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Abstract

Background: The TNM staging system is based on three anatomic prognostic factors: Tumor, Lymph Node and
Metastasis. However, cancer is no longer considered an anatomic disease. Therefore, the TNM should be expanded
to accommodate new prognostic factors in order to increase the accuracy of estimating cancer patient outcome.
The ensemble algorithm for clustering cancer data (EACCD) by Chen et al. reflects an effort to expand the TNM
without changing its basic definitions. Though results on using EACCD have been reported, there has been no
study on the analysis of the algorithm. In this report, we examine various aspects of EACCD using a large breast
cancer patient dataset. We compared the output of EACCD with the corresponding survival curves, investigated
the effect of different settings in EACCD, and compared EACCD with alternative clustering approaches.

Results: Using the basic T and N definitions, EACCD generated a dendrogram that shows a graphic relationship
among the survival curves of the breast cancer patients. The dendrograms from EACCD are robust for large values
of m (the number of runs in the learning step). When m is large, the dendrograms depend on the linkage
functions.
The statistical tests, however, employed in the learning step have minimal effect on the dendrogram for large m.
In addition, if omitting the step for learning dissimilarity in EACCD, the resulting approaches can have a degraded
performance. Furthermore, clustering only based on prognostic factors could generate misleading dendrograms,
and direct use of partitioning techniques could lead to misleading assignments to clusters.

Conclusions: When only the Partitioning Around Medoids (PAM) algorithm is involved in the step of learning
dissimilarity, large values of m are required to obtain robust dendrograms, and for a large m EACCD can effectively
cluster cancer patient data.

Background
Accurate outcome (survival) estimation is often the key
in the successful treatment of cancer patients. Estima-
tion depends on clinical or laboratory variables or fac-
tors that are linked to patient outcome. Found in all
specialties of medicine, predictive factors take on signifi-
cant clinical meaning when treatment options are avail-
able, but they become more important if treatment
options are limited and not always effective.
Currently, the most common predictive factors in can-

cer medicine are the three variables T , N, and M of the

TNM (Tumor, Lymph Node, and Metastasis) staging sys-
tem that define the anatomic extent of disease [1]. The
“T“ usually refers to the size of the primary tumor, “N“
refers to the presence or absence of metastatic deposits
in regional lymph nodes, and “M“ indicates the presence
of metastatic disease. With the TNM staging system,
levels of these three variables are combined, and patients
are classified into four stage groups according to different
combinations of the levels. Then the outcome estimation
of patients is based on the survival function estimated for
each stage.
The TNM was created by surgeons primarily for sur-

gery. However, cancer medicine no longer lives in the
world where surgery remains the only treatment. The field
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of cancer is now characterized by screening and early
detection, proteogenomics, multiple therapies, and a
bewildering array of prognostic factors. Advances in mole-
cular medicine, imaging, and therapeutics are now forcing
us to integrate additional prognostic factors for more
accurate estimation of patient outcome [2-5]. Therefore,
to improve the estimation of outcome, methods are
needed to incorporate additional prognostic factors into
the TNM without changing the anatomic definitions.
The ensemble algorithm for clustering cancer data

(EACCD) by Chen et al. [6] is designed to explore expan-
sion of the TNM by integrating additional factors into
the system. Though many results on using EACCD have
been reported, there has been no study available to ana-
lyze the algorithm. In this report, we present an analysis
of EACCD by using a large breast cancer dataset. We
compared the output of EACCD with the corresponding
survival curves, investigated the effect of different settings
for EACCD, and compared EACCD with several other
clustering approaches. This report represents an exten-
sive expansion of the work in [7].

Method
EACCD
In this section, we describe the EACCD. Our presenta-
tion allows a collection of partition methods in con-
structing dissimilarities and thus is more general than
that in [6]. Let the record for the ith patient be (xi0,xi1,...,
xip,δi), where xi0 equals the observed time (censored or
un-censored survival time), xij are measurements on vari-
ables (factors) Xj for j = 1, ... , p, and δj is the event indi-
cator which is defined to be 1 if the event (e.g., death)
has occurred and 0 if the time on study is right-censored.
Define a combination to be a set of(xi0,xi1,...,xip,δi) that
corresponds to one level of each variable (A continuous
variable should be discretized). EACCD is an algorithm
used to cluster combinations. In the algorithm, dissimi-
larity between two combinations is learnt by repeatedly
using some clustering (partitioning) approaches based on
criterion minimization, and then the learnt dissimilarity
measure is used with a hierarchical clustering method in
order to find final clusters of combinations. The algo-
rithm involves the following three steps.

Computing initial dissimilarity
Assume that there are a total of n combinations x1, x2, ... ,
xn. Then the following initial dissimilarity measure
dis0(xi, xi′) is defined between two combinations xi and xi’:

dis0(xi, xi′) = d0. (1)

Here d0 is the value of a test statistic (e.g., the log-rank
test statistic [8]) used to determine if three is a difference
in the survival functions between the two populations

associated with xi and xi’. In general, dis0(xi, xi′) assumes
any non-negative value.

Computing learnt dissimilarity
Let C denote a cluster assignment, assigning the ith com-
bination to a cluster, i.e., C(xi) Î ( {1, 2, ... ,K} for a prede-
termined integer K. The optimal assignment C* is
obtained by minimizing the “within-cluster” scatter, i.e., by
solving the following discrete optimization problem:

min
C,{ik}K1

K∑

k=1

∑

C(xi)=k

dis0
(
xi, xik

)
. (2)

Numerical procedures (e.g., the Partitioning Around
Medoids (PAM) [9]) are employed to find the solution to
the above optimization problem. For the data {x1, x2, ... ,
xn}, one K and one clustering or partitioning method may
be chosen to partition the data into K clusters. However,
the final assignment usually depends on the selected
method and the initial reallocation. To overcome this, one
can run this partition process m times. Each time a num-
ber K is randomly picked from a given interval [K1,K2] and
a partitioning procedure is also randomly selected. Define
δl(i, j) = 1 if the lth run of a procedure does not assign xi
and xj into the same cluster; and δl(i, j) = 0 otherwise. And
then define the following dissimilarity measure between
two combinations xi and xj:

dis(xi,xj) =
∑N

l=1 δl(i, j)
m

. (3)

Note that dis(xi, xj) ranges from 0 to 1. A smaller value
of dis(xi, xj) indicates that xi and xj most likely come from
the same “hidden” group. In other words, a smaller dissim-
ilarity dis(xi, xj) is expected to imply a smaller difference
between the two survival functions associated with the
two combinations.

Hierarchical clustering
This step clusters the combinations by applying a linkage
method [10] and the learnt dissimilarity dis(xi, xj). The pri-
mary output of EACCD is a dendrogram that provides a
summary of the survival experiences based on the levels of
prognostic factors, and thus has multiple applications.
The algorithm is outlined in Algorithm 1. Note that if

only PAM is used for computing the learnt dissimilarity,
then the algorithm reduces to that introduced in [6].

Data set
A breast cancer patient dataset was obtained from the Sur-
veillance, Epidemiology, and End Results (SEER) Program
of the National Cancer Institute [11]. Because of its size,
quality control, broad US representation, unbiased ascer-
tainment, and 35-year history, the Program is ideal for
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evaluating algorithms. We selected data for breast cancer
from the years 1990-2000 using SEER’s Case Listing. Dur-
ing the selection process, we followed the definitions for
tumor size and number of involved lymph nodes as pub-
lished by the American Joint Committee on Cancer [1].
The dataset contained 202, 219 cases having complete
records on T (tumor size), N (nodal status), X (survival
time), and δ (censoring status). The factors T and N have
3 and 4 categories, respectively, as listed in Table 1. There-
fore there are 12(3 × 4) combinations based on T and N.
And for convenience, we denoted by T1N0 the combina-
tion formed using categories T1 and N0, by T1N1 the
combination formed using categories T1 and N1, and so
on.
Algorithm 1 Ensemble algorithm for clustering cancer

patient data

1. Define the initial dissimilarity dis0 in (1).
2. Obtain a collection of procedures for solving (2).
Choose m, K1, and K2, and run these procedures m
times, where for each time, a procedure is randomly
selected from the collection and a K is randomly cho-
sen from the interval [K1, K2]. Then construct the pair-
wise dissimilarity measure dis by using the equation (3).
3. Cluster the combinations by applying a linkage
method and the learnt measure dis.

Evaluation of EACCD
We evaluated EACCD by performing a series of experi-
ments using the programming language “R” [12]. The
PAM algorithm was used in the second step of EACCD
throughout the evaluation. Random medoids were initially
selected for the PAM in all cases except for A4, described
below, where the default initial medoids in “R” were used.
The evaluation began with the application of the

algorithm to clustering the breast cancer patients. We
examined how the algorithm grouped the patients and
compared this grouping with the possible grouping pattern
exhibited in the survival curve plot. For the experiments,
the log-rank test statistic [8] was used to determine the
initial dissimilarity in the first step of the algorithm. In the
second step we chose K1 = 2, K2 = 11 (the total number of

combinations minus one). The PAM algorithm was
repeatedly executed for m = 10000 times. In the third step,
the average linkage hierarchical clustering technique [10]
was used.
We then examined the effect of different settings in

EACCD on the dendrogram generated by the algorithm.
There were mainly three “factors” that could influence the
final result in EACCD: test (the statistical test employed in
determining the initial dissimilarity in Step 1 of the algo-
rithm), m (the number of rounds of partitioning proce-
dures performed in obtaining the learnt dissimilarity in
Step 2) and the linkage function (the linkage function used
in the hierarchical clustering procedure in Step 3). The
effects of these “factors” were analyzed by varying their
“values.” While the value of m was chosen from {10, 20,
50, 100, 500, 1000, 5000, 10000, 20000, 30000}, we consid-
ered three tests (the log-rank test, the Gehan-Wilcoxon’s
test, and the Tarone and Ware’s test [8]) and three linkage
functions (the average linkage, the complete linkage, and
the single linkage [10]).
Finally, we compared EACCD with four additional

approaches that could be used to cluster the cancer
patient data. These approaches were either straight for-
ward or modifications of EACCD. Specifically the four
approaches A1,A2,A3,A4 are described below. For demon-
stration, we used m = 10000, the log-rank test, and the
average linkage for the setting of EACCD.
Approach A1
This was tailored from the EACCD, omitting the learn-
ing step for dissimilarity. The initial dissimilarity mea-
sure dis0 in (1) was obtained first using the log-rank
test and then standardized into 0[1] by the equation
disSA1

= dis0/max {dis0}. The standardized initial dissimi-
larity values were then used in the hierarchical cluster-
ing procedure with the average linkage function.
Approach A2
In testing the differences between two survival curves
associated with two combinations, a smaller p-value nor-
mally indicates a larger difference between the survival
curves. Therefore, 1 − p, ranging from 0 to 1, could be
used as the pairwise dissimilarity measure between two
combinations in light of the survival. In the approach of
A2, this dissimilarity 1 − p, from the log-rank test, was
directly used in the hierarchical clustering procedure with
the average linkage function. The learning step for dissimi-
larity was not required.
Approach A3
In A3, we considered one traditional procedure in cluster-
ing the cancer data by using the two factors T and N. For
each combination, let T̂ denote the average value of T and

N̂ the average value of N. We could use T̂ and N̂ to repre-
sent the T and N value of the combination, respectively.
Since T̂ has a much larger range than N̂, a linear transfor-
mation was performed to standardize T̂ and N̂ into 0[1] as

Table 1 Definitions of Tand N for SEER breast cancer
cases from 1990-2000.

Prognostic factors Categories Level

Tumor size T1(T ≤ 2cm)
T2(2cm < T ≤ 5cm )
T3(T >5cm)

1
2
3

Nodal status N0(No positive axillary nodes)
N1(1 - 3 nodes contain tumor)
N2(4 - 10 nodes contain tumor)
N3(More than 10 nodes contain tumor)

1
2
3
4
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N̂ = (T̂ − min{T̂})/(max{T̂}− min{T̂}) and N̂s = (N̂ − min
{N̂})/(max{N̂}− min{N̂}). Let T̂s

i and N̂s
i be the standardized

values for combination xi. Then the dissimilarity
between combinations xi and xj was defined as dis(xi,

xj) dis(xi, xj) = |T̂s
i = T̂s

j | + N̂s
i − N̂s

j |. This dissimilarity dis

was then standardized into the range of 0[1] using
dissA3

= dis/max{dis}. Based on dissA3
, hierarchical clus-

tering with the average linkage was then performed.
Approach A4
In A4 the PAM clustering algorithm was directly used to
partition the cancer data. The quantity dissA1

in the
approach A1 was taken as the input dissimilarity measure-
ment. The number of clusters was set at 2, ... , 11, respec-
tively, and thus 10 partition results were available.

Results and discussion
An application study
EACCD, when applied to the breast cancer data, gener-
ated a dendrogram (Figure 1(a)) that exhibits one rela-
tionship among 12 survival curves corresponding to the
12 combinations.

More specifically, the dendrogram provided an overall
view of the relationship among the outcomes as the levels
of prognostic factors were changed. We begin with the
leftmost side or branch of Figure 1(a). The dissimilarity
(difference) between the survival curve of T1N3 and the
survival curve of T3N2 is 0.20. Merge T1N3 with T3N2
and denote by T1N3 + T3N2 the resulting group of
patients. Then the difference between the survival curve
of T1N3 + T3N2 and the survival curve of T2N3 is 0.41.
Merge T1N3 + T3N2 with T2N3 and denote the resulting
group of patients by T1N3 + T3N2 + T2N3. Then in light
of survival, this group T1N3 + T3N2 + T2N3 differs from
T3N3 by a value of 0.67. Merging T3N3 with T1N3 +
T3N2 + T2N3 and denoting the resulting group by T1N3
+ T3N2 + T2N3 + T3N3, then T2N2 + T3N1 differs from
T1N3 + T3N2 + T2N3 + T3N3 by a value of 0.70 in
terms of survival. Here T2N2 + T3N1 is the group from
merging T2N2 with T3N1, where T2N2 differs from
T3N1 by a value of 0.00. Denote by T1N3 + T3N2 +
T2N3 + T3N3 + T2N2 + T3N1 the result from merging
T2N2 + T3N1 and T1N3 + T3N2 + T2N3 + T3N3. The
above shows the relationship among the survival curves

Figure 1 Dendrogram of T and N from EACCD and survival curves for T and N combinations.
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of the combinations contained in the left branch of the
dendrogram. A similar interpretation applies to the survi-
val curves of the combinations in the right branch of the
dendrogram. Finally, the left branch differs from the right
branch by a value of 1.0 in light of survival. That is, 1.0 is
the difference between the survival curve of the group
T1N1 + T2N0 + T3N0 + T1N2 + T2N1 + T1N0 and the
survival curve of the group T1N3 + T3N2 + T2N3 +
T3N3 + T2N2 + T3N1.
The relationship among the survival curves exhibited in

the dendrogram of T and N (Figure 1(a) ) can be con-
firmed by visually checking the 12 survival curves shown
in Figure 1(b). These survival curves were constructed by
the Kaplan-Meier procedure [8]. The survival curves in
Figure 1(b) can be divided into two groups, group 1 con-
sisting of the lower six curves and group 2 consisting of
the upper six curves. The curves in group 1 and group 2
appear on the left and right branches in Figure 1(a),
respectively of the dendrogram. Thus, from a practical
perspective, the dendrogram initially divides the patients
into those with a favorable outcome and those with an
unfavorable outcome. A visual check of group 1 in Figure
1(b) shows certain differences among the curves. For
instance, the two closest curves are the curve of T2N2 and
the curve of T3N1, and the next two closest curves are the
curves of T1N3 and T3N2. If we merge combinations in
the order of increasing differences between survival rates,

we would first merge T2N2 with T3N1, and then merge
T1N3 with T3N2, merge T1N3 + T3N2 with T2N3, merge
T1N3 + T3N2 + T2N3 with T3N3, and finally, merge
T1N3 + T3N2 + T2N3 + T3N3 with T2N2 + T3N1.
Clearly, this observation coincides with the relationship
among survival curves depicted by the left branch of the
dendrogram in Figure 1(a). Similarly, the right branch of
the dendrogram captures the survival differences and the
order of merging of the six curves in group 2.

Effect of settings on EACCD
Effect of m
The learnt dissimilarity “dis“ in EACCD depends on the
values of m, which will be convergent when m is suffi-
ciently large. If on the the other hand, m is small, the dis-
similarity is not convergent and can be regarded as a
variable. Thus, the resulting dendrograms will not be
robust. Specifically, for a small value of m, multiple runs
of EACCD with the same test and same linkage may pro-
duce significantly different dendrograms. This is shown in
Figures 2(a) and 2(b). However, when m is large, the den-
drograms for the same test and same linkage are virtually
the same. For example, when m = 10000, 20000, 30000,
the dendrograms (Figures 3(d), (e), (f)) based on the
Gehan-Wilcoxon’s test and the complete linkage are simi-
lar, and the dendrograms (Figures 3(g), (h), (i)) based on
the Tarone-Ware’s test and the single linkage are almost

Figure 2 Dendrograms from the log-rank test, the average linkage, and small m.
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identical. Therefore, a large m should be used when apply-
ing EACCD.
Effect of tests and linkage functions
We further examined the effect of statistical tests for
large values of m. Figure 4 lists nine dendrograms for
m = 10000, the log-rank test, the Gehan-Wilcoxon’s test,

the Tarone and Ware’s test, the average linkage, the com-
plete linkage, and the single linkage. There were two
observations, drawn by visualizing the figure horizontally
and vertically. First, for a given test, the dendrograms
based on different linkage functions exhibit the same
merging pattern, but merging or fusion can occur at

Figure 3 Dendrograms from large m values.
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significantly different dissimilarity values. For example,
with the log-rank test, the dendrogram from the average
linkage has the same shape and merging pattern as the
dendrogram from the complete linkage. For the average

linkage, T2N2 + T3N1 is merged with T1N3 + T3N2 +
T2N3 + T3N3 at the dissimilarity of 0.76. But that fusion
occurs at the dissimilarity of 0.79 for the complete link-
age. Second, for a given linkage, the dendrograms derived

Figure 4 Dendrograms from m = 1000, three tests, and three linkage functions.
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from different tests are virtually the same, which indi-
cates that for a given linkage, test statistics have minimal
influence on the dendrogram. For instance, Figures 4(a),
(d), and 4(g) essentially show the same dendrogram for
the average linkage and three tests (the log-rank test, the
Gehan-Wilcoxon’s test, and the Tarone and Ware’s test).
In summary, our experiments have shown that a large

m ( such as m ≥ 10000 ) should be used in EACCD. For a
large m, different linkage functions can generate different
dendrograms. But different statistical tests have minimal
or no influence on the dendrogram.

Comparisons with alternative approaches
Approach A1
For approach A1, a hierarchical clustering procedure
with the average linkage was applied directly to the
breast cancer data. The dissimilarity was determined by
the value of the log-rank test statistic. The dendrogram
is shown in Figure 5(a). It indicates that T1N0 becomes
a separate group. The reason for this is stated as follows.
Consider the set S containing all the dissimilarities
between one survival function and its “nearest” neigh-
bor, which is identified visually from Figure 1(b). Com-
putation shows that the dissimilarity between T1N0 and
its nearest neighbor T1N1 is the maximum of S and it is
nearly 12 times larger than the second largest value in S.
According to the construction of the dendrogram, T1N0
is merged with the group of all the other eleven combi-
nations at the last step in the hierarchical clustering
procedure.
Note that the combination T1N0 contains significantly

more patients than any other combination (Figure 1(b)).
Other experiments showed that if the number of patients
in T1N0 was reduced to a quantity comparable with the
number of patients in other combinations, dendrograms
from the approach A1 would have the same shape and
merging pattern as in Figure 1(a). This suggests that A1 is
sensitive to the relative size of the combinations.
Approach A2
The approach A2 also used a hierarchical clustering proce-
dure with the average linkage to directly cluster the breast
cancer data. But in this approach, the dissimilarity was
obtained by the p-value from the log-rank test. The den-
drogram, shown in Figure 5(b), indicates that the merging
steps on the top are not obvious for several combinations.
The reason is simply that the dissimilarity 1 − p is 1 for
most pairs of combinations, due to the rounding effect in
computation.
Approach A3
We employed A3 to cluster the data by using only T and
N. Survival times were not used with this approach. The
corresponding dendrogram is shown in Figure 5(c). Com-
paring Figure 5(c) with the survival curve plot in Figure 1

(b), we can observe that the merging pattern described in
the dendrogram at low levels of dissimilarity does not
seem reasonable. For instance, the dendrogram indicates
that T2N3 and T1N3 merge first and then they merge
with T3N3 to form a group without T3N2, which is not
reasonable in light of Figure 1(b). Therefore the traditional
clustering procedure using T and N does not work here.
The reason might be that T and N together could not cap-
ture the main information regarding the survival of cancer
patients.
The approach A3 can be modified by incorporating the

learning step, as in EACCD. One modification, denoted by
A∗
3, is obtained by replacing dis0 in the first step of

EACCD by dissA3
and then following steps 2 and 3 in

EACCD with the average linkage. Figure 5(d) shows the
dendrogram (m = 10000), which again presents unreason-
able grouping assignments.
Approach A4
We ran the PAM algorithm to directly partition the breast
cancer data (combinations) for the number of clusters set
at each of the following figures: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.
And we obtained the corresponding partition by cutting
off the dendrogram in Figure 1(a). Comparisons showed
that the results from the PAM and EACCD were the same
except for the case where the number of clusters was 4.
Table 2 lists the partition results for four clusters from
both methods, where a higher group number means a
smaller survival in the group. Comparing the table with
Figure 1(b), we see that the four clusters from EACCD are
reasonable. However, groups 2 and 3 from the PAM show
a separation of T2N1 from T1N2, which should be placed
into the same group as indicated by the survival plot
(Figure 1(b)). Therefore, partition of the data from
EACCD is more consistent with the survival curves than
that from the PAM.
In summary, the results of these comparisons have

shown that 1) if the step for learning dissimilarity is
omitted in EACCD, then the resulting approaches can
have a degraded performance, 2) if survival times are
not taken into account, then clustering based on
prognostic factors will likely generate misleading den-
drograms, and 3) direct applications of partitioning
techniques to the data can lead to misleading assign-
ments to clusters.

Conclusion
This report presents a three pronged analysis of EACCD
based on a breast cancer patient dataset. First, we exam-
ined whether grouping patients by EACCD was consis-
tent with the “natural” grouping of survival curves
derived directly from the data. Second, we investigated
the effect of different settings in EACCD. Third, we com-
pared EACCD with other clustering approaches. The
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results showed that if only the PAM is employed for
learning dissimilarity, large values of m should be used
with EACCD and that dendrograms generated from
EACCD with the PAM and a large m primarily depend

on the linkage functions and not on the statistical tests
that are used in the learning step. The results also
showed that EACCD can be applied to cancer patient
data to obtain meaningful dendrograms.

Figure 5 Dendrograms from various clustering approaches.
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Table 2 Partition results for four clusters of SEER breast
cancer data from 1990-2000.

EACCD PAM

Group 1 T1N0 T1N0

Group 2 T1N1, T2N0, T3N0 T1N1, T2N0, T3N0, T2N1

Group 3 T1N2, T2N1 T1N2, T2N2, T3N1

Group 4 T1N3, T2N2, T2N3, T3N1, T3N2, T3N3 T1N3, T2N3, T3N2, T3N3
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