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Abstract

Background: In the yeast Saccharomyces cerevisiae, genes containing UASINO sequences are regulated by the Ino2/
Ino4 and Opi1 transcription factors, and this regulation controls lipid biosynthesis. The expression level of INO2 and
INO4 genes (INO-level) at different nutrient limited conditions might lead to various responses in yeast lipid
metabolism.

Methods: In this study, we undertook a global study on how INO-levels (transcription level of INO2 and INO4)
affect lipid metabolism in yeast and we also studied the effects of single and double deletions of the two INO-
genes (deficient effect). Using 2 types of nutrient limitations (carbon and nitrogen) in chemostat cultures operated
at a fixed specific growth rate of 0.1 h-1 and strains having different INO-level, we were able to see the effect on
expression level of the genes involved in lipid biosynthesis and the fluxes towards the different lipid components.
Through combined measurements of the transcriptome, metabolome, and lipidome it was possible to obtain a
large dataset that could be used to identify how the INO-level controls lipid metabolism and also establish
correlations between the different components.

Results: In this study, we undertook a global study on how INO-levels (transcription level of INO2 and INO4) affect
lipid metabolism in yeast and we also studied the effects of single and double deletions of the two INO-genes
(deficient effect). Using 2 types of nutrient limitations (carbon and nitrogen) in chemostat cultures operated at a
fixed specific growth rate of 0.1 h-1 and strains having different INO-level, we were able to see the effect on
expression level of the genes involved in lipid biosynthesis and the fluxes towards the different lipid components.
Through combined measurements of the transcriptome, metabolome, and lipidome it was possible to obtain a
large dataset that could be used to identify how the INO-level controls lipid metabolism and also establish
correlations between the different components.

Conclusions: Our analysis showed the strength of using a combination of transcriptome and lipidome analysis to
illustrate the effect of INO-levels on phospholipid metabolism and based on our analysis we established a global
regulatory map.
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Background
Phospholipid synthesis in the yeast Saccharomyces cere-
visiae is a complex process that involves regulation by
both genetic and biochemical mechanisms [1-3]. The
activity levels of phospholipid synthesis enzymes are
controlled by gene expression, e.g., transcription, and by
other factors, i.e., lipids, water-soluble phospholipid pre-
cursors and products, and covalent modification by
phosphorylation.
At the transcription level, the heterodimeric Ino2/Ino4

activator and the transcription factor Opi1 are global
regulators affecting the expression of a large number of
phospholipid biosynthetic genes [4-6]. Opi1, containing
a leucine zipper motif, has been known as a negative
regulator of phospholipid biosynthesis and it can also
repress the transcription of INO2 and INO4 [7,8]. In the
absence of Opi1, the transcriptional level of both INO2
and INO4 (so called “INO-level“) will be up-regulated
compared to the reference strain. Ino2p and Ino4p
binds to so-called inositol-choline response elements
(ICRE), and ICRE-bound Ino2p can interact with coacti-
vator complexes such as Snf1 kinase that has histone
kinase function, the SAGA complex, and the TFIIB
complex when OPI1 is disrupted or not presented in the
nucleus [9,10]. Opi1 is also necessary for repression of
ICRE-dependent transcription when inositol-choline is
present in excess [8,11]. Under this condition, Opi1 is
localized in the nucleus [12] and prevents Ino2 from
activation of target genes by recruiting the pleiotropic
co-repressors such as the Cyc8/Tup1 complex [13,14] or
Sin3p [15-19]. Consequently, Ino2 variants (which are
defective in interacting with Opi1) lead to the repression
of phospholipid synthetic genes [20]. However, a gen-
ome wide transcription analysis of the effect of varying
INO-levels that effect lipid metabolism has never been
studied before.
It is known that the transcription of the phospholipid

biosynthetic genes is maximally repressed in the presence
of the phospholipid precursors inositol and choline (IC)
[4,21,22]. A highly conserved 10bp-element (5’-CATGT-
GAAAT-3’), in at least one copy is found in the promo-
ters of the lipid co-regulated genes such as INO1, CHO1,
CHO2, OPI3, FAS1, FAS2, ACS2, and ACC1 [23-28]. This
element has been shown to be both necessary and suffi-
cient for the IC response, the so called “inositol/choline-
responsive element” or “inositol-sensitive upstream acti-
vating sequence” (ICRE or UASINO motifs)[23,24,29].
These motifs are bound by a heterodimer of positive
regulators Ino2p and Ino4p containing a basic helix-loop-
helix (bHLH) structural motif [21,30-32] which is
necessary and sufficient for dimer formation and speci-
fic interaction with the UASINO motif [10,32,33]. Recent
studies have shown that expression of several genes,

probably unrelated to phospholipid metabolism, is also
affected by Ino2p and Ino4p [22,29,34]. Importantly,
over-expression of INO2 (but not of INO4) counteracts
IC repression, suggesting Ino2p as a possible target of the
signal transduction pathway triggering IC repression
[35,36]
At the biochemical mechanism level, the level of phos-

phatidic acid (PA) is controlled by the biochemical regu-
lation of key phospholipid synthesis enzymes [12] and it
plays a central role in the regulation of phospholipid
synthesis gene expression [1,33,37].
In this study, we undertook a global study of lipid

metabolism in response to different INO-levels (INO2
and INO4): (1) normal INO-level using wild-type (CEN.
PK113-7D), (2) high INO-level using an opi1Δ strain,
and (3) low (or rather absent) INO-level using an ino2Δ
ino4Δ double deletion strain. Moreover, we also focused
on the deficient factors as a sub story comparing the
individual knockout strains (ino2Δ and ino4Δ) with the
double deletion strain. Using a systems biology approach
[38] a global regulatory model for lipid metabolism
could be established. With 2 types of nutrient limita-
tions (carbon and nitrogen) and different INO-level, we
were able to see the effect on expression level of the
genes involved in lipid biosynthesis and the fluxes
towards the different lipid components. Through com-
bined measurements of the transcriptome, metabolome,
and lipidome it was possible to obtain a large dataset
that could be useful to identify the effect of INO-level
and also establish correlations between the different
components.

Methods
Materials
All chemicals were reagent grade. Phospholipids, fatty
acid methyl ester and neutral lipids standards were pur-
chased from Sigma.

Agar spot test on SD media with different inositol
concentrations
The reference strain CEN.PK 113-7D and 5 mutants as
shown in table 1 were grown on SD agar plate (contain-
ing Yeast Nitrogen Base without amino acids and inosi-
tol, Formedium LTD, England) for 48 hours. The SD
agar plates were supplemented with 0, 1.39, 75 or 220
µM of inositol.

Strains, cultivation, and fermentation profile
The S. cerevisiae strains used in this study were a proto-
trophic strain CEN.PK 113-7D (Mata Mal2-8c SUC2)
[39] and its derivative (opi1Δ, ino2Δ, ino4Δ, and
ino2Δino4Δ) supplied by Peter Kötter (Frankfurt, Ger-
many). All strains in this study were prototrophic and
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with mating type a (Table 1). Steady-state aerobic che-
mostat cultures were grown at 30 ˚C in 1.2 L bioreac-
tors (DASGIP, Germany) with working volume of 0.5 L
using a dilution rate of 0.10 (±0.005) h-1. For the C-lim-
ited and N-limited cultures, the medium composition
was the same as in a previous study [40,41] which con-
tained 75 μM of inositol and 1mM of choline [24,42].
The pH was controlled at 5.00 ± 0.05 with 2M KOH
and dissolved oxygen was kept above 30%. Chemostat
cultivation ensured that metabolic and regulatory
changes observed were specific to the INO-level and
also the disruptions of INO2 and/or INO4, and not
complicated by external effects resulting from different
specific growth rates.
Samples were harvested from the cultivation media

every second hour and immediately filtered through a 0.45
μm pore-size cellulose acetate filter (VWR) and stored at
-20 ˚C until analysis. Biomass production was evaluated
by measuring of optical density (OD600) and dry cell
weight. Glucose, glycerol, ethanol, and acetate concentra-
tions were determined by HPLC analysis using an Aminex
HPX-87H column (Biorad, Hercules, CA) [43].

Transcriptome analysis
Transcriptome data acquisition
Samples for RNA extraction were taken after 50 h (i.e. 5
retention times) of steady-state by rapidly taking 20 ml
of culture and mixing with 30 ml of crushed ice in a 50
ml Falcon tube to cool down the samples immediately.
The cells were harvested by centrifuging at 4000 rpm
and 2˚C for 3 min, and then frozen in liquid nitrogen
and stored at -80˚C until subsequent RNA extraction.
The cells were mechanically disrupted using FastPrep
homogenizer (MP Biomedicals) and total RNA was iso-
lated using the RNeasy Mini Kit (QIAGEN). The quality
of total RNA was assessed using an Agilent 2100 Bioa-
nalyzer (Agilent Technologies) with RNA 6000 Nano
LabChip kit (Agilent Technologies). The labeled RNA
was synthesized using the GeneChip 3’ IVT Express Kit
(Affymetrix), which was then hybridized onto the Gene-
Chip Yeast Genome 2.0 Arrays (Affymetrix). Staining
and washing of the hybridized arrays were carried out
on the GeneChip® Fluidics Station 450 (Affymetrix) and
scanned using the GeneChip Scanner 300 7G (Affyme-
trix). All transcriptome data of this study can be found

at Gene Expression Omnibus with accession number
GSE36298.
Transcriptome data analysis
The transcriptome data were analyzed using Bioconduc-
tor in R. Raw data were normalized and processed
together with Probe Logarithmic Intensity Error (PLIER
http://media.affymetrix.com/support/technical/tech-
notes/plier_technote.pdf). Pairwise T-test analysis was
performed to determine the genes whose expression
level is significantly changed due to INO-level, as well
as the sufficiency factor. The calculated P-values were
corrected for multiple testing by FDR method. A cut-off
value of adjusted P value<0.01 was set to assess statisti-
cal significance.

Lipid data acquisition
Total lipid extraction
The lipid extraction method was adapted from Bligh and
Dyer[44]. First, 15 mg of freeze-dried cell pellets were
treated with 1 unit μl-1 of zymolyase digesting buffer
(1.2 M glycerol, 100 mM sodium thioglycolate, 50 mM
Tris-sulfate, pH 7.5) at 37°C for 15 min, followed by
centrifugation at 3000 rpm for 3 min to collect the
spheroplast, which was mixed with internal standards
(heptadecanoic acid and glyceryl tri-heptadecanoate, 25
µg of each). After the addition of 7 ml of chloroform-
methanol (2:1, v/v), the mixture was shaken horizontally
at 300 rpm 4°C for 3 h, mixed with 1.7 ml of sodium
chloride solution (0.73%) and centrifuged at 3000 rpm
4°C for 4 min for phase separation. The lower (organic)-
phase was collected and the remaining was re-extracted
with 5 ml of chloroform-methanol (85:15 v/v). The
lower (organic)-phase was collected and pooled with the
previous organic fraction and kept at -20°C until further
analysis.
Lipid class separation, identification, and quantification
using HPLC-CAD
Lipid separation and quantification were performed
using our developed method [45]. Lipid separation was
accomplished by HPLC (Dionex) equipped with charge
aerosol detector; CAD (Corona) and the gas connected
was nitrogen gas with 35 psi gas pressure. All the sepa-
rated fractions were then collected by automated frac-
tion collector; AFC-3000 (Dionex). A 20 μl volume of
sample was injected in to the Luna 5 µm HILIC 200 Å

Table 1 List of strains used in this study and their genotypes

Strain Genotype Remark

CEN.PK113-7D MATa URA3 HIS3 LEU2 TRP1 SUC2 Reference

CEN.PK1029-1A MATa URA3 HIS3 LEU2 TRP1 SUC2 opi1Δ::loxP-Kan-loxP opi1Δ (high INO)

CEN.PK1033-9A MATa URA3 HIS3 LEU2 TRP1 SUC2 ino2Δ::loxP-Kan-loxP ino4Δ::loxP-Kan-loxP ino2Δino4Δ (low INO)

CEN.PK1027-1B MATa URA3 HIS3 LEU2 TRP1 SUC2 ino2Δ::loxP-Kan-loxP ino2Δ

CEN.PK1028-2A MATa URA 3 HIS3 LEU2 TRP1 SUC2 ino4Δ::loxP-Kan-loxP ino4Δ
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100 × 3.0 mm LC Column (Phenomenex). The flow-rate
was 0.8 ml/min and the column temperature was kept
at 25˚C during all runs. The chromatogram was record
at 10 Hz frequency and gain for 100 pA. The polar and
neutral lipid classes were separated by three solvent
mixtures and gradient systems as follow: (A) hexane-
acetic acid (99:1, v/v); (B) acetone-isopropanol-acetic
acid (29:70:1, v/v/v); (C) water-acetone-isopropanol-
acetic acid (9:20:70:1, v/v/v/v). Triethylamine (0.08%, v/
v) was added to the solvent C to adjust pH. The samples
were injected at time 0 and the gradient profile started
at 100% of solvent A and the solvent B was gradually
increased to 5% in 14 min and it was always kept at 5%
along the process. At 15 min time point, solvent C was
slowly entering to the system and rising up to 40% in 5
min. Then solvent C was slowly increased until 45% in
20 min. Finally, the gradient was reduced from 5% to
0% of solvent B and from 45% to 0% of solvent C in 5
min and then maintained at 100% of solvent A for 5
min. In total, the solvent program for the separation of
all lipid classes took 45 min.
Identification and quantification
Pure lipid standards were analyzed individually using
chromatography to confirm their retention times and
purity. Lipid standards were also co-eluted together with
samples to identify peaks in unknown samples. Solutions
of known concentrations of different lipid classes were
mixed and lipid standard curves were generated to study
the linearity of the detection method and to quantify
lipid classes in unknown samples. Calibration curves
were prepared for 5-1000 μg ml-1 of PA, PE, PC, PS, PI,
ES, TAG, FA, and ES. Each concentration of the stan-
dard solutions was injected twice and the average log10
peak area for each lipid was plotted against the absolute
amount of lipid. Correlation (r2) was determined for all
curves by linear regression.
Fatty acid methylesters (FAMEs) analysis
To quantify the distribution of fatty acid long chain spe-
cies, we used standard procedure developed in our
laboratory which is based on the previous protocol by
Khoomrung et al. [46]. Briefly, 10 mg of freeze-dried
samples was mixed with 4 mL of hexane, 2 mL of 14%
BF3 (in Methanol) and 5 µg of internal standard (17:0)
fatty acid standard was added. The sample was then
flushed into the tube’s head space with nitrogen gas for
30s and closed tightly with a Teflon screw cap. The
tube was placed in a vessel containing 30 mL of milliQ
water and then sealed with TFM screw cap. The tube
was heated using microwave digestion system (milestone
start D, Sorisole Bergamo, Italy) equipped with rotor
PRO-24. The temperature programming of microwave
digestion was ramped (from room temperature) to 120
˚C within 6 min and maintained for 10 min. After cool-
ing down sample at the room temperature, 2 mL of

milliQ water was added and shaken vigorously for 1
min and centrifuged at 2500 rpm for 5 min. The upper
phase (hexane phase which contained the FAMEs) was
analysed by GC-MS.
The FAMEs were separated and quantified using

Focus GC ISQ single quardrupole GC-MS (Thermo
Fisher scientific, Germany). The separation of FAMEs
was performed on Zebron (ZB-WAX) GC column (30
m × 0.25 mm I. D., 0.25 μm film thickness) from Phe-
nomenex, Macclesfield, UK. Sample was injected in
splitless injection mode (1µL at 240 ˚C) and Helium was
a carrier gas (1 mL/min). The column temperature was
initially set at 50 °C (1.5 min), then temperature was
ramped to 180 °C (25°C/min) for 1 min, then increased
to 220 °C (10°C/min) and held for 1 min. Finally, tem-
perature was increased to 250 °C (15°C/min) and held
for 3.0 min. Mass transfer line and ion source were set
at 250 °C and 200 °C, respectively. The FAMEs were
detected with electron ionization (70 eV) in scan mode
(50-650 m/z) and selected ion monitoring mode at m/z
55, 67, 74 and 79 (for quantitative analysis). The identi-
fication of unknown FAMEs was achieved by comparing
their retention times and mass spectrum profiles with
known standards (Sigma-Aldrich, USA). The quantifica-
tion of FAMEs was performed using QuanBrowser func-
tion in Xcalibur software version 2.0 (Thermo Fisher
Scientific). According to the serial dilution of FAME
mix standards and were normalized according to the
internal standard fatty acid C17:0. The average molecu-
lar weights of each PL (Table.S1 in additional file 1)
were used for mg/gDW and mmol/gDW units conver-
sion (were later used for metabolic fluxes analysis).

Integrated analysis
The statistical adjusted P-values of each hypothesis test-
ing were overlaid on the three networks graph of Gene
Ontology, Transcription factor-gene interaction and
genome-scale metabolic model iIN800 [47] (metabolite-
gene interaction). Then reporter algorithm [48] was per-
formed to obtain significant values (reporter p-value) of
GO terms, Transcription factors (TF) and metabolites.
The Platform for integrative analysis of omics data
(PIANO) package for R ([49]available at http://www.bio-
conductor.org/packages/2.13/bioc/html/piano.html) has
been performed for integrated analysis. All the features
presented in heatmaps are those features that have
reporter P-value < 0.001 and P-value < 0.01 were con-
sidered for INO-level and deficient factors, respectively.

Results
Inositol is essential in the low INO-level yeast
To estimate the required inositol concentration for low
INO-level (either ino2Δ, or ino4Δ, or double deletion of
them), a spot test with the 5 yeast strains on different
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concentrations of inositol were performed (Figure 1A).
Since the Ino2-Ino4 heterodimer regulates positively
the expression of INO1 (a structural gene for inositol-
1-phosphate synthase which is required for inositol
synthesis) and other phospholipid genes containing
UASINO element [31,50], deletion of INO2 and INO4
results in a requirement for supplementation of myo-
inositol. However, myo-inositol is included in our
minimal medium in a concentration of 250 µg/L (cor-
responding to about 1.39 µM) [41]. The spot test
showed that opi1Δ as well as reference strain are pro-
totroph for inositol but at least 75 µM of inositol is
sufficient for low INO-level strains (either single or
double deletion of INO2 and INO4) to grow. However,
higher concentrations of inositol (even 200 µM) did
not make much difference in term of growth. Based on
this we conclude that the low INO-level strains are
auxotroph for inositol, and this leads us to an experi-
mental design using 75 µM of inositol in the medium
for all the chemostat cultures.

Cell physiology and carbon metabolism
To see the effects on cell growth of each mutant strain,
5 strains (the reference, opi1Δ, ino2Δino4, ino2Δ, ino4Δ)
were grown in batch cultivations using a defined mini-
mum medium and switched to chemostat immediately
after glucose was depleted. Table 2 summarizes the
basic physiological parameters for growth on glucose for
all the strains in either C-limited or N-limited condi-
tions. During the batch, ino2Δ ino4Δ double deletion
had the highest maximum specific growth rate in the C-
limited medium but the lowest maximum specific
growth rate in the N-limited medium (Figure 1B). How-
ever, it was clear that the double deletion strain had
longer lag phase during batch cultivation in both C-lim-
ited and N-limited conditions (25h and 60h, respec-
tively). Interestingly, during the chemostat cultivation
we found this double deletion strain had the lowest bio-
mass yields compared to the other strains. Interestingly,
we found that the opi1Δ strain exhibited metabolic
oscillations in the glucose limited chemostat cultures.

Figure 1 Procedures of integrated analysis to reveal the effects of INO-level (INO2 and INO4) on lipid metabolism in yeast. Spot test of
all strains on SD agar plates with different inositol concentrations (A). Off gas CO2 profile of each mutant strain during the chemostat cultivation
at C-limitation and N-limitation (B). Schematic analysis of a workflow for integrated analysis, transcriptome-lipidome, of INO-level (key factor) and
deficient factor effect on lipid biosynthesis (C).
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We therefore took the samples for transcriptome analy-
sis at two time points, at the maximum and minimum
level of CO2 production.
These two samples represent reductive-building (R/B)

and reductive charging (R/C) of the yeast metabolic
cycle respectively [51] and the transcriptional data ana-
lysis for both of them were performed to see the differ-
ences from 2 metabolic phases (Fig. S1 in additional file
1). The heatmap of reporter shows that the differences
between these 2 metabolic phases mainly affects genes
associated with differences in cell cycles period. Accord-
ing to the respirative quotient (RQ) from Table 2, the
phase of the population at maximum CO2 production
showed about 20% higher RQ compared with all the
other strains at C-limitation. Based on this we therefore
decided to exclude this sample and only use the sample
from the minimum CO2 production as a high INO-level
representative at C-limitation condition.
Double deletion of Ino2 and Ino4 resulted in a sub-

stantial reduction (about 35% in C-limited and 55% in
N-limited conditions) in biomass yield compared with
the reference strain (Table 2). Interestingly, deletion of
Opi1 resulted in a small reduction (approx. 25%) in bio-
mass only at N-limited but not at C-limited conditions.

INO-level in nutrient-limited conditions
The levels of INO-gene (INO2 and INO4) expression in
both C-limited and N-limited conditions were investi-
gated according to the expression level from micro array
results (Figure 2). Even though there were metabolic
cycle patterns with the opi1Δ strain grown at C-limited
condition, the expressions of the INO genes were

consistently high (Figure 2A). This evidence shows that
INO genes are up-regulated when their repressor, Opi1,
is absent. At C-limited condition, INO levels are low in
both the two single and the double deletion strains (Fig-
ure 2A and 2C). Interestingly, the INO4 gene seems to
be expressed at a high level at N-limitation (Figure 2B)
and it possibly also tries to compensate the failure of
INO2 expression by up-regulating its expression in the
ino2Δ strain at N-limitation (Figure 2D).

Global transcriptome changes due to INO-level in
nutrient-limited conditions
We used the Affymetrix DNA microarray platform to
measure the expression level of all genes and access the
global effect caused by the INO-level under nutrient-
limited conditions (C-limited and N-lim). The transcrip-
tome data were decomposed using principal component
analysis (PCA) and Student’s T-test analysis (a = 0.001).
The transcriptome data are presented in Venn diagrams
at C-limited (Figure 3A) and at N-limited (Figure 3B)
showing that the high INO-level (opi1Δ) strain had
more genes being significantly changed at C-limitation.
On the other hand, the low INO-level (ino2Δino4Δ dou-
ble deletion) strain had more genes being significantly
changed at N-limitation.
From clustering of reporter GO terms (biological pro-

cess at P < 0.001), 4 main clusters were identified (Fig-
ure 3C). Cluster 1 which is the largest group contains
the genes involving the phospholipid biosynthesis, myo-
inositol biosynthesis and transport, fatty acid metabolic
process, cell conjugation, and ribonucleoside biosyn-
thetic process which were highly up-regulated due to

Table 2 Physiological parameters of reference and mutants in chemostat cultivation

Strains µmax
1 Left Glc (g/L) RQ YSX

2 YSE
3 YSG

4 YSA
5 YSS

6 YSC
7

RefC 0.384 ± 0.001 0.015 ± 0.000 0.817 ± 0.007 0.539 ± 0.010 n.d. 0.019 ± 0.001 n.d. n.d. 0.124 ± 0.003

Opi1CT 0.343 ± 0.001 0.009 ± 0.001 1.058 ± 0.020 0.557 ± 0.002 0.004 ± 0.000 0.019 ± 0.000 0.003 ± 0.000 n.d. 0.208 ± 0.004

Opi1CB 0.343 ± 0.001 0.009 ± 0.001 0.819 ± 0.003 0.550 ± 0.001 n.d. 0.019 ± 0.000 n.d. n.d. 0.106 ± 0.003

Ino2C 0.340 ± 0.000 0.018 ± 0.001 0.805 ± 0.011 0.597 ± 0.020 n.d. 0.018 ± 0.001 0.003 ± 0.000 n.d. 0.129 ± 0.006

Ino4C 0.369 ± 0.001 0.010 ± 0.000 0.837 ± 0.009 0.571 ± 0.007 n.d. 0.018 ± 0.002 n.d. n.d. 0.135 ± 0.002

Ino24C 0.436 ± 0.000 0.039 ± 0.001 0.889 ± 0.013 0.362 ± 0.028 0.098 ± 0.011 0.022 ± 0.003 0.019 ± 0.000 0.002 ± 0.000 0.101 ± 0.002

RefN 0.486 ± 0.000 20.387 ± 1.667 1.286 ± 0.008 0.128 ± 0.004 0.485 ± 0.048 0.008 ± 0.000 0.007 ± 0.001 0.002 ± 0.000 0.124 ± 0.004

Opi1N 0.499 ± 0.001 15.521 ± 1.809 1.260 ± 0.001 0.096 ± 0.003 0.316 ± 0.017 0.005 ± 0.000 0.005 ± 0.000 n.d. 0.075 ± 0.017

Ino2N 0.495 ± 0.001 28.286 ± 0.877 1.159 ± 0.008 0.168 ± 0.002 0.305 ± 0.015 0.009 ± 0.000 0.006 ± 0.001 n.d. 0.102 ± 0.005

Ino4N 0.494 ± 0.001 28.837 ± 0.427 1.261 ± 0.017 0.164 ± 0.003 0.337 ± 0.010 0.008 ± 0.000 0.006 ± 0.000 n.d. 0.103 ± 0.001

Ino24N 0.410 ± 0.000 35.944 ± 1.867 1.269 ± 0.010 0.058 ± 0.008 0.370 ± 0.026 0.017 ± 0.001 0.038 ± 0.001 n.d. 0.076 ± 0.005

Note: All values are average ± SD from three biological replicates.
1 maximum specific growth rate on glucose during batch cultivation (with 10 g/L and 60 g/L initial glucose for C-limited and N-limited conditions, respectively)
2 Biomass yield on glucose in chemostat cultures (g biomass formed/g glucose consumed)
3 Ethanol yield on glucose in chemostat cultures (g ethanol formed/g glucose consumed)
4 Glycerol yield on glucose in chemostat cultures (g glycerol formed/g glucose consumed)
5 Acetate yield on glucose in chemostat cultures (g acetate formed/g glucose consumed)
6 Succinate yield on glucose in chemostat cultures (g succinate formed/g glucose consumed)
7 CO2 yield on glucose in chemostat cultures (mg CO2 formed/g glucose consumed)
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the deletion of OPI1 (high INO-level), especially at N-
limited condition, but down-regulated at low INO-level
at both C- and N-limitation. Cluster 2 contains genes
involving maltose and sucrose catabolic process which
were highly up-regulated due to the C-limitations. Clus-
ter 3 contains genes involving nitrogen compound meta-
bolism, amino acid and peptide transport, and proton
transport which were down-regulated in the double
mutant at N-limited condition. Cluster 4 contains genes
involving amino acid biosynthesis, mitochondria biogen-
esis, and endoplasmic reticulum associated unfolded
protein responses (ER-UPR) which were highly signifi-
cant in the double mutant strain. These genes were up-
regulated at low INO-level and N-limitations but down-
regulated at C-limitation.
To identify specific transcriptional regulation of meta-

bolism in response to deletion of INO2 and/or INO4,
we performed transcriptome comparison of the three
INO deficient mutants (defined as deficient factor in
Figure 1C). For each strain we identified genes with sig-
nificantly changed expression compared with the refer-
ence strain and then presented the results for the three
strain as Venn diagrams for both C-limited (Figure 4A)
and N-limited (Figure 4B) conditions. Even though it
has been known that Ino2 and Ino4 form a heterodi-
meric transcription factor, we found some specific

changes upon deletion of each of these genes (Figure 4A
and 4C). Interestingly, ino4Δ has more significant genes
due to the absent of INO4 compared with the two other
mutants at C-limitation. At N-limitation, on the other
hand, the effect is significantly higher when both INO2
and INO4 were deleted. Interestingly, most of the genes
involving nitrogen compounds metabolism and carbon
utilization (Figure 4C, Cluster 1) were down-regulated
due to the absence of INO2 and INO4 but up-regulated
when only INO2 or INO4 were knocked out individually
at N-limitation. Moreover, we found that the genes
involving ribosome biogenesis and rRNA processing (in
cluster 2 Figure 4C) are dramatically down-regulated
when INO4 was knocked out especially at C-limited
conditions. The evidence showed that Ino4 (probably
together with other TFs) could possibly play role in
ribosome biogenesis (which supports protein synthesis).
Surprisingly, most of the genes involving protein transla-
tion (Cluster 3 in Figure 4C, including mitochondria
translation) were up-regulated in the double mutant at
N-limited conditions while they were only up-regulated
when either INO2 or INO4 were deleted at C-limitation.
Consistently, the genes involving phospholipid, inositol,
and fatty acids (UASINO-contained genes in cluster 6,
Figure 4C) were down regulated in all three strains at
both C-limited and N-limited conditions. However, they

Figure 2 The normalized expression values of INO2 and INO4 (INO-level) for each strain. The key factor set shows the different INO-level
at C-limitation (A) and N-limitation (B). The deficient factor group set shows the different INO-level at C-limited (C) and N-limited (D)
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were 2 other clusters that also captured down-regulated
genes in all three INO-deleted strains, but different for
the two nutrient limitations. The first group listed in
cluster 4 (involving fatty acids biosynthesis and b-oxida-
tion, TCA cycle, ATP, NAD, magnesium ion, and pro-
ton transport) were mainly down-regulated at N-limited
condition. Cluster 5, on the other hand, contains genes
involving ER-UPR and stress response, ethanol and
amino acids biosynthesis that were mainly down-regu-
lated only at C-limitation.

Effects of INO-level on fatty acid biosynthesis
With UASINO sites in their promoters, the expressions
of fatty acid synthase genes such as ACC1, FAS1, and
FAS2 are subject to control by the Ino2/Ino4 and Opi1
transcription factors [26,52,53]. At low INO-level strain,
the fatty acid synthase genes (FAS1 and FAS2) were
down-regulated at both C-limited and N-limited condi-
tion (Fig. S8 in additional file 1). However, single deletion

of each INO gene seems to have effect only at C-limita-
tion when FAS1, FAS2, and also ACC1 were down-regu-
lated (Fig. S8 in additional file 1). In contrast, the high
INO-level strains especially at N-limited condition
showed an increase in FAS2 expression and none of the
fatty acid synthase genes were down-regulated. This
enhanced the ability to produce more FA needed for
phospholipid biosynthesis. From the reporter metabolite
heatmap (Fig. S2 in additional file 1), the FA pools and
also fatty acyl-ACP were increasing for high INO-level
strains especially at N-limited condition. All the low
INO-level strains showed a dramatic decrease in FA and
fatty acyl-ACP pools as reporter metabolites. However, it
seems like the effects of lacking INO genes have higher
effect at C-limited than at N-limited conditions (Fig. S2
in additional file 1). The transcription factors involving
beta-oxidation, OAF1 and PIP2, were found as reporter
TF which were highly up-regulated at high INO-level but
down-regulated at low INO-level (Fig. S3 in additional

Figure 3 Transcriptional data analysis of 3 different INO-level strain. Venn’s diagram of significant genes of mutant strains caused by
different INO-level when focus on C-limitation (A) and N-limitation (B) separately, p-value < 0.001 were considered. (C) A heat map of
overrepresented GO terms (Biological Process) of each factor comparison showing in the range of -4 to 4 of log(p-value). The green color
indicates down-regulation and red indicates up-regulation compared to the reference strain.
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file 1). Moreover, we found a significant increase in the
free fatty acid (FA) pool of all the mutants compared to
the reference strain (Figure 5). However, the low INO-
level strains showed slightly higher amount of accumu-
lated FAs due to the lower fluxes towards PLs. From the
plots of correlation between each fatty acid chain and
their elongase enzyme coding genes (Fig. S7 in additional
file 1), we found a correlation between C18 fatty acid
products (stearic and oleic acid) and the expression value
of ELO1 to be about 0.65 while the correlation between
C20 fatty acids and ELO2-ELO3 transcription were found
in a negative direction (about -0.42 and -0.27, respec-
tively). Presumably, C20 fatty acid might have a regula-
tory mechanism by repression their own elongase genes.

Effects of INO-level on phospholipids biosynthesis and
accumulation
As mentioned above the whole set of UASINO-contained
genes were extremely up-regulated at high INO-level

(Fig. S8 in additional file 1). However, to get a clearer
picture about the carbon channeling in lipid metabolism
at the metabolite level, the fluxes in lipid biosynthesis
(in units of μmol/gDW/h) were calculated from the
measured lipid profiles at all conditions (Figure 5) and
this provides a clear picture of the changes in the flux
distribution in response to the different factors evalu-
ated. These fluxes were affected by many factors at sev-
eral levels, such as gene transcription, protein
phosphorylation, and enzyme activity. At high INO-
level, the fluxes through CDP-DAG and phospholipids
synthesis pathway were higher than the reference about
45-55% at C-limitation and N-limitation, respectively.
Moreover, the expression of the genes coding for myo-
inositol transporter (ITR1) and choline transporter
(HNM1) were highly up-regulated in opi1Δ. This sup-
ported the synthesis of PI and also enhanced the Ken-
nedy pathway to produce more PC using choline and
DAG as precursors and it was consistent with the highly

Figure 4 Transcriptional data analysis of 3 different INO-deficient strain. Transcriptional data analysis; Venn’s diagram of significant genes of
mutant strains caused by different deficient factors (single and double deletions) when focus on C-limitation (A) and N-limitation (B) separately,
p-value < 0.01 were considered. (C) A heat map of overrepresented GO terms (Biological Process) of each factor comparison showing in range
of -4 to 4 of log(p-value). The green color indicates down-regulation and red indicates up-regulation compared to the reference strain.
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up-regulation of the genes coding for Kenedy’s pathway
enzymes such as CPT1 and CKI1 (Fig. S8 in additional
file 1). On the other hand, the ITR1 were constantly
down-regulated in all low INO-level strains either dou-
ble or single deletion in both limitation conditions. The
low INO-level strain showed about 40-60% decreasing
fluxes through the CDP-DAG pathway which caused a
dramatically decrease in the phospholipid pool especially
at N-limitation. The metabolite reporter heat map
showed a large increase of PL pools in the high INO-
level strain. In contrast, we found a dramatically
decreasing of PLs in low INO-level compared to the
reference strain.
Focusing on the deficient effects, double deletion of

INO genes (especially at N-limitation) can cause more
effect to the dramatically reduction of phospholipids
than the effect of single deletions (Figure 5). About a
70% decrease in PLs can be found when both INO
genes were deleted, but there were only 50% or 60%
decreasing in PLs when INO2 or INO4 were deleted

respectively. Even though this double deletion effects
did not make much changes in the PLs pool at C-limita-
tion, it still caused about 50% lower level of PI when
compare to the single deletion strains. From the heat-
map of reporter metabolites (Fig. S4 in additional file 1),
S-adenosyl-L-methyonine or SAM (the only donor of PE
methylation reaction) was strongly decreased in all low
INO-level strains and this lead to a decrease of PLs
(especially PC) since it is required for production of PC
by Cho2 and Opi3.

Effects of INO-level on storage lipids biosynthesis and
accumulation
The production rate and accumulation of PC can cause
ER stress and UPR activation which lead to the up-regu-
lation of TAG and ES biosynthesis [54]. At N-limitation,
the low INO-level strain (double mutant) could produce
and accumulate TAG and SE about 1.2 folds more
when compared to the high INO-level strain (opi1Δ)
and about 1.5 folds when compare to the reference

Figure 5 Fluxes through the different reactions of the lipid biosynthetic pathways. Fluxes through the different reactions of the lipid
biosynthetic pathways for diferrent INO-levels (A) and diferrent deficient factors (B). All fluxes are shown in units of μmol/gDW/h. The normal
font (left) and bold font (right) indicate the value from C-limitation and in N-limitation respectively. The level, in units of mg/gDW (±SD), of the
different lipid species are shown in the table. (C = C-limited, N = N-limited).
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strain (Figure 5). Presumably, the down-regulation of
LPP1 at both C- and N-limitation for the high INO-level
strain led to a decrease in TAG biosynthesis and accu-
mulation compared to the reference strain and other
mutants (Fig. S8 in additional file 1). Consistently,
almost the whole set of the ES genes (the green group
in Fig. S8) were down-regulated compared to the refer-
ence and this was associated with a dramatically
decreasing levels of ES and SE. This correlation between
transcription of ES genes and ES level was also sup-
ported by the up-regulation of several ES genes in all
low INO-level strains especially at N-limited condition
(Fig. S8 in additional file 1). Interestingly, the double
deletion strain showed a greater effect in increasing
TAG only at N-limitation. This evidence was supported
by the up-regulation of the ARE1 gene in the double
deletion strain (Fig. S8 in additional file 1) which codes
for the enzyme for the first step of SE biosynthesis. At
C-limited condition, on the other hand, ino2Δ ino4Δ
has a larger effect on decreasing the TAG level com-
pared with the single deletion strains. Moreover, the
fluxes through ES of the ino2Δ strain was about 80%
lower when compare to INO4 deletion and double dele-
tion at C-limited condition.

Ino4 might have an extra function, beside the regulator
of phospholipid biosynthesis, response to nitrogen
starvation and amino acids starvations
It is possible that Ino4, but not Ino2, plays a role as a
regulator for amino acid metabolism. It may not be
Ino4 alone since Ino4, unlike Ino2, does not have a
trans-activating domain (TAD) which is recognized for
the RNA polymerase II complex [33,55,56]. In ino4Δ,
the genes involving ribosome biogenesis and assembly
were extremely down regulated especially at C-limited
conditions and this was exactly the responsive process
for amino acids (and of cause nitrogen) starvation.
There are indications that the induction of Ino4-regu-
lated lipid biosynthesis genes may be connected to the
immediate need of membrane material used for the
autophagocytosis process [57]. This process is utilized
by yeast in order to regulate the equilibrium between
proteins and the diminishing set of amino acids due to
starvation conditions [58]. From the reporter metabolite
heatmap (Fig. S4 in additional file 1), most of the amino
acids were found to be greatly down-regulated (espe-
cially at N-limitation) in all low INO-level strains which
pointed an amino acid starvation response.
To identify the extra function of Ino4 on protein bio-

synthesis, we also performed the Pearson correlation
analysis of INO4 to all other genes based on the normal-
ized expression values from transcriptome data of all
strains and all conditions. Using the cut off at 0.50 abso-
lute correlation value, about 470 genes were selected as

the high correlated genes of INO4 (91 genes were posi-
tively correlated and 380 genes were negatively corre-
lated). The overrepresentation of gene ontology
categories (biological process) were identified and ana-
lyzed using BiNGO, a Cytoscape plugin [59]. From the
INO4 positively correlated genes listed in table S2 in
additional file 1 it confirmed the main function of Ino4
(together with Ino2 as listed in table S4 in additional file
1) as a positive regulators of lipid biosynthesis and inosi-
tol-choline transport involved genes as it has been
reported before by many researchers. However, the list
of INO4 negatively correlated genes in table S3 (please
see additional file 1) showed the new findings that Ino4
is actually play an extra role as the negative regulator of
the translation process, protein biosynthesis and assem-
bly, and also involves in mitochondrial translation. Ino2,
on the other hand, had about 200 negatively correlated
genes that passed through the cut off at 0.50 absolute
Pearson correlation value. This particular group contains
many interesting genes involving protein transport, pro-
tein catabolic process, and proteolysis which might also
responds for amino acid starvation as summarized in
table S5 (please see in additional file 1).

Linkage among sulfur-phospholipids, protein synthesis,
and ER-UPR pathway
The double deletion of INO2 and INO4 at N-limitation
showed some effects from amino acid starvation. UPR
genes were also down-regulated when the synthesis level
of amino acids was decreasing (less missed fold proteins).
It also has been known that decreasing PC levels leads to
the accumulation of saturated PC molecular species in
the ER membrane which causes ER stress, UPR activation
and these evidences lead to the up-regulation of FA,
TAG, and sterol biosynthesis in the end [54]. Therefore,
in the low INO-level strain, the KAR2 gene which is a
responsive gene for ER-UPR was up-regulated especially
at N-limitation. The high INO-level on the other hand,
showed a large decrease in expression of KAR2 especially
at C-limited condition. These evidences show that there
is a linkage which plays a role in regulating the homeos-
tasis among amino acids biosynthesis, phospholipids bio-
synthesis, and the ER-UPR pathway. As it has been
reported before most of the genes coding for enzymes
involved in cysteine-methionine biosynthesis, i.e. MET2,
MET8, MET14, MET16, SAH1, SAH2, contain ICRE or
UASINO sequences in their upstream regions [53], and
these genes were up-regulated at high INO-level while
OPI1 (the repressor) was disturbed. Consequently, we
found down-regulation of MET6 and SAH1 and especially
SAH2 in all low INO-level mutants, especially at C-lim-
ited condition. This leads to reduced synthesis and accu-
mulation of storage lipids at C-limited condition
compared to their references (Figure 6). This pointed out
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that amino acid synthesis genes might be controlled by
the regulation of Snf1 kinase (via Gln3 or Gdh3) which is
always activated at low glucose (C-limited) condition and
consistent with our previous study [40]. Consistently,
MET6 and SAH1 were up-regulated at high INO-level at

N-limitations where Snf1 is consistently repressed by
excess glucose in the culture media, and this leads to the
slightly higher biosynthesis of TAG and hence TAG
accumulation (Figure 6). Based on our findings and some
supporting knowledge from the previous study [40], the

Figure 6 The coupled-reaction of methylations of phosphoethanolamine from S-adenosyl-L-methionine (AdoMet) by Cho2 and Opi3
enzymes. A comparison of expression level (log2 fold change) of each genes coding for sulfur-phospholipids coupled metabolism (A). The
effects of low INO-level on ER stress and UPR inducing the up-regulation of FA and storage lipids (B).

Figure 7 Summary of the multilevel regulation network among amino acids biosynthesis, lipid metabolism, and ER-UPR. The figure
illustrate the regulatory model of yeast metabolism involving protein and lipid metabolism showing all the effects from nutrients-responsive
mechanism to the kinase, gene expression, and metabolite level.
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overall regulation systems linking amino acids-protein
synthesis, lipid metabolism and ER-UPR is summarised
in Figure 7 which has kinase proteins and several tran-
scription factors involved.

Conclusions
Through integrated analysis of transcriptome and lipi-
dome derived from robust experimental setup, it was
possible to obtain a large-scale dataset that could be
used to systematically identify correlations and associa-
tions between the different components. We were able
to see the effect on expression of the genes involved in
lipid biosynthesis and metabolic fluxes through lipid
biosynthesis pathway. We found that there is an effect
of Ino4, but not by Ino2, on the ribosome biogenesis
and assembly which involves an amino acid starvation
response. It points to an interesting link between lipid
metabolism and the amino acid starvation response and
we also found an effect of phospholipids on ER-UPR
activation. Moreover, we found a close linkage among
INO genes, amino acid genes, and probably Snf1 kinase
in controlling lipid biosynthesis and accumulation. Fol-
lowing our analysis by genome-wide strategy and analy-
sis of generated complex data by integrated analysis
approach enable us to explore correlations and associa-
tion of changes in a concerted fashion.
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