.
The biomass metabolite sets described here underwent

several revisions reflecting differences in scope between
EcoCyc–18.0–GEM and iJO1366. Whereas iJO1366 is a
purpose-built model developed using the COBRA Tool-
box with input from KEGG, EcoCyc, and other databases,
EcoCyc is a database with its own schema whose entries
are programmatically transformed into an FBA model.
The specific metabolites present in iJO1366 therefore
cannot always be matched with the specific metabolites
generated from EcoCyc by MetaFlux on a one-to-one
basis. Several biomass metabolites represented as dis-
tinct within iJO1366, such as phosphatidylethanolamines
with different chain lengths and saturations, are summed
under the heading of a single representative metabolite
in the EcoCyc–18.0–GEM biomass set. Additionally, not
all processes covered in EcoCyc–18.0–GEM are covered
in iJO1366, and the reverse is also true. As a result, the
biomass metabolite sets differ slightly. Additional file 2:
Table S2 contains a complete side-by-side comparison of
the EcoCyc–18.0–GEM and iJO1366 biomass metabolite
sets, and lists the differences between them.
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We constructed standard nutrient sets based on culture
conditions reflecting experiments in glucose or glycerol
minimal media and on the model’s capability to use sub-
strates. Those substrates include glucose or glycerol as
appropriate, O2, NH+

4 , phosphate, sulfate, ferrous iron,
water, CO2, minerals appropriate to the biomass objec-
tive function, and MOPS buffer (usable as a sulfur source)
where appropriate. Because of passive diffusion at the high
concentration of ammonium used in experimental cul-
ture, NH+

4 is supplied directly in the cytosol (avoiding
false negative essentiality predictions for the high-affinity
nitrogen transporter amtB), whereas all other nutrients
are supplied in the periplasmic space.
Finally, we developed a large set of secreted com-

pounds that could be supplied across all growth condi-
tions explored with our model. It contains both plausible
products of E. coli metabolism and dead-end metabo-
lites [19] within the model. The presence or absence of
metabolites in this set should not be construed to indicate
their presence or absence in E. coli culture media.
We verified the metabolic reachability of each compo-

nent within the EcoCyc biomass metabolite set by sup-
plying nutrients representing an aerobic glucose minimal
medium and setting the production of each individual
metabolite in turn as the optimization goal of MetaFlux,
and repaired gaps by means of literature-based manual
curation of EcoCyc and expansion of the relevant metabo-
lite sets.

ATPmaximization validation
We next confirmed that simulations of aerobic growth on
glucose run withmaximization of ATP production as their
objective made appropriate use of the glycolytic and TCA
cycle pathways and agreed with previous work on E. coli
FBA.
The maximization of ATP production under aerobic

conditions was studied by setting the ATP consump-
tion reaction ATP + H2O → ADP + Pi + H+ as the
objective function to be maximized by MetaFlux. The
fluxes resulting from the maximization of ATP produc-
tion on glucose under aerobic conditions were compared
with fluxes from COBRA Toolbox [20] simulations of
iJO1366 under the same conditions and were found to
be largely identical (Table 2). Differences arose from vari-
ances in proton translocation stoichiometries between
the EcoCyc–18.0–GEM version of the NADH:ubiquinone
oxidoreductase I (NADH-DEHYDROG-A-RXN) (4 H+
translocated per 2 e−, as proposed by Treberg et al. [21])
and the iJO1366 version of the NADH:ubiquinone oxi-
doreductase (NADH16pp) (3 H+ translocated per 2 e−,
as proposed by Wikstrom and Hummer [22]). The exact
number of protons translocated by the NADH:ubiquinone
oxidoreductase is an issue of open discussion in the sci-
entific literature, and this uncertainty is described in the

Table 2 Flux comparison between EcoCyc–18.0–GEM and
iJO1366: ATPmaximization objective under aerobic
conditions

EcoCyc iJO1366

Reaction Flux Reaction Flux

ATP maximization objective 216 ATPM 235

Glucose uptake 10 EX_glc(e) 10

O2 uptake 60 EX_o2(e) 60

H2O production 60 EX_h2o(e) 60

CO2 production 60 EX_co2(e) 60

ATP synthase* 176 ATPS4rpp 195

NADH-DEHYDROG-A-RXN 100 NADH16pp 100

Cytochrome bo oxidase* 60 CYTBO3_4pp 120

PYRNUTRANSHYDROGEN-RXN 20 NADTRHD 20

GAPOXNPHOSPHN-RXN 20 GAPD 20

ISOCITDEH-RXN 20 ICDHyr 20

3PGAREARR-RXN 20 ENO 20

ACONITATEDEHYDR-RXN 20 ACONTa/b 20

PHOSGLYPHOS-RXN 20 PGK 20

CITSYN-RXN 20 CS 20

2OXOGLUTARATEDEH-RXN 20 AKGDH 20

2PGADEHYDRAT-RXN 20 ENO 20

Succinate dehydrogenase* 20 SUCDi 20

MALATE-DEH-RXN 20 MDH 20

FUMHYDR-RXN 20 FUM 20

PYRUVDEH-RXN 20 PDH 20

SUCCOASYN-RXN 20 SUCOAS 20

PGLUCISOM-RXN 10 PGI 10

Glucose PTS uptake* 10 GLCptspp 10

TRIOSEPISOMERIZATION-RXN 10 TPI 10

RXN0-313 10 F6PA 10

2.7.1.121-RXN 10 DHAPT 10

Glucose uptake is set to 10 mmol/gCDW/hr. Other nutrient and secretion fluxes
are unbounded. Flux rates are reported as absolute values for clarity. True
iJO1366 fluxes for EX_glc(e), EX_o2(e), PGK, PGM, and SUCOAS are negative
because of reaction directionality convention. Most EcoCyc reactions are
identifed by their EcoCyc frame IDs. The remainder are marked with asterisks,
and their frame IDs are as follows: ATP synthase EcoCyc frame ID:
TRANS-RXN-249; cytochrome bo oxidase EcoCyc frame ID: RXN0-5268; succinate
dehydrogenase EcoCyc frame ID: SUCCINATE-DEHYDROGENASE-UBIQUINONE-
RXN; glucose PTS uptake EcoCyc frame ID: TRANS-RXN-157/RXN0-6717/RXN0-
6718; fructose 6-phosphate aldolase EcoCyc frame ID: RXN0-313;
dihydroxyacetone kinase EcoCyc frame ID: 2.7.1.121-RXN.

EcoCyc summary for the enzyme. If a consensus develops
behind the 3 H+ per 2 e− view of translocation stoichiom-
etry, future versions of EcoCyc will be changed to reflect
this fact.
Further numerical differences are due to a technical

consideration: EcoCyc cytochrome bo oxidase reaction
stoichiometry is written in terms of whole molecules of
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oxygen, while iJO1366 CYTBO3_4pp is written in terms
of half-molecules (1 O2 consumed vs. 0.5 O2).

Comparison with iJO1366 simulation and chemostat data
After completing our basic validation of biomass pro-
duction and energy generation, we maximized the rate
of EcoCyc–18.0–GEM biomass metabolite set production
under several minimal media conditions and ensured that
we obtained results comparable to the iJO1366 results for
the same conditions obtained using the COBRA Toolbox.
Divergences were addressed by literature-based manual
curation of EcoCyc and modification of MetaFlux reac-
tion sets. We further compared the extracellular flux
distributions resulting from these simulations with the
experimental data obtained in carbon-limited chemo-
stat environments under both aerobic and anaerobic
conditions.
Tables 3 and 4 compare extracellular metabolite flux

results derived from EcoCyc–18.0–GEM simulation,
iJO1366 simulation, and experimental data [23,24] for
the canonical cases of aerobic and anaerobic growth on
glucose-limited chemostat culture. In all simulations, the
experimental rate of glucose supply was the only fixed
constraint; all other nutrients and secretions were left
unconstrained.
The behavior of MetaFlux/EcoCyc–18.0–GEM simula-

tions was very similar in most regards to the behavior
of COBRA/iJO1366 simulations. Respiration and fermen-
tation rates scaled with nutrient uptake at comparable
rates. The generally higher rates of O2 uptake observed
experimentally lend support to a lower practical efficiency
of proton translation stoichiometry in vivo, perhaps aug-
mented by respiratory inefficiencies such as futile cycling
and generation of reactive oxygen species. Both mod-
els secrete the expected 1:2:1 mix of acetate, formate,
and ethanol during anaerobic growth on glucose that
Varma et al. [25] originally identified as stoichiometrically

Table 3 Comparison of experimental aerobic glucose-
limited chemostat growth data with EcoCyc–18.0–GEM
and iJO1366 constraint-basedmodel predictions

Aerobic fluxes Experimental EcoCyc iJO1366

Specific growth rate (µ) (1/hr) 0.300 0.272 0.288

Glucose uptake (mmol/gCDW/hr) 3.008 3.008 3.008

O2 uptake 7.413 6.158 5.703

NH4 uptake 2.367 2.899 3.021

Sulfate uptake 0.067 0.073

Phosphate uptake 0.260 0.267

CO2 production 7.38 6.850 6.288

H2O production 13.926 13.704

H+ production 2.454 2.552

Metabolite uptake and production rates are in units of mmol/gCDW/hr. Growth
is in units of hr−1 . Experimental data from Kayser et al. [23].

Table 4 Comparison of experimental anaerobic glucose-
limited chemostat growth data with EcoCyc–18.0–GEM
and iJO1366 constraint-basedmodel predictions

Anaerobic fluxes Experimental EcoCyc iJO1366

Specific growth rate µ (hr−1) 0.30 0.24 0.24

Glucose uptake (mmol/gCDW/hr) 10.0 10.00 10.00

O2 uptake 0.00 0.00 0.00

NH4 uptake 2.52 0.82

Sulfate uptake 0.06 0.06

Phosphate uptake 0.23 0.22

CO2 production 0.04 -0.08

H2O production -1.92 -1.84

H+ production 27.8 27.5

Acetate production 7.5 8.29 8.23

Formate production 11.3 17.37 17.25

Succinate production 1.2 0.00 0.08

Ethanol production 8.7 8.13 8.08

Metabolite uptake and production rates are in units of mmol/gCDW/hr. Growth
is in units of hr−1 . Experimental data from [24] via [25]. Formate-hydrogen lyase
(FHLMULTI-RXN) was left inactive for purposes of comparison.

optimal. During the transition between purely anaerobic
and aerobic domains, the competing demands of energy
metabolism and redox elimination cause a characteristic
pattern of mixed acid fermentation described by Varma
et al., in which ethanol, then formate, and finally acetate
production are eliminated as the cell’s oxygen supply
becomes completely sufficient to support aerobic respira-
tion. Figures 1 and 2 use the Cellular Overview and Omics
Popup visualization functionalities of Pathway Tools to
illustrate this behavior in EcoCyc–18.0–GEM during a
transition from anaerobicity to aerobicity.
Comparisons between FBA-predicted extracellular

fluxes and experimental fluxes show that EcoCyc–18.0–
GEM and iJO1366 FBA predictions agree more closely
with each other than with experimental flux results,
although the correspondence between simulation and
experiment was quite close for the experimental fluxes
under consideration. This result was expected given the
adaptation of the iJO1366 biomass function for use in
EcoCyc–18.0–GEM, the use of iJO1366 and preceding
reconstructions as benchmarks in the development of
EcoCyc–18.0–GEM, and the use of EcoCyc as a refer-
ence in the construction of iJO1366 and its predecessors.
The experimental measurements generally demonstrate
higher fluxes of the respiratory gases O2 and CO2 than
the simulated fluxes, suggesting a degree of respiratory
inefficiency not properly modeled by FBA. Similarly,
small quantities of succinate and lactate were produced
by experimental fermentation, indicating a degree of
divergence from metabolic optimality in vivo. Broader
cellular constraints such as regulation, protein crowding,
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Figure 1 Pathway Tools visualization of EcoCyc–18.0–GEM flux during aerobic transition. Example visualization of EcoCyc–18.0–GEM flux
during a transition from anaerobic to aerobic growth, created within the interactive Cellular Overview diagram in Pathway Tools. The upper bound
of glucose uptake is set to 10 mmol/gCDW/hr, while the upper bound of oxygen uptake is increased from 0 to 20 mmol/gCDW/hr in 2.5
mmol/gCDW/hr steps. Omics Popups are used to illustrate flux through acetaldehyde dehydrogenase, pyruvate-formate lyase, phosphoglucose
isomerase, glyceraldehyde 3-phosphate dehydrogenase, cis-aconitate hydratase, and valine biosynthesis.

pathway enzyme synthesis requirements, and pathway-
throughput limits underlie these differences [17,26,27].
Successive generations of evolution under constant
growth conditions might bring the experimental result
closer to theory, as described in Ibarra et al. [28].

Gene essentiality analysis
One of the most exciting aspects of genome-scale flux
modeling is the ability to rapidly test computational gene
knockouts (KOs) for their effects on metabolic function.
Gene KO simulation is useful both for prediction and

Figure 2 Pathway Tools visualization ofmixed-acid fermentation flux during aerobic transition. Visualization of EcoCyc–18.0–GEM flux in
mixed-acid fermentation during a transition from anaerobic to aerobic growth, created within the EcoCyc mixed-acid fermentation pathway page
in Pathway Tools. The upper bound of glucose uptake is set to 10 mmol/gCDW/hr, while the upper bound of oxygen uptake is increased from 0 to
20 mmol/gCDW/hr in 2.5 mmol/gCDW/hr steps. Omics Popups are used to illustrate changes in flux to the mixed-acid fermentation products
formate, acetate, and ethanol as the cellular energy and redox balance evolves during the aerobic transition.
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for validation: in silico FBA screens of gene KOs have
been applied in a variety of metabolic engineering efforts
[29-31], and E. coli KO library collections with well-
characterized growth behavior provide an important tool
for flux model validation.
FBA gene KO essentiality prediction depends on two

types of database associations between genes and chem-
ical reactions: genes whose products catalyze reactions,
and genes whose products are reaction substrates (e.g.,
acyl-carrier protein). Simulation gene KOs are carried
out by identifying all reactions involving the gene, and
then identifying all other genes capable of catalyzing
the reactions or supplying the substrates thus identi-
fied. Reactions for which no isozymes or alternative sub-
strate supplies are found are removed from the FBA
stoichiometric network. An FBA solution is then calcu-
lated for the new model. If the simulated gene KO has
caused the deletion of one or more reactions required
for the synthesis of a biomass metabolite, generation of
the full biomass metabolite set will be blocked and the
FBA simulation returns a no-growth result. Such a result
represents a prediction of gene essentiality. If the com-
plete biomass metabolite set can still be produced in
spite of the simulated gene knockout, the FBA simulation
returns a growth result, indicating a prediction of gene
non-essentiality.
The experimental essentiality data used in our tests con-

sisted of two major datasets. The first, used to study gene
essentiality on rich and glucose minimal media, was the
deletion study of Baba et al. [32] as updated by Yamamoto
et al. [33], which tested the Keio collection library of
4288 E. coli gene deletion strains for growth on LB rich
media and MOPS minimal media with 0.4% glucose. We
conducted our glycerol minimal media tests using the
gene knockout essentiality data of Joyce et al. [34], an
expansion of the study of the Keio collection essential-
ity to include growth on M9 minimal medium with 1%
glycerol.
Several E. coli gene deletions strongly affect growth

on various types of minimal media, but are nonessen-
tial to growth on rich media. Because the FBA simulation
result is treated as a binary test (growth or no-growth),
gene deletions that strongly affect growth on minimal
media without producing a completely lethal phenotype
must be defined either as experimentally essential or as
experimentally nonessential.
Two representative perspectives on this definition are

the narrow essentiality criteria of no observable growth in
minimal media and the broad essentiality criteria used by
Orth et al. The narrow glucose essentiality criteria treat
as essential those Baba et al. and Yamamoto et al. gene
deletion mutants with OD600 ≤ 0.005 after 24 and 48 hr
growth on glucose minimal media. This requires no per-
ceptible growth over a long period. The broad essentiality

criteria was originally defined in relative terms by Joyce
et al., as the slowest-growing ninth of all Keio collection
deletion mutants.
In absolute terms, that approach treats as essential

those deletion mutants measured by Baba et al. to have
OD ≤ 0.091 after 24 hr growth on glucose minimal media,
which indicates impaired growth over a shorter period.
The practical difference between these two perspectives
is illustrated in Figure 3, which displays the distribution
of OD600 data for all rich media-viable Keio collection
mutants after 24 hr of growth on MOPS media contain-
ing 0.4% glucose, as originally published in Supplementary
Table three of Baba et al. As the figure illustrates, the
broad essentiality criteria include a population of cells
with severe growth defects that is not contained in the
narrow essentiality data. The comparison between narrow
and broad essentiality criteria can be expanded to glycerol
minimal media by comparing narrow glycerol essential-
ity criteria of no observed growth on rich media with the
glycerol essentiality criteria of Orth et al., again derived
from the criteria of Joyce et al. involving successive divi-
sion into thirds.
In order to examine criteria for experimental gene

essentiality more deeply and to illustrate the effect of
defining a core biomass metabolite set, we conducted
essentiality testing using both the expanded and core
biomass metabolite sets proposed by Orth et al. Differ-
ences in essentiality predictions between the two data

Figure 3 Essentiality criteria basis in high-throughput KO data.
Histogram of OD600 measurements for all rich media-viable Baba
et al. deletion mutants after 24 hr of growth on MOPS media
containing 0.4% glucose. Data from Supplementary Table three of
Baba et al.
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sets illustrated the differences between standard cell
composition under nominal conditions and the minimal
composition required for cell growth.
We simulated single gene KOs on glucose and glycerol

minimal media for the 1445 genes in EcoCyc–18.0–GEM
to test whether the resulting EcoCyc–18.0–GEM gene
deletion mutants were capable of generating core and
expanded biomass metabolite sets from sets of nutrients
based on the experimental culture media of Baba et al.
and Joyce et al. Gene KO simulations capable of generat-
ing any growth at all were scored as nonessential, whereas
gene KOs blocking generation of the biomass metabolite
set were scored as essential.
We compared the results of this simulated essentiality

screen with experimental gene essentiality results based
on both narrow and broad gene essentiality criteria. Incor-
rect essentiality predictions were addressed by literature-
based manual curation of EcoCyc and modification of
MetaFlux metabolite sets. Final essentiality prediction
results after curation are summarized in Tables 5 for glu-
cose and 6 for glycerol. The overall accuracy of prediction
for growth on glucose with the core biomass metabo-
lite set and broad essentiality criteria was 1375/1445
(95.2% accuracy, 99.0% sensitivity, 77.5% specificity). For
prediction of growth on glycerol under the same simu-
lation conditions, the overall accuracy of prediction was
1365/1445 (94.5% accuracy, 98.1% sensitivity, 77.5% speci-
ficity). Sensitivity here refers to the percentage of gene
deletions resulting in growth that are correctly identified
by simulation, while specificity refers to the percentage of
gene deletions resulting in no growth that are correctly
identified by simulation.
Tables 5 and 6 illustrate that the gene essentiality pre-

dictions in EcoCyc–18.0–GEM differed in a number of
cases from the gene essentiality conclusions generated
by high-throughput gene KO screening. Because these

Table 5 Comparison of experimental gene essentiality
results with computational EcoCyc–18.0–GEM results for
aerobic growth on MOPSmediumwith 0.4% glucose

KO growth on glucose (sim/exp) BC BE NC NE

True positive (growth/growth) 1175 1136 1204 1164

False positive (growth/no growth) 58 64 29 36

False negative (no growth/growth) 12 51 78 118

True negative (no growth/no growth) 200 194 134 127

Four comparisons are provided— gene essentiality is evaluated with regard to
(B)road and (N)arrow experimental essentiality criteria, and with regard to a
(C)ore biomass metabolite set that maximizes the accuracy of essentiality
predictions as well as an (E)xpanded biomass metabolite set reflecting
experimental measurements of healthy cells. The results of these comparisons
are arranged based on correspondence between simulation and experiment:
(1) true positive (simulation predicts growth, experiment shows growth),
(2) false positive (simulation predicts growth, experiment shows no respiration),
(3) false negative (no simulated growth, but experiment shows respiration), and
(4) true negative (no simulated growth, experiment shows no respiration).

Table 6 Comparison of experimental gene essentiality
results with computational EcoCyc–18.0–GEM results for
aerobic growth on MOPSmediumwith 1% glycerol

KO growth on glycerol (sim/exp) BC BE NC NE

True positive (growth/growth) 1165 1124 1195 1154

False positive (growth/no growth) 58 63 28 35

False negative (no growth/growth) 22 63 102 143

True negative (no growth/no growth) 200 195 120 113

See Table 5 caption for description of column headings.

are situations of considerable interest to the development
of EcoCyc as a reference, we examined them in greater
detail for the case of growth on glucose, with reference to
the E. coli literature. Our examination covered two types
of incorrect gene deletion growth predictions. The first
type was a false positive growth prediction. These genes,
which are experimentally essential under the conditions
tested by Baba et al., were predicted to be nonessential by
EcoCyc–18.0–GEM. The second type was a false negative
growth prediction. These genes, which are not experi-
mentally essential under the conditions tested by Baba
et al., were predicted to be essential by EcoCyc–18.0–
GEM.
Tables 7, 8, 9, 10, 11 and 12 present five broad categories

of incorrect gene deletion predictions from EcoCyc–18.0–
GEM. Table 7 cover false predictions involving open ques-
tions of E. coli biology, false predictions resulting from
interesting facets of experimental or simulation meth-
ods, and other situations of special relevance. Table 8
covers false predictions in core glycolytic, pentose phos-
phate, Entner-Doudoroff, and TCA cycle metabolism.
This highly interconnected region of E. coli metabolism
contains several isozymes and opportunities for reversibil-
ity, and presents a challenge to FBA essentiality pre-
dictions in the absence of complete regulatory model-
ing. Table 9 cover false predictions that are the result
of unmodeled regulation of gene expression or enzyme
activity. Genes repressed under Baba et al. experimen-
tal growth conditions, insufficiently expressed isozymes,
and cases of enzyme inhibition all fall into this category.
Table 10 covers situations in which the essentiality conclu-
sions of the high-throughput essentiality screen differed
significantly from the essentiality conclusionsmade by the
E. coli K–12 literature. Table 11 covers false gene essen-
tiality predictions relating to systems beyond the scope of
EcoCyc–18.0–GEM’s biomass objective function. Finally,
Table 12 covers false gene essentiality predictions made
as a result of MetaFlux and EcoCyc technical problems
discovered in the course of this study.
Several of the false gene essentiality predictions

described within these tables were discussed in the work
of Kim and Copley, who examined the essentiality con-
clusions of Baba et al. in E. coli core metabolism with
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Table 7 False gene essentialitypredictions resulting from open questions in E. coli biology and gene essentiality

Gene HT Sim Conv Citations Comments

argD + – + [35,36] EcoCyc lists argD as the only enzyme capable of carrying out the N-succinyldiaminopimelate
aminotransferase reaction in lysine biosynthesis. Cox and Wang [35] demonstrate that a second,
thus far unidentified enzyme besides ArgD can catalyze theDapC reaction. argD is discussed in [36].

cysC – + – [5,32,34,37,38] Gene essentiality in the sulfate utilization pathway is bypassed until cysIJ in the experiments of [32],
cysH – + – which were conducted in a MOPS buffer capable of being used as a sulfur source via ssuEADCB
cysN – + + alkanesulfonate desulfonation to sulfite. Joyce et al. [34] use MOPS-free M9 buffer and

consequently shows cysADQUW essentiality for sulfate uptake. The MOPS desulfonation
explanation of the data of [32] is complicated by the fact that sulfite from MOPS should bypass
cysNDCH within the assimilatory sulfate reduction pathway. Instead, these deletions fall within or
near the broad essentiality criteria of [5]; cysN is barely within the broad essentiality criteria (OD600
0.088 at 24 hr) and cysD is just above (OD600 0.104 at 24 hr) while cysCH are deep within the cutoff.
We propose an explanation based on inactivation of the ssu pathway transcriptional regulator
Cbl via binding of adenosine 5’-phosphosulfate (APS), the product of the CysND sulfate
adenylyltransferase [37,38]. cysND mutants express the ssu pathway well and are able to better
support growth via MOPS catabolism. cysCH mutants can produce APS from extracellular sulfate,
leading to Cbl inactivation by APS binding, repression of ssu, and weaker growth.

dapF + – + [36,39,40] EcoCyc lists dapF as the only enzyme capable of converting LL-diaminopimelate to
meso-diaminopimelate in lysine biosynthesis, but [39] demonstrates that dapF null mutants grow
in unsupplemented glucose minimal media. dapF is described in [36].

dut – + – [41,42] NudI and MazG substitute for Dut activity in EcoCyc–18.0–GEM. The NudI Km for the
dUTP-consuming reaction shared with Dut is in the mM range. MazG activity is 70% inhibited by
the MazEF toxin-antitoxin system; see [42]. el-Hajj et al. [41] discuss Dut at greater length.

folB + – N/A [32,34,43] folB reported as nonessential by [32], but essential by [34], despite no obvious reason for
differential essentiality on glucose and glycerol. Haussmann et al. [43] studied the enzyme but did
not construct a deletionmutant or test it on glucoseminimalmedia; whether an attemptwasmade
is unknown. folB is found upstream of genes reported essential by [32] in the folate biosynthesis
pathway, including folK, folC, folA, and possibly folP (see below).

folP – – N/A [32,33,44,45] To our knowledge, there has not been a clear folP or hemE null mutant test on glucose minimal
hemE – – N/A media. A folP deletion mutant grows poorly in rich media according to [45]. folP and hemE gene

duplications preventing observation of the null phenotype in [32] were identified in [33,36] and
these genes are described as of uncertain essentiality by [33]. Genes of uncertain essentiality in [33]
are those with partial duplication for both isolates that are considered nonessential in [44], which
tested culture growth on rich Antibiotic Medium 3 medium containing beef extract as opposed to
the LB agar of [33]. Under the broad essentiality criteria of [6], genes with uncertain essentiality in
[33] were considered nonessential. EcoCyc–18.0–GEM supports the conclusion of essentiality for
folP and hemE.

ftsW – + – [46-50] It is not clear whether FtsW, MurJ, or both carry out the lipid II flippase activity in E. coli. See the
murJ – + – listed references for additional information on this topic.

kdsC – + + [51-53] kdsC is upstream of the essential genes kdsB and waaA in the CMP-KDO biosynthesis pathway.
Sperandeo et al. [51] suggeststhat isozymes for KdsC’s 3-deoxy-D-manno-octulosonate
8-phosphate phosphatase activity may exist. Nonspecific phosphatase activity might also carry
out this reaction. See [52,53] on the subject of CMP-KDO requirements and E. coli temperature
sensitivity.

pabC + – – [32,34,36,54] Green et al. [54] report that PABA, the product of pabC, is required for growth on minimal media
(although the carbon source used on this media is not described) and establishes that only one
copy of the gene exists in E. coli. PabC is upstream of enzymes reported essential by [32] in its
pathway. Kim and Copley [36] hypothesize nutrient carryover from rich culture for lack of
essentiality in [32]. pabC is also nonessential in the M9 glycerol medium of [34].

Cases where EcoCyc–18.0–GEM essentiality predictions differed from experimental gene-essentiality results for aerobic growth on MOPS mediumwith 0.4% glucose,
and posed open biological questions or highlight metabolic network interactions of particular interest in EcoCyc–18.0–GEM. Certain of these genes deserve further
investigation by the experimental community; others highlight interesting aspects of essentiality testing. Kim and Copley [36] have discussed several of these genes,
which remain open issues in the literature. See text for additional details. Column headings are as follows:HT: High-throughput experiment (loose essentiality criteria
of [6]). Sim: Simulation. Conv: Conventional experiment. Column entries are as follows: –: In the experiments, deletion mutant could not be recovered for testing, or
was tested and did not grow to more than 0.091 OD600 after 24 hr, or both isolates were found to have duplications. In the simulations, FBA biomass flux was zero.
+: In the high-throughput experiments, a deletion mutant was tested and showed growth greater than 0.091 OD600 after 24 hr. In the conventional experiments,
growth was observed. In the simulations, FBA biomass flux positive.N/A: Information not available for deletion mutant on glucose minimal media. For example, argD
is essential in the data of [32] according to the broad essentiality criteria of [6], but EcoCyc–18.0–GEM predicts that it is nonessential.

reference to the then-current state of EcoCyc. Constraint-
based model improvement and gap-filling based on gene
essentiality predictions derived from the work of Baba

et al. have been examined for the COBRA family of
constraint-based models of E. coli metabolism by Reed
et al. [140], Kumar et al. [141], Kumar and Maranas
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Table 8 False gene essentialitypredictionswithin glycolytic and TCA cyclemetabolism

Gene HT Sim Conv Citations Comments

aceE + + – [32,36,55-57] Baba et al. [32] observe aceE null mutant growth to OD600 0.353 (nonessential), aceF null mutant
aceF – + – growth to OD600 0.091 (the line of loose essentiality), and lpd null mutant growth to OD600 0.061
lpd – + – (loose essential). Langley and Guest [55] observe pyruvate dehydrogenase complex essentiality and

[56,57] discuss it in the context of poxAB; [36] suggest mutants overexpressing pyruvate oxidase
allow growth on glucose.

eno – + – [36,58,59] Hillman and Fraenkel [58] describe gapA essentiality and [59] describes eno/gapA/pgk
gapA – + – essentiality. Null mutants in these enzymes suffer from glucose toxicity because of glucose
pgk – + – catabolite repression of other carbon utilization pathways. See also [36].

icd – + – [32,36,60-67] EcoCyc–18.0–GEM icd deletion mutants grow via condensation of propionyl-CoA and glyoxylate
to 2-hydroxyglutarate [60,61], and oxidation of 2-hydroxyglutarate to 2-oxoglutarate via LhgO [66].
icd is broadly essential on minimal glucose media in [32]. icd deletion mutants require glutamate
[62,63] and can grow on LB [64,65], although [67] reports growth on M9 minimal media.
See also [36].

fbaA – + – [36,68-71] The class I fructose bisphosphate aldolase fbaB is listed as an isozyme for fbaA in EcoCyc, but is
expressed only under gluconeogenic conditions [68,69]. Use of the fsa/dhaK pathway [70,71] to
substitute for fbaA appears to be blocked in the results of [32] by lowered dhaK expression in E. coli
with operational phosphotransferase systems. Other effects of fbaA deletion are discussed in [36].

gltA – + – [36,72,73] PrpC, the 2-methylcitrate synthase in the propionate utilization pathway, is an isozyme for the GltA
citrate synthase. prpC is conditionally expressed in the presence of propionate. Discussed in [36,73].

pfkA – + – [32,36,74,75] pfkA and pfkB are listed as isozymes for the 6-phosphofructokinase reaction, but PfkB activity is
insufficient to allow strong growth in vivo in the absence of pfkA according to [74]. pfkA is loosely
essential (OD600 0.087) in [32]. See [36] and [75], which indicate that both pfkA and pfkB must be
deleted to block growth.

ppc – + + [32,76,77] Peng et al. [76] demonstrate growth of ppc deletion mutants without detectable Ppc activity on M9
glucose minimal media. ppc grows on rich media but is narrowly essential under minimal glucose
conditions in the high-throughput assay of [32]. EcoCyc–18.0–GEM ppc deletion mutants grow via
activation of the glyoxylate shunt, in agreement with the observations of [76]. Patrick et al. [77]
identified overexpression of the osmoregulatory system regulator EcfM and the uncharacterized
protein YccT as capable of rescuing ppc deletion mutants.

tpiA + + – [32,36,78,79] Kim and Copley [36] describe tpiA essentiality based on methylglyoxal formation in tpiA null
mutants, and the tpiA nonessentiality result of [32] as based on methylglyoxal pathway-expressing
mutants [78,79].

The three available pathway options for navigating the route from glucose to the TCA cycle make up the superpathway of glycolysis, the pentose phosphate pathway
and the Entner-Doudoroff pathway. Without modeling of regulation, product inhibition, and metabolite toxicity, the multiple re-entry points in the superpathway and
the reversible nature of the pentose phosphate pathway allow carbon flux to route around deletions with weak growth. EcoCyc–18.0–GEM consequently produces
several false positive results for these pathways. This set of genes has previously been discussed at length by [36]. The aceE and tpiA genes identified as essential in
Figure two of [36] are judged nonessential by [32] and consequently by [6], and were predicted as nonessential by EcoCyc–18.0–GEM, but these nonessentiality
conclusions appear incorrect based on conventional experiments described in the literature, and are thus included in this table. The converse is true for ppc,
which is considered essential by high-throughput experiments, but is not essential in conventional experiment. See Table 7 caption for a description of
column headings.

[142], Barua et al. [143], Orth and Palsson [73,144], and
Tervo and Reed [145]. Our revisions of EcoCyc–18.0–
GEM included manual application of a subset of Grow-
Match [142] gap-filling methods, specifically resolution
of false positive gene essentiality predictions associated
with blocked genes and false negative results associated
with secretion of metabolites. The essentiality prediction
accuracy resulting from our manual curation process is
similar to the accuracy resulting from applying the full
GrowMatch algorithm to the iAF1260 model.
Additional file 2: Table S3 provides detailed listings

of essentiality status and model predictions, including a
breakdown of gene essentiality prediction status by crite-
ria used.

Nutrient utilization analysis
Observation of culture growth on various nutrient sources
is a foundation of microbiology [146]. EcoCyc 18.0 con-
tains information on E. coli respiration for 428 types of
media, including 22 conventional types ofminimal growth
media and 383 Biolog Phenotype Microarray (PM) wells.
The 383 Biolog PM media conditions represent a high-
throughput method of evaluating metabolic phenotypes
in culture based on a tetrazolium dye assay of cellular res-
piration. Each well in a Biolog 96-well PM plate contains
a standard minimal media composition plus a nutrient
source that is varied across the PM plate, with the element
supplied by the varying nutrient source dependent on the
type of Biolog PM plate in use [147-149].
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Table 9 False gene essentialitypredictions resulting from isozymes or pathways not operational under the experimental
conditions of Baba et al.

Gene HT Sim Conv Citations Comments

aroE – + – [80,81] ydiB encodes an isozyme for the AroE shikimate dehydrogenase in EcoCyc. Johansson and
Liden [81] suggest that the NAD+/NADP+ specificity of YdiB and high intracellular NAD+
concentrations lead it to operate in the “reversed” shikimate dehydrogenase direction, as opposed
to the biosynthetic direction toward chorismate.

can – + – [82] cynT, a carbonic anhydrase in the cyn cyanate degradation operon, encodes an isozyme for the Can
carbonic anhydrase reaction in EcoCyc. cynT is conditionally expressed in the presence of cyanate,
which is absent in [32] minimal media conditions.

folA – + – [83,84] folM, a 7,8-dihydromonapterin reductase in the tetrahydromonapterin biosynthesis pathwaywith a
weak 7,8-dihydrofolate reductase activity, encodes an isozyme for the FolA dihydrofolate reductase
reaction in EcoCyc. folM is insufficiently expressed in vivo to supply E. coli growth requirements for
tetrahydrofolate.

folD – + – [85] 10-formyl-tetrahydrafolate formation by folD can be shortcircuited in EcoCyc–18.0–GEM by purN’s
reversible phosphoribosylglycinamide formyltransferase activity. PurN’s kcat is substantially higher
in the forward direction than in the reverse direction in vitro, but the in vivo reversibility of the
enzyme is uncertain.

glyA – + – [77,86,87] The threonine dehydrogenase Tdh and 2-amino-3-ketobutyrate CoA ligase Kbl provide an
serA – + – alternate, threonine-based route to glycine synthesis from serine by the GlyA serine

hydroxymethyltransferase. tdh and kbl are under the control of the Lrp leucine repressor system,
and are conditionally expressed in the presence of leucine, which is absent in [32] minimal media
conditions. Patrick et al. [77] determined that overexpression of Tdh, the LtaE low-specificity
threonine aldolase, the YneH glutaminase, or Rsd anti-sigma factor led to rescue of glyA deletion
mutants, and that YneH was also capable of rescuing serA null mutants.

guaB – + – [88] guaB is essential for growth on glucose in [32], and [88] indicates that guaBmutants require
guanine for growth. In EcoCyc, nucleotide salvage pathways allow the degradation of IMP to
inosine, subsequent conversion of inosine to xanthine via XapA/DeoD and XdhA, and finally
conversion of xanthine to XMP via Gpt.

ilvA – + – [77,89] The threonine dehydratase TdcB acts as an isozyme for the IlvA threonine deaminase in EcoCyc.
tdcB is expressed only under anaerobic conditions. Patrick et al. [77] identified TdcB or EmrD
multidrug efflux transporter overexpression as capable of rescuing ilvA deletion mutants.

lipB – + – [90] The lipoyl-carrier protein N6-octanoyl-L-lysine intermediate in lipoate synthesis can be produced
by both LipB and LplA in EcoCyc. LplA is primarily involved in the assimilation of extracellularly
sourced lipoate. See [90] for further details.

metC – + – [77,91-93] MalY’s β-cystathionine lyase activity is listed as an isozyme for MetC in EcoCyc. malY is involved
in complex regulatory interactions, and its expression is repressed by malI in WT strains. Without
appropriate signaling, malY is not expressed. Patrick et al. [77] rescued metC deletion mutants via
MalY, Alr alanine racemase, or FimE phase-variation switch regulator overexpression.

metL – + – [36,94] E. coli’s three aspartokinases, ThrA, MetL, and LysC, are all isozymes for the aspartokinase reaction in
thrA – + – EcoCyc. The end-product inhibition of each of these enzymes should prevent aspartokinase gene

KOs from being rescued by their isozymes, since adequate amino acid pools in the pathways of
the remaining isozymes will inhibit their activity. Kim and Copley [36] suggest that metL is not
expressed on glucose.

nrdA – + – [95] The NrdDE ribonucleoside diphosphate reductase acts as an isozyme for the NrdAB ribonucleoside
nrdB – + – diphosphate reductase in EcoCyc. nrdDE is expressed only under anaerobic conditions.

pdxB – + – [77,96,97] EcoCyc–18.0–GEM can overcome deletion of serC and pdxB by using the thrB/ltaE route from
serC – + – glycolaldehyde (produced by FolB and formed spontaneously from 3-hydroxypyruvate supplied

from YeaB) for production of 4-phospho-hydroxy-threonine and subsequently pyridoxal-5’-
phosphate [96,97]. Replacement of serC and pdxB by these pathways requires overexpression of
thrB or yeaB/nudL, and growth after overexpression is reported only for solid media [97], whereas
the assays of [32] were conducted in liquid media. Patrick et al. [77] rescued pdxB deletion mutants
with Tdh threonine dehydrogenase or PurF amidophosphoribosyl transferase overexpression, and
serC deletion mutants with YneH glutaminase overexpression.

prs – + – [32,98-100] The PRPP biosynthesis II pathway can substitute for prs deletion in EcoCyc–18.0–GEM. This pathway
is based on connection of ribose 5-phosphate through the DeoB phosphomutase to the PhnN
ribose 1,5 bisphosphokinase activity via a putative ribose 1-phosphokinase activity [98,99]. PhnN is
part of the phn operon, [99,101] whose expression is repressed under the 2mMphosphate glucose
minimal media conditions used by [100].
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Table 9 False gene essentialitypredictions resulting from isozymes or pathways not operational under the experimental
conditions of Baba et al. (Continued)

serB – + – [77,102] EcoCyc–18.0–GEM can overcome deletion of serB by synthesizing serine from threonine via Tdh
and reversible action of GlyA. Ravnikar and Somerville [102] isolated pseudorevertants containing
elevated levels of Tdh from ser deletions following growth onmedia supplementedwith threonine,
leucine, arginine, lysine, and methionine followed by growth on minimal media. Patrick et al. [77]
additionally identified overexpression of Gph, HisB, and YtjC phosphatases as capable of rescuing
serB deletion mutants.

False KO predictions caused by the presence of isozymes that are able to catalyze the reaction in the model, but are either down-regulated under the media
conditions of [32] or are for other reasons unlikely to substitute for the knocked-out enzyme in vivo. Because MetaFlux does not model regulation, it assumes that
these enzymes are active. See Table 7 caption for a description of column headings.

We evaluated the performance of EcoCyc–18.0–GEM
in predicting growth for the following available datasets:
(1) aerobic E. coli growth on the 22 common conven-
tional minimal growth media; (2) consensus estimates
of respiration based on four different experimentalists’
measurements of aerobic Biolog 96-well plates PM1–4,
representing 313 conflict-free growth observations; and
(3) an anaerobic Biolog PM1 plate assay surveying carbon
source utilization in the absence of oxygen, representing
96 anaerobic growth observations. Biolog PM data stored
in EcoCyc measures utilization of nutrients as sources
of carbon (PM1–2), nitrogen (PM3), sulfur (PM4), and
phosphorus (PM4).

Conventional media compositions and growth results
were drawn from the literature. Aerobic Biolog PM nutri-
ent utilization assay results were compiled from four
different datasets captured in EcoCyc: (1) from our own
experiments; (2) from a dataset obtained from B. Bochner;
and from the recent publications of (3) AbuOun et al.
[150] and (4) Yoon et al. [151]. Anaerobic Biolog PM
nutrient utilization assay results were obtained from B.
Bochner. We did not include the data of Baumler et al.
in our analysis of Biolog PM results because of varia-
tion in culture conditions and a high degree of conflict
with other datasets under both aerobic and anaerobic
conditions [152]. See the Methods section for additional
details.

Table 10 Genes for which EcoCyc–18.0–GEM predictions identified likely errors in high-throughput essentiality
screening, and the EcoCyc–18.0–GEM predictionswere confirmed by conventional essentialityexperiments

Gene HT Sim Conv Citations Comments

alsK – + N/A [32,103,104] The circumstances leading to this gene’s essentiality in [32] are uncertain. Kim et al. 1997
[103] and Poulsen et al. 1999 [104] demonstrate that alsK is not required for growth on allose,
and demonstrate growth on glycerol minimal media. Poulsen et al. [104] constructed alsK
null mutants with transposon insertions, demonstrating that alsK was not required for allose
catabolism, and renamed the gene yjcT. alsK/yjcT is listed as essential on richmedia (LB) by [32].

aroD + – – [32,36,105,106] Baba et al. [32] suggest that an aroD null mutant can grow on glucoseminimalmedia, but [105]
established that E. coli K–12 aroD mutants require all of the aromatic amino acids for growth.
See also the discussion in [36] with reference to [106].

atpB – + + [73,107,108] von Meyenburg et al. [107] demonstrate growth of strains lacking intact ATP synthase on
atpC – + + glucose and other fermentable carbon source minimal media, at reduced growth rates.
atpE – + + Growth of atp null mutants is further discussed in [73,108].

cydA – + + [73,109-114] Green and Gennis [109] demonstrate aerobic growth of cyd mutants on glucose minimal
cydC – + + media through use of cytochrome bo. See references for further discussion of redundancy in

E. coli cytochromes and operation of cytochrome bd-I. Discussed in [73].

ptsH – + + [77,115-121] Steinsiek and Bettenbrock [120] and Escalante et al. [121] review glucose uptake in E. coli
ptsI – + + mutant strains with glucose PTS defects. See references for additional details. Patrick et al.

[77] identified overexpression of FucP fucose transporter, XylE xylose transporter, or GalE
UDP-glucose 4-epimerase as capable of rescuing ptsI deletion mutants.

spoT – + + [73,122-126] spoT− mutants grow slowly on glucose minimal media [122,123]. Absence of SpoT ppGpp
hydrolase activity leads to high levels of ppGpp, which are inversely correlated with growth
rate [126]. See references for additional details. Discussed in [73].

ubiA – + + [127,128] Cox et al. [127] constructed ubiquinone-free mutants of K–12 capable of growth on
ubiD – + + fermentable substrates including glucose. Wu et al. [128] constructed ubiA null mutants
ubiE – + + capable of growing on minimal media containing fermentable carbon sources.

waaU – + + [129,130] Essentiality in glucose minimal media has not been clearly determined. Klena et al. [129]
constructedwaaU null mutants and demonstrated their viability in richmedia, in contradiction
to the determination of essentiality in rich media in [32].

See Table 7 caption for a description of column headings.
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Table 11 False gene essentialitypredictions for genes representing systems beyond the scope of the EcoCyc–18.0–GEM
biomass function

Gene HT Sim Conv Citations Comments

der – + – [131-133] Der is essential for maintenance of 50S ribosomal subunit stability. Der’s GTPase activity regulates
the specificity of its interactions with the ribosomal subunit. Regulatory GTPase activities, such as
those of Der, are beyond the current scope of EcoCyc–18.0–GEM.

mrdA – + – [134,135] MrdA and FtsI, often referred to as penicillin-binding proteins 2 and 3, are essential for cell division
ftsI – + – and maintenance of cell shape. Ogura et al. [135] determined mrdA to be essential in K–12, while

[134] determined ftsI to be essential. Modeling of the unique roles of mrdA and ftsI is beyond the
current scope of EcoCyc–18.0–GEM.

suhB – + – [136] Wang et al. [136] studied suhB null mutants, which exhibit a cold-sensitive phenotype, and reported
that they were unable to grow at 30°C, but grew well at 42°C. Growth was studied at 37°C, but not
described. Heat and cold sensitivity are beyond the current scope of EcoCyc–18.0–GEM.

Examples of these systems include cold response and cell envelope maintenance. The EcoCyc GEM biomass function will be expanded to incorporate the operation of
these systems in future versions. See Table 7 caption for a description of column headings.

Table 12 False gene essentialitypredictions caused by technical issues in MetaFlux and EcoCyc

Gene HT Sim Comments

bioB – + Lipoate biosynthesis and the final step of biotin biosynthesis are not operational in EcoCyc–18.0–GEM due
birA – + to reaction mass imbalances in EcoCyc 18.0. This leads to the presence of dethiobiotin instead of biotin in
lipA – + the objective function, and prevents biotinylation of biotin carboxyl carrier protein.

entD – + EntDEFG activity is active in EcoCyc–18.0–GEM without EntD because of the presence of individual EntE,
EntF, and EntG activity in EcoCyc in addition to an activity describing the overall EntDEFG complex, which
leads to entD knockouts being ineffective.

entD – + EntDEFG activity is active in EcoCyc–18.0–GEM without EntD because of the presence of individual EntE,
EntF, and EntG activity in EcoCyc in addition to an activity describing the overall EntDEFG complex, which
leads to entD knockouts being ineffective.

fdx – + The IspG reaction in the EcoCyc MEP pathway incorrectly requires ferredoxin (encoded by fdx) instead of
flavodoxin I [137].

iscS – + The IscS cysteine desulfurase lacks chemical structure in EcoCyc, preventing its participation in thiazole
thiL – + biosynthesis and iron-sulfur cluster synthesis. This affects thiL essentiality by blocking thiazole synthesis and

rendering EcoCyc–18.0–GEMunable to synthesize thiamin. Due to exogenous thiamin contamination in the
experiments of [32] (see [73]; note that thiL is apparently mislabeled as thiI therein) this omission
manifests itself only as an incorrect prediction of thiL nonessentiality, since endogenous and exogenous
thiamin pathways can substitute for knockouts in each other until the final thiamin monophosphate kinase
activity of ThiL.

metE – + MetaFlux does not correctly model polymerization reactions, which prevents the synthesis of
5-methyltetrahydropteroyl tri-L-glutamate by folate polyglutamylation. This in turn prevents MetE’s
cob(I)alamin-independent methionine synthase reaction from operating properly.

metH + – MetH’s cob(I)alamin-dependent methionine synthase activity does not currently require cob(I)alamin
cofactor in EcoCyc–18.0–GEM because cofactor requirements are not accounted for in enzymatic reactions.
Because MetE is inoperational as a result of a lack of folate polyglutamylation (see above), the incorrectly
operational MetH methionine synthase reaction becomes essential. This ambiguity will be remedied in
future versions of MetaFlux.

ndk + – ndk is falsely predicted as essential because its UDP kinase and dTDP kinase activities provide the only routes
in EcoCyc to UTP and dTTP, respectively. In vivo, ndk null mutants are rescued by broad substrate specificity
of adk [36,138].

pyrI + – The catalytic subunit PyrB of the aspartate transcarbamylase PyrBI is active by itself in vitro [139]. The PyrBI
complex catalyzes the physiologically regulated reaction, and the reaction is assigned to the PyrBI
complex in EcoCyc. This causes the pyrI gene KO simulation to block PyrBI aspartate transcarbamylation
activity entirely.

trxB + – The activity of the glutaredoxin pathway can substitute for the thioredoxin pathway in E. coli, and vice versa.
This ability is not properly modeled in EcoCyc–18.0–GEM as a result of the pathways’ structure in EcoCyc.

These technical issues will be addressed in future versions of MetaFlux and EcoCyc. See Table 7 caption for a description of column headings.
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Growth on a given type of media was tested by con-
structing simulatedMetaFlux nutrient sets corresponding
to the contents of the media in question and comparing
EcoCyc–18.0–GEM growth predictions with experimen-
tal growth results. Due to the absence of enterobactin
iron uptake modeling in EcoCyc, Fe3+ in the medium was
replaced with Fe2+. Anaerobic simulations were prepared
identically to those performed for aerobic growth, except
for the removal of oxygen from the nutrient set, inclusion
of the formate-hydrogen lyase reaction, and the removal
of the protoheme and pyridoxal 5’-phosphate synthesis
requirement from the biomass.
Literature-based EcoCyc curation and appropriatemod-

ifications of MetaFlux metabolite sets were used to
address incorrect nutrient utilization predictions. The
final results for PM array validation after curation are
listed in Table 13. Overall accuracy of growth predic-
tion for aerobic Biolog PM assays was 252/313 (80.5%),
with 70 assays not evaluated because of experimental con-
flicts (see the Methods section). Anaerobic Biolog PM
assay predictions had an overall accuracy of 74/96 (77.1%).
Aerobic growth tests on conventional minimal media
contained in EcoCyc had an overall accuracy of 22/22
(100.0%).
The overall accuracy of nutrient utilization prediction

across all aerobic and anaerobic PM and conventional
growth media is 348/431 (80.7%). Tables 14, 15, 16 and
17 provide detailed discussions of false negatives and
false positives for aerobic PM assays. Tables of results for
anaerobic PM assays and conventional growth media are
available in Additional file 2: Tables S8 and S9, respec-
tively.

Model readability and accessibility
Scientists naturally need to ask many questions of
a metabolic model, such as “What are the chemical

Table 13 EcoCyc–18.0–GEM nutrient utilizationprediction
results

Nutrient utilization Aerobic PM Anaerobic PM Conventional
(sim/exp)

True positive 137 35 17
(growth/growth)

False positive 15 14 0
(growth/no growth)

False negative 46 8 0
(no growth/growth)

True negative 115 39 5
(no growth/no growth)

Aerobic PM: 313 absolute consensus results from Biolog Phenotype Microarray
carbon, nitrogen, sulfur, and phosphorus source tests (Biolog plates PM1–4)
conducted under aerobic conditions. Anaerobic PM: 96 Biolog Phenotype
Microarray carbon source tests (Biolog plates PM1–4) conducted under
anaerobic conditions. Conventional: 22 E. coliminimal growthmedia described
in EcoCyc.

structures of all substrates in reaction X, and is X chem-
ically balanced?” “What metabolic pathway(s) is reaction
X a member of, and what are the adjacent reactions?”
“Which E. coli enzymes are inhibited by ADP?” “What
transcriptional regulators affect the expression of the
enzymes for reaction X?” Their ability to answer these
questions rapidly and accurately is strongly dependent on
the model representation, the software tools available for
querying and visualizing that representation, the tightness
with which those tools are integrated with the model, and
the presence of additional enriching information for the
model.
Existing E. coli models are represented as spreadsheet

files and as SBML files, making it tedious or impossible
for non-programmers to answer the preceding questions
directly from those files. Although SBML files can be
imported into software tools such as the RAVEN Tool-
box [181] and rbionet [182], in practice that approach
is limited because of variations in SBML encodings, the
effort required to install and integrate multiple software
tools with disparate capabilities, and the limited visual-
ization capabilities of those tools. More fundamentally,
previous E. coli models do not capture (nor can SBML
capture) additional enriching information that, while not
required for the mathematical operation of a model,
greatly enhances our ability to validate and understand a
model, and to answer the preceding questions. Examples
of such enriching information present in EcoCyc–18.0–
GEM aremetabolite chemical structures, arrangements of
reactions within metabolic pathways, and gene regulatory
information. Note that introducing ad-hoc definitions of
these data (e.g., pathways) in the SBML “Notes” field, or
introducing SBML links to external databases, would be
considered out of bounds: since pathways are not cap-
tured formally in the SBML specification today, there is
no guarantee regarding interoperability of software tools
with such ad-hoc data.
EcoCyc–18.0–GEM is highly understandable because

it can be interactively queried and visualized through
the EcoCyc web site and desktop Pathway Tools soft-
ware, which supports visualization of metabolic path-
ways and reaction diagrams; metabolite pages that depict
metabolite structures and all reactions a metabolite is
involved in; depiction of gene/reaction connections and
of genome organization via a genome browser; naviga-
tion through the E. coli gene regulatory network; con-
structing structured queries such as: find all reactions
of a given metabolite; find all enzymes utilizing a given
cofactor; and presentation of text summaries and cita-
tions that explain and support aspects of the model.
In general, other tools for metabolic model visualiza-
tion tend to be less comprehensive, and to be less
closely coupled to the model; see [183-186] for recent
reviews.
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Table 14 Conflicts between EcoCyc–18.0–GEM growth predictions and experimental carbon source utilization data for
aerobic growth on Biolog PMplates at 37°C

Carbon source HT Sim Comments

Dextrins + – General dextrin uptake and catabolism via glg is described in EcoCyc, but the system is not
applied to the dextrins in EcoCyc–18.0–GEMbecause of MetaFlux’s current inability tomodel
polymerization reactions.

Lactulose + – Lactulose is taken up by the MelB melibiose transporter [153], although this route of uptake
is not present in EcoCyc. Lactulose is capable of inhibiting LacY transport of o-nitrophenyl-β-
D-galactopyranoside [154], and can be anaerobically fermented by E. coli [155], but the route
of catabolism is unknown.

Methyl-α-D-galactopyranoside + – Methyl-α-D-galactopyranoside is taken up via the MelB melibiose transporter [153], and is
capable of inhibiting LacY transport of o-nitrophenyl-β-D-galactopyranoside [154]. The route
of catabolism is unknown.

Methyl-β-D-galactoside + – Methyl-β-D-galactoside is taken up via MglABC transporter or MelB transporter, but the
catabolic pathway is unknown. It is capable of inhibiting LacY transport of o-nitrophenyl-
β-D-galactopyranoside [154], and is reported as a substrate of LacZ [156]. Inside the cell,
methyl-β-D-galactoside is acetylated by LacA galactoside acetyltransferase [157], after which
its fate is unclear.

Methyl pyruvate + – Methyl pyruvate is a competitive inhibitor of the active pyruvate transport system [158]. No
route of uptake for methyl pyruvate is present in EcoCyc, and the route of catabolism is
unknown.

Melibionate + – These compounds’ route of uptake is unknown.

1-O-methyl-β-D-glucuronate + –

3-O-β-D-galactopyranosyl-D-arabinose + –

Methyl D-lactate + –

Mono-methyl hydrogen succinate + –

L-galactono-1,4-lactone + – The route of uptake is unknown; it may be catabolized via a ring opening to L-galactonate,
as with D-galactono-1,4-lactone.

Meso-tartrate + – PM experiments indicate thatmeso-tartrate can be used as a carbon source by E. coli, in
contradiction of the reports of [159] and [160].meso-tartrate is not associated with
L/D-tartrate uptake processes in EcoCyc.

Bromosuccinate + – Bromosuccinate is described in the literature is as an irreversible inhibitor of aspartate
transcarbamylase [161] and it may be taken up via the same pathways as aspartate. No route
of uptake is present in EcoCyc.

2-hydroxybutyrate + – The route of uptake is unknown.

Citrate – + Most strains of E. coli cannot use citrate as a carbon source under aerobic conditions because
of lack of transporter expression [162]; the citrate/succinate antiporter CitT is expressed under
anaerobic conditions, although a cosubstrate is still required to generate reducing power to
form succinate [163]. MetaFlux does not currently model gene regulation.

Putrescine – + These nitrogenous compounds cannot be used as carbon sources under the high-nitrogen
4-aminobutyrate – + conditions of the Biolog PM carbon source assay, given the lack of Ntr-mediated expression
Ornithine – + of their catabolic pathways [164]. MetaFlux does not currently model gene regulation.

L-arginine – + Arginine cannot be used as a carbon source by E. coli K–12 because of the absence of
induction and transport [165,166]. MetaFlux does not currently model gene regulation.

Cellobiose – + Cellobiose cannot be used as a carbon source by E. coli K–12 because of its inability to abolish
repression of the ChbABC chitobiose/cellobiose PTS permease system by NagC [167,168].
MetaFlux does not currently model gene regulation.

Glycine – + Biolog PM experiments employing glycine as a carbon source return a consensus no-growth
result, but EcoCyc–18.0–GEM predicts that glycine can be used as a carbon source via
assimilation into 5,10-methyltetrahydrofolate by the glycine cleavage system. This is a
wasteful pathway, producing one CO2 and one molecule of 5,10-THF per glycine molecule
taken up. We found no information on conventional growth experiments assaying the ability
of E. coli K–12 to use glycine as a carbon source.
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Table 14 Conflicts between EcoCyc–18.0–GEM growth predictions and experimental carbon source utilizationdata for
aerobic growth on Biolog PMplates at 37°C (Continued)

D-tartrate – + D-tartrate does not support growth under aerobic conditions in the experiments of [160]. It
uses the anaerobic TtdT transporter in EcoCyc–18.0–GEM; the DcuB transporter may be the
correct route of entry for D-tartrate under anaerobic conditions [159].

Ethanolamine – + E. coli requires a source of cob(I)alamin for catabolism of ethanolamine by the
adenosylcobalamin-dependent ethanolamine ammonia-lyase [169-172]. MetaFlux does not
currently model enzyme cofactor requirements.

Column headings are as follows:<Element> Source: Nutrient source under test. HT: High-throughput experiment. Sim: Simulation. Column entries are as follows:
+: Nutrient can support growth. –: Nutrient cannot support growth. For example, D-fructose supports growth according to the consensus of experimental aerobic
Biolog PM assays recorded in EcoCyc, but EcoCyc–18.0–GEM predicts that it does not support growth.

The reaction fluxes computed from EcoCyc–18.0–GEM
are more understandable than those from previous E.
coli models because EcoCyc–18.0–GEM fluxes can be
immediately painted onto the EcoCyc Cellular Overview,
a zoomable diagram of the complete metabolic map of E.
coli that allows immediate visual inspection of flux pat-
terns. Although other software tools exist for visualizing
flux patterns on metabolic networks, e.g., the RAVEN
Toolbox, they are unlikely to be easily usable with previ-
ous E. colimodels. For example, RAVEN Toolbox requires
that the user manually construct the metabolic network
diagram, which could take days or weeks of effort. In con-
trast, Pathway Tools generates metabolic map diagrams
algorithmically from a PGDB.

Conclusions
EcoCyc–18.0–GEM demonstrates the advantages of
literate modeling based on comprehensive organism

databases. It provides comprehensive genome-scale cov-
erage of the E. coli metabolic network, represent-
ing gene function with an unprecedented degree of
accuracy.
Integration of EcoCyc–18.0–GEM into the EcoCyc

database gives investigators working with the model
access to the full Pathway Tools bioinformatics and data
visualization suite. This allows construction of complex
database queries involving the full range of biochemical
entities within E. coli, and visualization of pathways and
reactions within the model as they change throughout the
course of construction. As part of EcoCyc, EcoCyc–18.0–
GEM will receive frequent updates to remain abreast of
recent research developments.
The process of EcoCyc–18.0–GEM construction and

validation resulted in more than 80 updates to EcoCyc.
These included expansion and revision of periplasmic
phosphatase activities many updates to sugar transport
and phosphotransferase system modeling; correction of

Table 15 Conflicts between EcoCyc–18.0–GEM growth predictions and experimental nitrogen source utilizationdata for
aerobic growth on Biolog PMplates at 37°C

Nitrogen source HT Sim Comments

Guanine + – Guanine is not used as a nitrogen source by E. coli [173,174] in vivo, and its degradation does not proceed past
allantoin. EcoCyc–18.0–GEM is able to use guanine as a source of ammonia bymeans of glucose deamination and
immediate excretion of xanthine or urate.

5-aminopentanoate + – Routes of uptake and catabolism are unknown for 5-aminopentanoate and glucuronamide.

Glucuronamide + –

Ethanolamine – + E. coli requires a source of cob(I)alamin for catabolism of ethanolamine by the adenosylcobalamin-dependent
ethanolamine ammonia-lyase [169-172]. MetaFlux does not currently model enzyme cofactor requirements.

Allantoin – + Anaerobic conditions are required for E. coli to use allantoin as a nitrogen source [175].MetaFlux does not currently
model gene regulation.

Nitrate – + Nitrate and nitrite pass through nitrate and nitrite reductase pathways, which operate only under anaerobic
Nitrite – + conditions and do not function in an assimilatory fashion in E. coli [176-178].

L-tyrosine – + E. coli lacks a catabolic aromatic amino acid transaminase, preventing the utilization of L-tyrosine as a nitrogen
source; the path of utilization in EcoCyc–18.0–GEM involves the tyrosine lyase used in thiazole biosynthesis
followed by spontaneous dissociation of 2-iminoacetate to glyoxylate and ammonium, and is not biologically
realistic due to the production of large quantities of the dead-end metabolites 5’-deoxyadenosine and p-cresol.

See Table 14 caption for description of column headings.
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Table 16 Conflicts between EcoCyc–18.0–GEM growth predictions and experimental sulfur source utilizationdata for
aerobic growth on Biolog PMplates at 37°C

Phosphorus source HT Sim Comments

dTMP + – dTMP, GMP, thymidine 3’-monophosphate, and thiophosphate are substrates of the periplasmic
Thiophosphate + – nonspecific phosphatases PhoA and AphA, and enzymatic reactions covering thesemetabolites

will be added in the course of EcoCyc development. Other phosphorylated metabolites have
not been associated with individual phosphatases, and their pathways of utilization are a subject
of future research.

3-phospho-D-glycerate + – The route of phosphorus uptake from these sources is unknown. Although catabolic pathways
2-phosphoglycolate + – for these phosphorylated metabolites exist in EcoCyc, the route of phosphorus uptake may
α-D-mannose 1-phosphate + – involve nonspecific dephosphorylation.

Glucosamine-6-phosphate + –

6-phospho-D-gluconate + –

O-phospho-D-tyrosine + –

O-phospho-D-serine + –

N-phospho-L-arginine + –

Trimetaphosphate + –

2-deoxy-D-glucose 6-phosphate + –

Creatine-phosphate + –

Dithiophosphate + –

See Table 14 caption for description of column headings.

incorrect compartment assignments; fixes for L-lactate
dehydrogenase action; revisions to glutathione hydrol-
ysis; new transport reactions for compounds identified
as nutrient sources during Biolog PM testing; addition
of MOPS catabolism via the alkanesulfonate pathway;

removal of several incorrect reactions and gene-protein
relationships; numerous fixes to reaction reversibility
and directionality; several compound class reassign-
ments to correct issues with reaction instantiation; mass
rebalancing for several reactions; and revisions to ATP

Table 17 Conflicts between EcoCyc–18.0–GEM growth predictions and experimental sulfur source utilizationdata for
aerobic growth on Biolog PMplates at 37°C

Sulfur source HT Sim Comments

L-methionine + – Methionine and related compounds enable respiration in Biolog PM assays when supplied as a sulfur
D-methionine + – source. A route of catabolism is not present in EcoCyc, and methionine is not considered to support sulfur
N-acetyl-DL-methionine + – requirements in E. coli [179]. This result suggests further investigation.

Gly-Met + –

L-cystathionine + –

L-methionine S-oxide + –

L-cysteine + – L/D-cysteine lack clear pathways of uptake in EcoCyc–18.0–GEM. This problem will be a subject of future
D-cysteine + – EcoCyc development.

Thiophosphate + – PhoA activity on thiophosphate will be added in future versions of EcoCyc.

Djenkolate + – The route of uptake is unknown. Catabolism may proceed via MetC [180].

Lanthionine + –

3-sulfinoalanine + – The route of uptake is unknown. SufS and CsdA can convert 3-sulfinoalanine to alanine and sulfite.

Cysteamine + – Routes of uptake and catabolism for cysteamine, dithiophosphate, hypotaurine, tetrathionate, and
Dithiophosphate + – thiourea are unknown.

Hypotaurine + –

Tetrathionate + –

Thiourea + –

See Table 14 caption for description of column headings.
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synthase proton stoichiometry. These updates are out-
lined in Additional file 2: Table S11.
The MetaFlux software has also been improved as a

result of the FBA validation of EcoCyc. These improve-
ments include upgrades to compartmentalization han-
dling, gene deletion code, and electron transfer reac-
tion handling. MetaFlux solution and log files have been
updated to contain additional statistical information and
provide a more detailed explanation of the metabolic net-
work construction process to the user. Numerous updates
and revisions to the MetaFlux model of E. coli have been
introduced as part of this effort. Biomass metabolite sets
have been revised to reflect the work of Orth et al., and
additional updates have been made on the basis of the val-
idation process in order to create the most accurate final
product possible.
Many questions of interest to E. coli modelers and

experimentalists were raised in the course of EcoCyc–
18.0–GEM development. By highlighting these questions
and presenting them within the context of EcoCyc as a
reference database, we address the interests of the general
metabolic modeling audience and of E. coli experimen-
talists interested in using models to explore their results
and generate new leads for research.We summarize these
questions here.
Experimental measurements of respiratory fluxes in

glucose-fed aerobic chemostat culture are higher than
those predicted by simulation, and small quantities of suc-
cinate and lactate are generated in experimental anaerobic
fermentations, suggesting interesting in vivo deviations
from theoretical in silico optimality.
A small number of metabolic byproducts must be

removed directly from the cytosol in the secretion set
because of a lack of known salvage or excretion pathways.
The fate of these metabolites is of interest.
Several incorrect essentiality predictions are associ-

ated with unclear cellular biomass requirements, path-
ways with potential alternate routes of catalysis, uncer-
tain determinations of essentiality on glucose minimal
media, and ambiguous or missing gene function. Sim-
ilarly, nutrient utilization predictions have identified a
number of compounds that lack clear pathways of entry
into metabolism but are capable of supporting respiration
and/or growth. Resolution of these uncertainties would
improve our understanding of E. coli function in varying
environments.

Methods
The data used for this project were obtained from Eco-
Cyc version 18.0, and the bioinformatics and flux analysis
procedures documented here were performed in either
the Web or desktop environment of the Pathway Tools
18.0 software. Pathway Tools can be downloaded, along
with documentation and example files, at http://brg.ai.

sri.com/ptools/. The simulation tests were constructed
by using Lisp scripting and the Pathway Tools Lisp API,
documented at http://brg.ai.sri.com/ptools/api/. Further
details on the construction of EcoCyc–18.0–GEM can be
found within Additional file 1.
EcoCyc–18.0–GEM development employed the

MetaFlux component of Pathway Tools, documented in
the Pathway Tools User’s Guide and in [15]. All simula-
tions were run in solving mode on a 2.7 GHz i7 MacBook
Pro with 16 GB RAM. The “minimize-fluxes: yes” option
was used for taxicab norm minimization of fluxes. For
additional information, see the Pathway Tools User’s
Guide. AMetaFlux .fba file demonstrating simulation of
aerobic growth of E. coli BW25113 on glucose is included
as Additional file 3.
We note that the choice of stoichiometric representa-

tion of equations can affect flux balance solutions when
minimization of summed flux is used as part of the objec-
tive function; see [187] for further details. Stoichiometric
coefficients within EcoCyc–18.0–GEM are scaled so as to
provide minimum whole-integer stoichiometry. Applica-
tion of different scaling within the flux network may lead
to altered flux solutions.
Briefly, MetaFlux creates a stoichiometric metabolic

flux network at run time from the metabolites and
reactions contained in a Pathway Tools PGDB. During
network construction, MetaFlux removes PGDB reac-
tions that are: ambiguously instantiated (see below);
unbalanced or having an undetermined balance state;
disconnected from the network; marked as physiologi-
cally irrelevant; involved in polymerization; involved in
polymer segment or protein modification; lacking sub-
strates on one side; containing substrate entities that are
described only by strings; possessed of variable stoichiom-
etry; or have more than 10,000 permutations that must
be checked during instantiation. MetaFlux then instanti-
ates reactions containing compound classes, replacing the
class reactions with mass-balanced reactions containing
instances of the relevant compound classes. The resulting
set of metabolites and reactions constitutes the metabolic
flux network operated on by MetaFlux. Enzymatic reac-
tion and gene-protein relationship data encoded in the
PGDB are used to associate the reactions of the network
with enzymes and genes as appropriate.
COBRA [20,188] simulations of the iJO1366 E. coli

genome-scale reconstruction were employed in order
to validate the EcoCyc FBA simulations and to pro-
vide a point of comparison to existing reference mod-
els. The iJO1366 simulations were performed using the
COBRA Toolbox 5.0.0 within MATLAB R2010a and
cobrapy 0.2 within Python 2.7.6. All iJO1366 simu-
lations used taxicab norm minimization of fluxes as
described in the documentation for the optimizeCbModel
function.

http://brg.ai.sri.com/ptools/
http://brg.ai.sri.com/ptools/
http://brg.ai.sri.com/ptools/api/
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Biomass metabolite sets were constructed using the
wild-type and core biomass sets of Orth et al. and modi-
fied according to our research findings and experimental
data on gene essentiality. The ATP turnover require-
ment for growth-associated maintenance costs (GAM)
was set to 53.95 mmol ATP/gCDW, while the ATP
turnover requirement for non-growth-associated mainte-
nance costs (NGAM) was set to 3.15 mmol ATP/gCDW,
per Orth et al.
All coefficients of the biomass metabolite set represent

millimoles (mmol) of each metabolite required per gram
of cell dry weight (gCDW). Coefficients of the nutrient
and metabolite sets represent specific uptake and output
fluxes, in millimoles of each metabolite supplied per gram
of cell dry weight per hour (mmol/gCDW/hr). An overall
biomass flux of 1.0 thus represents a specific growth rate
μ of 1.0 hr−1 (one new gram of cell dry weight per gram
of cell dry weight per hour).
Aerobic glucose chemostat data for experimental com-

parisons were obtained from [23]. Anaerobic glucose
chemostat data were obtained from [24] via [25].
The protocols followed in our PM experiments are

as follows: PM plates 1–4 containing 190 sole carbon
sources, 95 sole nitrogen sources, 59 sole phosphate
sources and 35 sole sulfur sources were used in this anal-
ysis. E. coli MG1655 was obtained from the Yale Coli
Genetic Stock Center, pre-grown on nutrient agar and
used to inoculate the plates following Biolog instruc-
tions. The data were collected and analyzed using the
OmniLogH PM system, which records the color change
every 15 min for each well in the 96 well assay plates. All
incubations were performed at 37°C over 48 hr. For the
complete details of all PM assay conditions, please refer to
the original publications.
The PM nutrient-source assay is an assay of respiration

based on the generation of NADH by carbon metabolism
and the subsequent reduction of a tetrazolium redox dye
by NADH. As such, it does not directly measure either
the cell growth simulated by FBA biomass objectives or
the uptake of noncarbon sources. However, checkpoint
linkage of carbon-source catabolism to nitrogen, phos-
phorus, and sulfur source catabolism enables the tetra-
zolium redox dye assay to probe the metabolism of non-
carbon sources [189]. Bochner describes the phenomenon
of checkpoint linkage as starvation for elemental nutri-
ent source leading to arrest of cellular respiration, due
to redox imbalance or alarmone synthesis. We there-
fore compared PM respiration results directly with FBA
growth simulation.
Biolog PM results are storedwithin the EcoCyc database

and are accessible via the Pathway Tools API and EcoCyc
website. Individual Biolog PM assay scores for each well
were compared across experimental datasets to estab-
lish a consensus for comparison with EcoCyc–18.0–GEM

simulation. Because simulations of nutrient utilization
were scored according to growth or no growth, exper-
imental Biolog PM results indicating ‘normal’ and ‘low’
respiration were combined into a ‘positive’ result. The
majority of Biolog PM tests (313/383) displayed a con-
sensus of either respiration or no respiration across all
four experimental datasets used. In 70 of 383 cases, no
clear consensus could be reached. These divergent cases
were omitted from the nutrient-utilization assay valida-
tion because no reliable conclusion could be reached
regarding the results. See Additional file 2: Table S10 for a
list of omitted PM data.

Additional files
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